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Competition-diffusion-mutation model

• consider model of two phenotypes of a species

∂ne
∂t

= De
∂2ne
∂x2

+ rene(1−meene −mednd) −µe ne + µdnd

∂nd
∂t

= Dd
∂2nd
∂x2

+ rdnd(1−mdene −mddnd) +µe ne − µdnd

where

- ne, nd = densities of two phenotypes of a single species

- De, Dd = dispersal rates

- re, rd = growth rates

- mee,mdd intra-morph competition, med,mde inter-morph competition

- µ = small positive constant, measuring amount of mutation

- d, e = positive constants, allow mutation to affect morphs differently
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• consider model of two phenotypes of a species

∂ne
∂t

= De
∂2ne
∂x2

+ rene(1−meene −mednd) −µe ne + µdnd

∂nd
∂t

= Dd
∂2nd
∂x2

+ rdnd(1−mdene −mddnd) +µe ne − µdnd

- terminology: interested in trade-off between dispersal and growth

Dd > De, re > rd

⇒ ne = density of establisher, nd = density of disperser



Competition-diffusion-mutation model

• consider model of two phenotypes of a species

∂ne
∂t

= De
∂2ne
∂x2

+ rene(1−meene −mednd) −µe ne + µdnd

∂nd
∂t

= Dd
∂2nd
∂x2

+ rdnd(1−mdene −mddnd) +µe ne − µdnd

- motivation: evidence that in some species, more dispersive individuals are

less fecund, so have lower growth rate e.g., speckled wood butterfly

[Hughes, Hill and Dytham, Proc. Roy. Soc. London Ser. B (2003)]



Competition-diffusion-mutation model

• consider model of two phenotypes of a species

∂ne
∂t

= De
∂2ne
∂x2

+ rene(1−meene −mednd) −µe ne + µdnd

∂nd
∂t

= Dd
∂2nd
∂x2

+ rdnd(1−mdene −mddnd) +µe ne − µdnd

Question: how does mutation (µ) between phenotypes

affect the invasion of the species into a region

where it was previously absent?

In particular, the speed of invasion?



Competition-diffusion-mutation model

• consider model of two phenotypes of a species

∂ne
∂t

= De
∂2ne
∂x2

+ rene(1−meene −mednd) −µe ne + µdnd

∂nd
∂t

= Dd
∂2nd
∂x2

+ rdnd(1−mdene −mddnd) +µe ne − µdnd

- mathematically: if both ne, nd initially have initial condition
ne, nd

occupied region

x < 0

unoccupied region

x > 0

t = 0

x ∈ R = (−∞,∞)0

what happens as t increases, and how is this affected by µ?



Some notation

• set

u =

(
ne

nd

)
∈ R2, A = diag(De, Dd),

f (ne, nd) =

(
rene(1−meene −mednd)− µe ne + µdnd

rdnd(1−mdene −mddnd) + µe ne − µdnd

)
.

so that system becomes

ut = Auxx + f (u)

• for later, write

g(ne, nd) =

(
rene(1−meene −mednd)

rdnd(1−mdene −mddnd)

)
, M =

(
−e d

e −d

)
,

and hence

f (u) = g(u) + µMu



Assumptions and basic facts

(a) competition parameters: assume that

mee > med, mdd > mde

i.e. intra-morph competition is larger than inter-morph competition

(b) equilibria: for small mutation µ, there is an unstable extinction equilibrium

(0, 0), and a stable co-existence equilibrium (n∗e, n
∗
d) (‘monostable’)
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Example of nullclines for (i) µ > 0 (ii) µ = 0
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Example of nullclines for (i) µ > 0 (ii) µ = 0

• [Cantrell, Cosner+Yu, J. Biol. Dynamics, online March 2018]:

- detailed study of equilibria/phase plane for various parameter regimes



(c) Jacobian and co-operativity - the interaction term

f (ne, nd) =

(
rene(1−meene −mednd)− µe ne + µdnd

rdnd(1−mdene −mddnd) + µe ne − µdnd

)
.

has Jacobian

f ′(ne, nd) =

(
re(1− 2meene −mednd)− µe µd− remedne

µe− rdmdend rd(1−mdene − 2mddnd)− µd

)

- so when mutation µ > 0, off-diagonal elements of f ′(ne, nd) are positive

when ne, nd are small but not in general

∴ system is not co-operative in general, but has co-operative structure

close to (0, 0)



(c) Jacobian and co-operativity - the interaction term

f (ne, nd) =

(
rene(1−meene −mednd)− µe ne + µdnd

rdnd(1−mdene −mddnd) + µe ne − µdnd

)
.

has Jacobian

f ′(ne, nd) =

(
re(1− 2meene −mednd)− µe µd− remedne

µe− rdmdend rd(1−mdene − 2mddnd)− µd

)

- so when mutation µ > 0, off-diagonal elements of f ′(ne, nd) are positive

when ne, nd are small but not in general

∴ system is not co-operative in general, but has co-operative structure

close to (0, 0)

• contrast: when µ = 0, not co-operative for any densities ne, nd, but

becomes co-operative under change of variables nd → constant− nd



(c) Jacobian and co-operativity.....ctd

• background: if f is co-operative, that is

∂fi
∂uj

(u) ≥ 0 whenever i 6= j,

then the system

ut = Auxx + f (u)

is order preserving:

if u, û : R→ R2 are bounded and such that

u(x, 0) ≤ û(x, 0) for all x ∈ R,
and

ut ≤ Auxx+f (u), ût ≥ Aûxx+f (û) for all (x, t) ∈ R×(0,∞),

then

u(x, t) ≤ û(x, t) for all (x, t) ∈ R× [0,∞)



Motivating previous work

•model was introduced by Elliott and Cornell, Dispersal Polymorphism and

the Speed of Biological Invasions, PLOS One, 2012

• numerical simulation and linear analysis around (0, 0)

• when mutation µ > 0, found numerical evidence that given Heaviside initial

conditions of the form

ne(x, 0), nd(x, 0) =

{
positive constant if x < 0

0 if x > 0
,

the two morphs ne, nd spread into the state (0, 0) at a single speed



• Elliott and Cornell supposed

Dd > De, re > rd

and assumed that speed is determined by linearisation about (0, 0)



• Elliott and Cornell supposed

Dd > De, re > rd

and assumed that speed is determined by linearisation about (0, 0)

• used method of van Saarloos, Phys Rpts, 2003 (dispersion relation,

stationary phase approximation) to argue that in the limit when µ→ 0,

there are three possible spreading speeds

vd = 2
√
Dd rd, ve = 2

√
De re, va =

reDd − rdDe√
(re − rd)(Dd −De)

• argued that speed va, which

- is larger than ve, vd
- depends on both sets of dispersal and growth parameters

is admissible/selected provided

De

Dd
+
re
rd
> 2 and

Dd

De
+
rd
re
> 2



• predicted that in the parameter region Λ, where both

Dd > De, re > rd
and

De

Dd
+
re
rd
> 2 and

Dd

De
+
rd
re
> 2,
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then when there is a small positive mutation µ > 0, the 2 morphs spread

together at faster speed than either would spread in isolation

‘anomalous spreading’



Other related work

• Cane-toad models

ut = θuxx + αuθθ + r

(
1−

∫ θmax

θmin

u dθ

)
u(x, t, θ) = density of toads of trait θ, uθ(x, t, θmin) = uθ(x, t, θmax) = 0

e.g.

- Bénichou, Calvez, Meunier and Voituriez, Phys. Rev. E, 2012; Bouin, Calvez, Meunier,

Mirrahimi, Perthame, CRAS, 2012; Bouin + Calvez, Nonlinearity, 2014; O. Turanova, M3AS,

2015; Bouin + Henderson, 2017; Bouin, Henderson + Ryzhik, J. Maths Pures Appl., Quart.

Appl. Math., 2017, .......
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• Griette + Raoul, JDE 2016

– study existence + properties/shape of travelling waves when Dd = De, d = e

- exploit De = Dd to study profiles, get explicit formula for minimal wave speed

• Girardin, Nonlinearity, 2018; M3AS 2018

- general results on spreading speeds/travelling waves for N morphs; linear determinacy
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2015; Bouin + Henderson, 2017; Bouin, Henderson + Ryzhik, J. Maths Pures Appl., Quart.

Appl. Math., 2017, .......

• Griette + Raoul, JDE 2016

– study existence + properties/shape of travelling waves when Dd = De, d = e

- exploit De = Dd to study profiles, get explicit formula for minimal wave speed

• Girardin, Nonlinearity, 2018; M3AS 2018

- general results on spreading speeds/travelling waves for N morphs; linear determinacy

• Tang and Fife, ARMA 1980

- µ = 0, existence of travelling waves for all speeds ≥ max{2
√
Dd rd, 2

√
De re}



Prototype ‘monostable’ problem: for the Fisher-KPP equation

ut = duxx + ru(1− u)

0
u

1
stableunstable

f (u) = ru(1− u)

• (Fisher, KPP ‘37) there exist decreasing travelling front solutions u(x, t) = w(x− ct)

front profile

ξ

1
w(ξ)

0

for all speeds

c ≥ c∗

• (Aronson-Weinberger ’78) the minimal front speed c∗ can be characterised as a spreading

speed: for an initial condition u(x, 0) = u0(x) of form

α
u0

0

1

the solution u of ut = duxx + f (u) ‘spreads’ to the right at speed c∗



Prototype ‘monostable’ problem: for the Fisher-KPP equation

ut = duxx + ru(1− u)

0
u

1
stableunstable

f (u) = ru(1− u)

• (Fisher, KPP ‘37) there exist decreasing travelling front solutions u(x, t) = w(x− ct)

front profile

ξ

1
w(ξ)

0

for all speeds

c ≥ c∗ = 2
√
dr linear speed

• (Aronson-Weinberger ’78) the minimal front speed c∗ can be characterised as a spreading

speed: for an initial condition u(x, 0) = u0(x) of form

α
u0

0

1

the solution u of ut = duxx + f (u) ‘spreads’ to the right at speed c∗



1. The Linearised Problem at (0, 0): What is it, and does it determine

the speed of spread?



The linearised problem about (0, 0)

• linearised PDE system

ut = Auxx + f ′(0)u

where

f ′(0) =

(
re − µe µd

µe rd − µd

)
has positive off-diagonal elements

• substituting travelling-wave ansatz u(x, t) = e−β(x−ct)q, where q ∈ R2 is positive vector,

gives (
βA + β−1f ′(0)

)
q = cq



The linearised problem about (0, 0)

• linearised PDE system

ut = Auxx + f ′(0)u

where

f ′(0) =

(
re − µe µd

µe rd − µd

)
has positive off-diagonal elements

• substituting travelling-wave ansatz u(x, t) = e−β(x−ct)q, where q ∈ R2 is positive vector,

gives (
βA + β−1f ′(0)

)
q = cq

• so for given β > 0, the speed c is the Perron-Frobenius eigenvalue of

Hβ,µ := βA + β−1f ′(0) = βA + β−1(g′(0) + µM), i.e.

c = ηPF (Hβ,µ),

and q > 0 is the corresponding eigenvector, which is positive

• minimising ηPF (Hβ,µ) over β gives the minimal c with a positive vector q: define the

µ-dependent linear value

c(µ) = min
β>0

ηPF (Hβ,µ)



Linear determinacy: do solutions spread at the linear speed c(µ)?

• famous sufficient condition for linear determinacy for the scalar equation ut = duxx + f (u)

f (u) ≤ f ′(0)u for all u ∈ (0, 1)

i.e. no Allee effect

f ′(0)u

f(u)

0 1
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• results for co-operative systems: Lui (1989); Weinberger, Lewis+Li (2002)



Linear determinacy: do solutions spread at the linear speed c(µ)?

• famous sufficient condition for linear determinacy for the scalar equation ut = duxx + f (u)

f (u) ≤ f ′(0)u for all u ∈ (0, 1)

i.e. no Allee effect

f ′(0)u

f(u)

0 1

• results for co-operative systems: Lui (1989); Weinberger, Lewis+Li (2002)

• Here, when µ is small,

yes, linearly determinate +

spreading speed = minimal travelling-wave speed

- [Morris et al, arXiv:1612.06768 [math.AP]]: if med,mde small

- exploit ‘trapping framework’ of [Wang, J. Nonlinear Science (2011)]

f−(u) ≤ f (u) ≤ f+(u), where f−, f+ are co-operative, (f−)′(0) = f ′(0) = (f+)′(0)

- [Girardin, Nonlinearity 2018]: if ηPF (f ′(0)) > 0



Linear determinacy: do solutions spread at the linear speed c(µ)?

• famous sufficient condition for linear determinacy for the scalar equation ut = duxx + f (u)

f (u) ≤ f ′(0)u for all u ∈ (0, 1)

i.e. no Allee effect

f ′(0)u

f(u)

0 1

• results for co-operative systems: Lui (1989); Weinberger, Lewis+Li (2002)

• Here, when µ is small,

yes, linearly determinate +

spreading speed = minimal travelling-wave speed

- [Morris et al, arXiv:1612.06768 [math.AP]]: if med,mde small

- [Girardin, Nonlinearity 2018]: if ηPF (f ′(0)) > 0



2. Exploiting the Linearised Problem:

how does the

(linearised) spreading speed c(µ) depend

on the mutation rate µ?



Terminology: (linearised) spreading speed is given by

c(µ) = min
β>0

ηPF (Hβ,µ) = ηPF (Hβ(µ),µ)

where

Hβ,µ = β diag(De, Dd) + β−1(diag(re, rd) + µM)

µ fixed

β
β(µ)

c(µ)

ηPF (Hβ,µ)
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c(µ) is a non-increasing function of µ

∴ increasing mutation slows down the rate of spread



Terminology: (linearised) spreading speed is given by

c(µ) = min
β>0

ηPF (Hβ,µ) = ηPF (Hβ(µ),µ)

where

Hβ,µ = β diag(De, Dd) + β−1(diag(re, rd) + µM)

µ fixed

β
β(µ)

c(µ)

ηPF (Hβ,µ)

c(µ) is a non-increasing function of µ

∴ increasing mutation slows down the rate of spread

cf. [Altenberg, PNAS (2012)]: positive semigroup framework

reduction phenomenon - greater mixing⇒ lowered growth



• the proof exploits properties of the Perron-Frobenius eigenvalue ηPF :

(i) convexity properties of ηPF :

(Cohen, ‘81) if P1, P2 are diagonal and Q has positive off-diagonal elements,

then for 0 < α < 1,

ηPF (αP1 + (1− α)P2 + Q) ≤ αηPF (P1 + Q) + (1− α)ηPF (P2 + Q)

(ii) the fact that ηPF (M) = 0: since M =

(
−e d

e −d

)
has zero column sums, we have

(1 1)

(
−e d

e −d

)
= (0 0)



Idea of the proof ....

Step 1: take µ > µ0, and define diagonal matrices

P := β(µ0)
[
β(µ0)diag(De, Dd) + β(µ0)

−1diag(re, rd)− c(µ0)I
]
, Z =

(
0 0

0 0

)
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P := β(µ0)
[
β(µ0)diag(De, Dd) + β(µ0)

−1diag(re, rd)− c(µ0)I
]
, Z =

(
0 0

0 0

)
Step 2:

ηPF

(
1

µ
P + M

)
≤ µ0

µ
ηPF

(
1

µ0
P + M

)
+

(
1− µ0

µ

)
ηPF (Z + M)

=
µ0
µ
ηPF

(
1

µ0
P + M

)
+

(
1− µ0

µ

)
ηPF (M) = 0

because

ηPF (M) = 0 and ηPF

(
1

µ0
P + M

)
=

1

µ0
ηPF (P + µ0M) = 0



Idea of the proof ....

Step 1: take µ > µ0, and define diagonal matrices

P := β(µ0)
[
β(µ0)diag(De, Dd) + β(µ0)

−1diag(re, rd)− c(µ0)I
]
, Z =

(
0 0

0 0

)
Step 2:

ηPF

(
1

µ
P + M

)
≤ µ0

µ
ηPF

(
1

µ0
P + M

)
+

(
1− µ0

µ

)
ηPF (Z + M)

=
µ0
µ
ηPF

(
1

µ0
P + M

)
+

(
1− µ0

µ

)
ηPF (M) = 0

because

ηPF (M) = 0 and ηPF

(
1

µ0
P + M

)
=

1

µ0
ηPF (P + µ0M) = 0

Step 3:

ηPF
(
β(µ0)diag(De, Dd) + β(µ0)

−1(diag(re, rd) + µM)
)
≤ c(µ0)

∴ c(µ) := min
β>0

ηPF
(
βdiag(De, Dd) + β−1(diag(re, rd) + µM)

)
≤ c(µ0)



3. Exploiting the Linearised Problem:

understanding the ‘anomalous spreading’ condition

De

Dd
+
re
rd
> 2,

Dd

De
+
rd
re
> 2
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Linearisation when µ = 0 and ‘anomalous spreading’ condition

• when mutation µ = 0, the matrix

Hβ,0 = diag(βDe + β−1re, βDd + β−1rd)

is diagonal, so has no ‘Perron-Frobenius’ eigenvalue

• consider larger of the two eigenvalues βDe + β−1re and βDd + β−1rd for each β e.g.



Linearisation when µ = 0 and ‘anomalous spreading’ condition

• when mutation µ = 0, the matrix

Hβ,0 = diag(βDe + β−1re, βDd + β−1rd)

is diagonal, so has no ‘Perron-Frobenius’ eigenvalue

• consider larger of the two eigenvalues βDe + β−1re and βDd + β−1rd for each β e.g.

• if Dd > De and re > rd, the curves cross at a value β∗ between the minima of the 2curves,

so minβ>0 of max of the 2 eigenvalues is attained where curves cross, if

De

Dd
+
re
rd
> 2 and

Dd

De
+
rd
re
> 2

i.e. condition for the 2 morphs to spread together at a speed faster than either spreads alone



4. Exploiting the Linearised Problem:

convergence of c(µ) and the ratio of the phenotypes in the leading

edge as µ→ 0 in the ‘anomalous spreading’ region Λ
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• when µ > 0, minimal speed front of linearised problem has form

u(x, t) = e−β(µ)(x−c(µ)t)q

where q = (qe qd)
T is a Perron-Frobenius eigenvector of

Hβ(µ),µ = β(µ)A + β(µ)−1(g′(0) + µM)
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u(x, t) = e−β(µ)(x−c(µ)t)q

where q = (qe qd)
T is a Perron-Frobenius eigenvector of

Hβ(µ),µ = β(µ)A + β(µ)−1(g′(0) + µM)

• if (rdre ,
De

Dd
) ∈ Λ, then as µ→ 0,

β(µ)→ β∗ :=

√
re − rd
Dd −De

, c(µ)→ c0 :=
reDd − rdDe√

(re − rd)(Dd −De)



• when µ > 0, minimal speed front of linearised problem has form

u(x, t) = e−β(µ)(x−c(µ)t)q

where q = (qe qd)
T is a Perron-Frobenius eigenvector of

Hβ(µ),µ = β(µ)A + β(µ)−1(g′(0) + µM)

• if (rdre ,
De

Dd
) ∈ Λ, then as µ→ 0,

β(µ)→ β∗ :=

√
re − rd
Dd −De

, c(µ)→ c0 :=
reDd − rdDe√

(re − rd)(Dd −De)

and the matrix

Hβ∗,0 = diag(c0, c0)

has a two-dimensional eigenspace

What happens to the principal eigenvector q as µ→ 0?



• provided c(µ), etc, differentiable and the limits limµ→0
c(µ)−c0

µ and limµ→0
β(µ)−β∗

µ exist,

qratio =
qd
qe
→

√(
2D − rD − 1

2r − rD − 1

)
m as µ→ 0,

where

m :=
e

d
, D :=

De

Dd
, r :=

rd
re

e.g.

0.0 0.2 0.4 0.6 0.8 1.0
rd/re0

2

4

6

8

10
qratio

(i)
0.0 0.2 0.4 0.6 0.8 1.0

De/Dd

1

2

3

4
qratio

(ii)

0 2 4 6 8 10
e/d

1

2

3

4
qratio

(iii)

where D and m are fixed in (i), r and m in (ii), and r and D in (iii)



5. Trade-offs and the ‘anomalous spreading’ region
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• suppose a functional form of trade off between dispersal and growth, say

D = h(r)

where h : (0,∞)→ (0,∞) is decreasing

D
D = h(r)

r

• are the ‘anomalous spreading’ conditions
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+
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> 2 and

Dd

De
+
rd
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> 2

satisfied for a given trade-off function h?



• inversely-proportional case: conditions always hold when

h(r) =
K

r
, K constant

since
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• geometric condition for general case: if re > rd, then

h(re)
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+
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> 2 and

h(rd)

h(re)
+
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if and only if

h(re)
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< −
(
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)
< h(rd)
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rrerd

slope = h(rd)
rd slope = h(re)−h(rd)
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slope = h(re)
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More open questions

•more information about the shape of the travelling waves?

- in particular, what happens at the back of the front?

• anomalous spreading for more than 2 species?

- some recent work of Cornell and Keenan on multi-species case

• other ways of modelling mutation?
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Thank you for your attention.....


