=) Swansea
£

University

- Prifysgol
Abertawe

Invasion speeds in a competition-diffusion model with mutation

Elaine Crooks
Swansea, UK

Joint work with

Luca Borger and Aled Morris, Swansea, UK



Competition-diffusion-mutation model

e consider model of two phenotypes of a species

on 0*n,
ate — DQW —|_ T@ﬂe(l - meene - mednd> - ILL@ ne _|_ //[/d nd
on 0*n

4 _ Dy d + rang(l — mgene — Magng) + pene — pdng

ot Ox?

where

- Ne, Ng = densities of two phenotypes of a single species

- D., D, = dispersal rates

- 1, Tq = growth rates

- Mee, Myq iNtra-morph competition, m., mg,. inter-morph competition
- 11 = small positive constant, measuring amount of mutation

- d, e = positive constants, allow mutation to affect morphs differently



Competition-diffusion-mutation model

e consider model of two phenotypes of a species

on 0°n
8t€ — De ax; —+ 7“@71@(1 — Meelle — mednd) — e Ne + /,Ld Ny
and (92nd

- terminology: interested in trade-off between dispersal and growth

Dd> De, Te > T4

= n. = density of establisher, n,; = density of disperser



Competition-diffusion-mutation model

e consider model of two phenotypes of a species

ane 82?16
and 82nd
E p— Dd 8332 +Tdnd<1 — MieNe — mddnd> _|_/'L€n€ o ,udnd

- motivation: evidence that in some species, more dispersive individuals are
less fecund, so have lower growth rate e.g., speckled wood butterfly

[Hughes, Hill and Dytham, Proc. Roy. Soc. London Ser. B (2003)]



Competition-diffusion-mutation model

e consider model of two phenotypes of a species

on 0°n
5)te — De ax; —+ Tene<1 — Meelle — mednd) — e Ne + /,Ld Ny
and 82nd

Question: how does mutation (/.) between phenotypes
affect the invasion of the species into a region
where it was previously absent?

In particular, the speed of invasion?




Competition-diffusion-mutation model

e consider model of two phenotypes of a species

on 0’n

ate = De (93726 + T€n6<1 — Meelle — med”d) — Hene + /ud nq
8nd (92710[

E = Dy 2 =+ Tdnd(l — MeNe — mddnd) T HENe — ,ud N

- mathematically: if both n., n, initially have initial condition

t:O n€7nd

occupied region
x <0

0 unoccupied region
x>0

r € R =(—00,00)

what happens as ¢ increases, and how is this affected by /?



Some notation

e set

Te 9 :
u = € R, A =diag(D., Dy),

ngq
reNe(l — MeeNe — Megng) — e Ne + pd nyg
f(nea nd) —
rang(l — mgene — magng) + pene — pdng
so that system becomes

up = Aty + f(u)

e for later, write

reNe(1 — MeeNe — Megng) —e
g(”eand>: ( )7 M = (

rang(l — mgene — magng)

and hence
fu) = g(u) + pMu

) |



Assumptions and basic facts

(a) competition parameters: assume that
Mee > Med,  Mqd > Mge
l.e. intra-morph competition is larger than inter-morph competition

(b) equilibria: for small mutation 1, there is an unstable extinction equilibrium
(0,0), and a stable co-existence equilibrium (n’,n%)  (‘monostable’)
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Assumptions and basic facts
(a) competition parameters: assume that
Mee > Med,  Mdd > Mye
l.e. intra-morph competition is larger than inter-morph competition

(b) equilibria: for small mutation 1, there is an unstable extinction equilibrium
(0,0), and a stable co-existence equilibrium (n’,n%)  (‘monostable’)
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Example of nullclines for (i) > 0 (i) 4 = 0

e [Cantrell, Cosner+Yu, J. Biol. Dynamics, online March 2018]:

- detailed study of equilibria/phase plane for various parameter regimes



(c) Jacobian and co-operativity - the interaction term

reNe(l — MeeNe — Megng) — e Ne + pd nyg
f<n€7 nd) — .
rang(1 — mgene — magng) + pene — pdng

has Jacobian
, Te(l — 2Meene — Megng) — i€ (1d — reMegne
f <n67 nd) —

HE — TqMMgeNg ”I“d(l — MgeNe — dednd) — ,LLd

- so when mutation o > 0, off-diagonal elements of f'(n., n,4) are positive
when n., ng are small but not in general

.". system is not co-operative in general, but has co-operative structure
close to (0, 0)



(c) Jacobian and co-operativity - the interaction term

reNe(l — MeeNe — Megng) — e Ne + pd nyg
f<n€7 nd) — .
rang(1 — mgene — magng) + pene — pdng

has Jacobian
/ Te(l o Zmeene — mednd) — He ,LLd — TeMledMe
f <n67 nd) —

HE — TqMMgeNg ”I“d(l — MgeNe — dednd) — ,LLd

- so when mutation o > 0, off-diagonal elements of f'(n., n,4) are positive
when n., ng are small but not in general

.". system is not co-operative in general, but has co-operative structure
close to (0, 0)

e contrast: when 1 = 0, not co-operative for any densities n., ng4, but
becomes co-operative under change of variables n; — constant — ny



(c) Jacobian and co-operativity.....ctd

e background: if f is co-operative, that is

0fi
ﬁuj

(u) > 0 whenever i # 7,

then the system
up = Ay, + f(u)

IS order preserving:

if u, 4 : R — IR? are bounded and such that
u(x,0) < u(x,0) forall x e R,
and
ur < Augetf(u), 1w > Atg,+f(u) forall (x,t) € Rx(0,00),
then

u(x,t) < u(x,t) foral (z,t) € R x [0, 00)




Motivating previous work

e model was introduced by Elliott and Cornell, Dispersal Polymorphism and
the Speed of Biological Invasions, PLOS One, 2012

e numerical simulation and linear analysis around (0, 0)

e when mutation 1 > 0, found numerical evidence that given Heaviside initial

conditions of the form
)
positive constant if z < 0

\ 0 ifr>0

the two morphs n., ng spread into the state (0, 0) at a single speed

ne(x,0), ng(x,0) = <

0B

population densiy

D4




e Elliott and Cornell supposed
D;> D, r.>ry
and assumed that speed is determined by linearisation about (0, 0)



e Elliott and Cornell supposed
D;> D, r.>ry
and assumed that speed is determined by linearisation about (0, 0)

e used method of van Saarloos, Phys Rpts, 2003 (dispersion relation,
stationary phase approximation) to argue that in the limit when p — 0,
there are three possible spreading speeds

TeDd — TdDe
Vg = 2/ Dgra, Dere, v, =
\/(Te — Td)<Dd — De)

e argued that speed v,, which
- Is larger than v,, v,
- depends on both sets of dispersal and growth parameters

Is admissible/selected provided

D + °>92 and Dd+rd>2
Dd Td De Te



e predicted that in the parameter region A, where both
D;> D, r.>ry

and 5
%Z+:—Z>2 and D€+Zi>2’
1.0_ ...................
0.8;
D, 06|

0.4}

0.2}

0.0 e
0.0 02 04 06 08 1.0

rq/ re

then when there is a small positive mutation ;. > 0, the 2 morphs spread
together at faster speed than either would spread in isolation
‘anomalous spreading’



Other related work

emax
up = Oug, + qugyg +r (1—/ ud@)
emin

u(x,t,0) = density of toads of trait 0, ug(x,t, Omin) = ug(x,t, Opax) = 0

e Cane-toad models

e.g.

- Bénichou, Calvez, Meunier and Voituriez, Phys. Rev. E, 2012; Bouin, Calvez, Meunier,
Mirrahimi, Perthame, CRAS, 2012; Bouin + Calvez, Nonlinearity, 2014; O. Turanova, M3AS,
2015; Bouin + Henderson, 2017; Bouin, Henderson + Ryzhik, J. Maths Pures Appl., Quart.
Appl. Math., 2017, .......
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u(x,t,0) = density of toads of trait 0, ug(x,t, Omin) = ug(x,t, Opax) = 0

e Cane-toad models

e.g.

- Bénichou, Calvez, Meunier and Voituriez, Phys. Rev. E, 2012; Bouin, Calvez, Meunier,
Mirrahimi, Perthame, CRAS, 2012; Bouin + Calvez, Nonlinearity, 2014; O. Turanova, M3AS,
2015; Bouin + Henderson, 2017; Bouin, Henderson + Ryzhik, J. Maths Pures Appl., Quart.
Appl. Math., 2017, .......

e Griette + Raoul, JDE 2016
— study existence + properties/shape of travelling waves when D, = ,., d = ¢

- exploit D, = D, to study profiles, get explicit formula for minimal wave speed

e Girardin, Nonlinearity, 2018; M3AS 2018
- general results on spreading speeds/travelling waves for /N morphs; linear determinacy



Other related work

emax
U = Oy + qugyg + 7 (1—/ ud@)
Hmin

u(x,t,0) = density of toads of trait 0, ug(x,t, Omin) = ug(x,t, Opax) =0

e Cane-toad models

e.g.

- Bénichou, Calvez, Meunier and Voituriez, Phys. Rev. E, 2012; Bouin, Calvez, Meunier,
Mirrahimi, Perthame, CRAS, 2012; Bouin + Calvez, Nonlinearity, 2014; O. Turanova, M3AS,
2015; Bouin + Henderson, 2017; Bouin, Henderson + Ryzhik, J. Maths Pures Appl., Quart.

Appl. Math., 2017, .......

e Griette + Raoul, JDE 2016
— study existence + properties/shape of travelling waves when D; = D,, d=c¢
- exploit D, = D, to study profiles, get explicit formula for minimal wave speed

e Girardin, Nonlinearity, 2018; M3AS 2018
- general results on spreading speeds/travelling waves for /N morphs; linear determinacy

e Tang and Fife, ARMA 1980
- 11w = 0, existence of travelling waves for all speeds > max{2v/Dyrq, 27/ D, 7}



Prototype ‘monostable’ problem: for the Fisher-KPP equation
f(u) =ru(l —u)

U = gy + ru(l — u) /\

0 1
unstable stable

e (Fisher, KPP ‘37) there exist decreasing travelling front solutions u(x,t) = w(x — ct)

for all speeds

e (Aronson-Weinberger '78) the minimal front speed ¢* can be characterised as a spreading
speed: for an initial condition u(x, 0) = ug(z) of form

the solution u of u; = du,, + f(u) ‘spreads’ to the right at speed ¢*



Prototype ‘monostable’ problem: for the Fisher-KPP equation
f(u) =ru(l —u)

U = gy + ru(l — u) /\

0 1
unstable stable

e (Fisher, KPP ‘37) there exist decreasing travelling front solutions u(x,t) = w(x — ct)

front profile

for all speeds

c>c¢ =|2Vdr linear speed

e (Aronson-Weinberger '78) the minimal front speed ¢* can be characterised as a spreading
speed: for an initial condition u(x, 0) = ug(x) of form

the solution u of u; = du,, + f(u) ‘spreads’ to the right at speed ¢*



1. The Linearised Problem at (0, 0): What is it, and does it determine
the speed of spread?



The linearised problem about (0, 0)

e linearised PDE system
u; = Aty + f1(0)u
where

Te — [4€ d
f'(0) = K s has positive off-diagonal elements
pe  rg— pd

e substituting travelling-wave ansatz u(z, t) = e ?*=%g where ¢ € R? is positive vector,
gives

(BA+B71f(0) g=cq



The linearised problem about (0, 0)

e linearised PDE system
u; = Az, + f(0)u
where

Te — € d
f(0) = H s has positive off-diagonal elements
pe  rqg— pd

e substituting travelling-wave ansatz u(z, t) = e ?*=%)g where ¢ € R? is positive vector,
gives
(BA+B7'1(0)) g =cq
e so for given 5 > 0, the speed c is the Perron-Frobenius eigenvalue of
Hy = BA+B7f'(0) = BA+ B7Hg'(0) + uM), ie.
C = 77PF(H6;/1>7
and g > 0 is the corresponding eigenvector, which is positive

e minimising on(Hgyﬂ) over (3 gives the minimal ¢ with a positive vector ¢: define the
p-dependent linear value

p— 1 H L
c(p) ﬁ;gnpﬂ B,u)



Linear determinacy: do solutions spread at the linear speed c(j4)?

e famous sufficient condition for linear determinacy for the scalar equation u; = du,., + f(u)

flu) < f'(0)u forall ue (0,1)

i.e. no Allee effect




Linear determinacy: do solutions spread at the linear speed c(j4)?

e famous sufficient condition for linear determinacy for the scalar equation u; = du,., + f(u)

flu) < f'(0)u forall ue (0,1)

i.e. no Allee effect

e results for co-operative systems: Lui (1989); Weinberger, Lewis+Li (2002)



Linear determinacy: do solutions spread at the linear speed c(j4)?

e famous sufficient condition for linear determinacy for the scalar equation u; = du,., + f(u)

fu) < f'(0)u forall ue (0,1)

i.e. no Allee effect

e results for co-operative systems: Lui (1989); Weinberger, Lewis+Li (2002)

e Here, when 1 is small,

yes, linearly determinate +
spreading speed = minimal travelling-wave speed

- [Morris et al, arXiv:1612.06768 [math.AP]]: if mqq, Mg, small
- exploit ‘trapping framework’ of [Wang, J. Nonlinear Science (2011)]

f(u) < f(u) < f7(u), where f~, f" areco-operative, (f)'(0)= f'(0)=(f")(0)



Linear determinacy: do solutions spread at the linear speed c(j4)?

e famous sufficient condition for linear determinacy for the scalar equation u; = du,., + f(u)

flu) < f'(0)u forall ue (0,1)

i.e. no Allee effect

e results for co-operative systems: Lui (1989); Weinberger, Lewis+Li (2002)

e Here, when 11 is small,

yes, linearly determinate +
spreading speed = minimal travelling-wave speed

- [Morris et al, arXiv:1612.06768 [math.AP]]: if meq, mg4. small
- [Girardin, Nonlinearity 2018]: if npp(f'(0)) > 0



2. Exploiting the Linearised Problem:

how does the
(linearised) spreading speed c(1+) depend
on the mutation rate ©?



Terminology: (linearised) spreading speed is given by

c(,u) = Igl;gl UPF(HB,M) = UPF(HB(M),M)

where
Hg, = B diag(D., D) + 8" (diag(re, r4) + M)

u fixed
npr(Hg,)

c(p)




Terminology: (linearised) spreading speed is given by

c(u) = Igl;l(f)l UPF(HB,M) = UPF(HB(M,M)

where
Hg, = B diag(D., D) + 8" (diag(re, r4) + M)

u fixed
UPF(HB,M>

c(yt) is a non-increasing function of

.". increasing mutation slows down the rate of spread



Terminology: (linearised) spreading speed is given by

c(u) = /3>1]([)1 UPF(Hﬁ,u) = UPF(HB(M),M)

where
Hg, = B diag(D., D) + 8" (diag(re, r4) + M)

u fixed
UPF(Hﬁ,u>

c(yt) is a non-increasing function of

.". increasing mutation slows down the rate of spread

cf. [Altenberg, PNAS (2012)]: positive semigroup framework
reduction phenomenon - greater mixing = lowered growth



e the proof exploits properties of the Perron-Frobenius eigenvalue npp:

(i) convexity properties of npr:

(Cohen, ‘81) if P, P, are diagonal and () has positive off-diagonal elements,
thenfor0 < a < 1,

77pF<OéP1 + (1 — Oz)PQ + Q) < OH]pF(Pl + Q) + (1 — CB)UPF<P2 + Q)




|dea of the proof ....

Step 1: take © > 1o, and define diagonal matrices

P := B(uo) [B(po)diag(De, Da) + B(puo) ™ diag(re, 7a) — c(po)1]

00
0 0




|dea of the proof ....

Step 1: take © > 1o, and define diagonal matrices

P = B(po) [B(0)0iag( Des D) + Blpo) " diag(re,r) = clpuo)1] . Z = (O 0

Step 2:

1
npr (—P + M>
(L

because

N
|5
=
“U
£
/?
~
_|_
<
N
_i_
/;\
|
|5
~
=
“U
=
N
_i_
=

1 1
npr(M) =0 and 7pp (—P+M> :Iu_nPF<P—|—MOM>:O
0




|dea of the proof ....

P := B(po) | B(po)diag(De, Dg) + B(po) " diag(re, ra) — c(po)I|, Z = (

Step 1: take © > 1o, and define diagonal matrices

Step 2:

because

1
npr (—P + M>
(L

N
|5
=
“U
£
/?
~
_|_
<
N
_i_
/;\
|
|5
~
=
“U
=
N
_i_
=

1 1
npr(M) =0 and npr (u_P + M) = (P4 M) = 0
0 0

Step 3:

ner (B(uo)diag(De, Da) + B(po) ™" (diag(re, ra) + M) < c(po)

c(p) = fgl;g npr (Bdiag(De, Da) + 57 (diag(re, ) + pM)) < c(j10)




3. Exploiting the Linearised Problem:

understanding the ‘anomalous spreading’ condition

De Te Dd Td
42> 2 > 2
Dd Td De—I_Te

1.0

0.8




Linearisation when 1 = 0 and ‘anomalous spreading’ condition

e when mutation 1 = 0, the matrix
Hpo = diag(8D. + 57 're, BDg+ 7 'rq)
is diagonal, so has no ‘Perron-Frobenius’ eigenvalue

e consider larger of the two eigenvalues 3D, + 5~ 'r. and 8D, + B 'r, for each 3 e.g.
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Linearisation when 1 = 0 and ‘anomalous spreading’ condition

e when mutation ;1 = (), the matrix
Hpo = diag(8D. + 57 're, BDg+ 7 'rq)
is diagonal, so has no ‘Perron-Frobenius’ eigenvalue

e consider larger of the two eigenvalues 3D, + 5~ 'r. and 8D, + B 'r, for each 3 e.g.

1
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\
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4t
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2
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T

5
4
3|
2
1

00 05 10 15 20 25 3.dﬁ 00 05 10 15 20 25 3.(fi

oif D; > D, and r. > ry, the curves cross at a value 5* between the minima of the 2curves,
so ming~( of max of the 2 eigenvalues is attained where curves cross, if

D, r. Dy 1y
—+—>2 and — +— > 2
Dd Td De Te

I.e. condition for the 2 morphs to spread together at a speed faster than either spreads alone




4. Exploiting the Linearised Problem:

convergence of ¢(4) and the ratio of the phenotypes in the leading
edge as 1 — 0 in the ‘anomalous spreading’ region A

D, r, D; r
TN TN

rql re



e when 11 > (), minimal speed front of linearised problem has form

u(z,t) = e—k‘”j’(u)(fﬂ—f:(u)t)q

)!"is a Perron-Frobenius eigenvector of

Hpy = Blp) A+ B(p) " (g'(0) + pM)

where ¢ = (g qq



e when 11 > (), minimal speed front of linearised problem has form

u(z,t) = e—t”)’(u)(r—c(u)t)q

)!"is a Perron-Frobenius eigenvector of

Hpy = Blp) A+ B(p) " (g'(0) + pM)

where ¢ = (g qq

o if (;—d,g—z) € A, thenas ;1 — 0,

e

Blu) = B = \/ F ) =




e when 11 > (), minimal speed front of linearised problem has form
u(z, t) = e Ple=clt)
is a Perron-Frobenius eigenvector of

Hpy = Bp) A+ B(p) " (g'(0) + M)

where ¢ = (qe qd)T

o if (;—d,g—) c A\, thenas ;1 — 0,

e
e d

Blu) = 5" = ¢ B ) =

and the matrix
H+ o = diag(cy, co)

has a two-dimensional eigenspace
5
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What happens to the principal eigenvector q as 1 — 07?



e provided c(y), etc, differentiable and the limits lim,, o “22=° and lim,, g

e.g.

B(p)—p*
0

(iii)

oy 2D —rD —1 0
dratio — — — m as —
ratio " 20 — ) — 1 )
where
e D, Td
m=-, D=— r=—
d Dd Te
O"_i Cga_tio
8| 3l
6_
2_
4_
2! 1\
0 : : : : ‘I’d/l’e * * : : ’ De/Dd
00 02 04 06 08 1.0 00 02 04 06 0.8 1.0
(1) (ii)
Qratio
4_
3_
2_
1_
: ' : : ' eld
0 2 4 6 8 10

where D and m are fixed in (i), r and m in (i7), and 7 and D in (i7)

exist,



5. Trade-offs and the ‘anomalous spreading’ region

10—
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D, 067

Da 41

0.2}

0.0 - L S



e suppose a functional form of trade off between dispersal and growth, say
D = h(r)
where h : (0, 00) — (0, 00) is decreasing

b D = h(r)

e are the ‘anomalous spreading’ conditions

De Te Dd rq
—+—>2 and — 4+ — > 2
Dd Td De Te

satisfied for a given trade-off function A?



e inversely-proportional case: conditions always hold when

h(r)=—, K constant

since D

r ry T
L2 8 S+ L5226 (rg—1)*>0
Dg 14 Te T4q



e inversely-proportional case: conditions always hold when

h(r)=—, K constant

since D

r ry T
L+ L5288 S+ ">2 8 (rg—r)">0
Dy 1q Te T4

e geometric condition for general case: if r. > r4, then

h e e h
<T>—|—T—>2 and <Td>+ﬁ>2
h(rg) T4 h(re) e
if and only if
slope = @\ _ slope = h(?“;):f}](m)
h(?“e) < (h(TG)—h(Td)) < h(Td) \* i 4///
a fe . | h(r)
| r




More open questions

e more information about the shape of the travelling waves?

- in particular, what happens at the back of the front?

e anomalous spreading for more than 2 species?

- some recent work of Cornell and Keenan on multi-species case

e other ways of modelling mutation?



More open guestions

e more information about the shape of the travelling waves?

- in particular, what happens at the back of the front?

e anomalous spreading for more than 2 species?

- some recent work of Cornell and Keenan on multi-species case

e other ways of modelling mutation?

arXiv:1612.06768 [math.AP]

Thank you for your attention.....



