Optimizing the fractional power in a model with stochastic PDE constraints

Carina Geldhauser Chebyshev Laboratory @ Saint-Petersburg State University

joint work with Enrico Valdinoci (Milan) published online last week in Advanced Nonlinear Studies

optimizing fractional SPDEs

Sponsor Advertizement

I gratefully acknowledge financial support from Dmitry and European Women in Mathematics (EWM).

EWM aims at

- supporting women in their careers
- giving prominence and visibility to women mathematicians
- providing a meeting place for like-minded people

Outline

General Framework

- Optimization under (uncertain) constraints
- Setting

2 The SPDE

- 3 Optimality conditions
- Why is this interesting?
- 5 Existence of optimal controls

Motivation for fractional operators

foraging of wandering albatrosses use a Lévy flight strategy

Figure: Humphries et al, Foraging success of biological Levy flights recorded in situ, PNAS 2012

Optimization problems with uncertain constraints

Optimization problems with uncertain constraints appear in...

- biology: hunting strategies of predators: optimizing over the "average excursion" in the hunting procedure
- Ifinance: efficient portfolios: minimize the risk (uncertainty of the return) of a portfolio with finitely many assets

engineering:

- want optimal response of a system and a quantification of the statistics of the system response, not only "mean response" (deterministic)
- want to find optimal position of injection wells in oil fields

General Framework

Optimization problem under (S)PDE contraints

$$\min_{y \in Y, u \in U} \mathcal{J}(y, u) \quad \text{subject to } Constr(y, u) = 0$$

- \mathcal{J} is a cost functional
- y state variable, solution to Constr(y, u) = 0
- *u* control variable
- Constr is a constraint (in our case: a (S)PDE)

Typical cost functional: $\mathcal{J}(y, u) = \|y - y_D\|^2 + c|u|^2$

Or, with a convex fct. Φ : $\mathcal{J}(y, u) = ||y - y_D||^2 + \Phi(u)$

Setting

Minimization under SPDE constrains

For fixed ω minimize

$$\mathcal{J}(\boldsymbol{y}, \boldsymbol{s}, \omega) = \|\boldsymbol{y} - \boldsymbol{y}_{D_{T}}\|_{L^{2}(D \times [0, T])}^{2} + \Phi(\boldsymbol{s})$$
 (costfct)

subject to the state system

$$dy = \mathcal{L}^{s} y dt + dW \qquad \text{in } D \times [0, T]$$

y(.,0) = y₀ in D (SPDE)

New features:

- optimization w.r.t. fractional exponent s of differential operator L
- output of the optimization should be a random variable $\mathcal{J}(\omega)$, in applications one studies quantities such as $Var[J(\omega)]$

Setting

The penalty function

Let $L < \infty$ and $s \in (0, L)$. The penalty function $\Phi(s)$

- is given a priori
- modellises e.g. "natural search radius"
- should be strictly convex, growing to infinity at boundary

$$\lim_{s\to 0} \Phi(s) = \infty = \lim_{s\to L} \Phi(s).$$

- assume Φ ∈ C²(0, L) non-negative (avoid degenerate or singular situations)
- has to be chosen such that the problem has sufficient compactness properties in *s*.

Possible choice: $\Phi(s) = \frac{1}{s(L-s)}$.

The penalty function

Figure: A possible choice of a penalty function with L = 10: $\Phi(s) = \frac{1}{s(L-s)}$

optimizing fractional SPDEs

Solving a constrained control problem

Example in finite dimensions: $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$

 $\min_{y \in \mathbb{R}^n, u \in \mathbb{R}^m} \mathcal{J}(y, u) \quad \text{ subject to } Ay = Bu$

- **1** Define the solution matrix $S \in \mathbb{R}^{m \times n}$ by $y = A^{-1}Bu$
- **2** Get a reduced cost functional $\hat{\mathcal{J}}(u) = \mathcal{J}(Su, u)$
- Oerive necessary and sufficient optimality conditions
- Prove the existence of optimal controls

N.B.: PDE case: instead of solution matrix S have operator S, called the control-to-state operator

Outline

General Framework

- Optimization under (uncertain) constraints
- Setting

2 The SPDE

- 3 Optimality conditions
- Why is this interesting?
- 5 Existence of optimal controls

Fractional stochastic heat equation - definitions

$$dy(t) = \mathcal{L}^{s} y(t) dt + dW(t) \quad \text{in } D \times [0, T]$$

$$y(., 0) = y_{0} \quad \text{in } D \quad (SPDE)$$

(1) Q-Wiener Process: $L^2(D)$ -valued stochastic process W(t) s.t.

- W(0) = 0 a.s.
- For each $\omega \in \Omega$, the path $W(t) : [0, \infty) \to L^2(D)$ is continuous
- $W(t) W(s) \sim \mathcal{N}(0, (t-s)Q), \ TrQ < \infty$

Important property

$$W(t,x) = \sum_{j=1}^{\infty} \sqrt{\mu_j} e_j(x) B_j(t)$$
 a.s.

 μ_j eigenvalues of Q, e_j eigenfunctions of Q, B_j i.i.d. BM

Fractional stochastic heat equation - definitions

$$dy(t) = \mathcal{L}^{s} y(t) dt + dW(t) \quad \text{in } D \times [0, T]$$

$$y(., 0) = y_{0} \quad \text{in } D \quad (SPDE)$$

(2) The fractional operator(Prototype: minus Laplacian)

- *L* : D(L) ⊂ L²(D) → L²(D) densely defined, linear, self-adjoint, positive operator with compact inverse.
- $\mathcal{L}e_j = \lambda_j e_j$ in D, e_j in suitable subspace of $L^2(D)$

Important property

$$\mathcal{L} m{v} = \sum_{j=1}^{\infty} \lambda_j \langle m{v}, m{e}_j
angle m{e}_j$$

(makes sense if $v \in \mathcal{H}^1 := \{\phi \in L^2(D) : \{\lambda_j \langle \phi, e_j \rangle\}_{j \in \mathbb{N}} \in l^2\}$)

The domain of \mathcal{L}^s

Useful properties for us: Can characterize the domain of \mathcal{L} by

$$\mathcal{D}(\mathcal{L}) = \left\{ \mathbf{v} \in L^2(\mathcal{D}) : \sum_{j \in \mathbb{N}} \lambda_j^2 \langle \mathbf{v}, \mathbf{e}_j \rangle^2 < +\infty
ight\}.$$

 $\sim -\mathcal{L}$ generator of analytic semigroup $S(t) = \sum_{j=1}^{+\infty} e^{-\lambda_j t} v_j(x) v_j(y)$.

Analogously, define $\mathcal{H}^s:=\left\{ v\in L^2(D): \|v\|_{\mathcal{H}^s}<+\infty
ight\}$ with the norm

$$\|\mathbf{v}\|_{\mathcal{H}^{s}} := \left(\sum_{j \in \mathbb{N}} \lambda_{j}^{2s} |\langle \mathbf{v}, \mathbf{e}_{j} \rangle|^{2}\right)^{1/2}$$

Want: Solution to SPDE $y(s)(., t) \in L^2(\Omega, \mathcal{H}^s(D))$ for any $t \in (0, T]$

The SPDE

Solutions to the SPDE

- For fixed *s*, expand $y(s)(x, t) = \sum_{j=1}^{\infty} y_j(s, t) e_j(x)$
- **2** Each $y_j(s, t) = \langle y(s)(., t), e_j \rangle$ solves an SDE

$$y_j(t) = y_{j,0} - \lambda_j^s \int_0^t y_j(\tau) d\tau + \sqrt{\mu_j} \int_0^t dB_j(\tau)$$

with $y_{j,0} = \langle y_0, e_j \rangle$ deterministic.

By Ito formula, get the explicit representation

$$\mathbf{y}_{j}(t) = \mathbf{y}_{j,0} \mathbf{e}^{-\lambda_{j}^{s}t} + \sqrt{\mu_{j}} \int_{0}^{t} \mathbf{e}^{-\lambda_{j}^{s}(t-\tau)} d\mathbf{B}_{j}(\tau)$$

(Semi-)explicit form of solutions to (SPDE)

$$y(s)(x,t) = \sum_{j=1}^{+\infty} e_j(x) y_{j,0} e^{-\lambda_j^s t} + \sum_{j=1}^{+\infty} e_j(x) \sqrt{\mu_j} \int_0^t e^{-\lambda_j^s(t-\tau)} dB_j(\tau).$$

A priori estimates on the solution

By standard estimates, $y(s)(x, t) = \sum_{j=1}^{\infty} y_j(s, t) e_j(x)$ is

- a $L^2(D)$ -valued stochastic process with continuous sample paths
- the r.v. $\omega \mapsto \|y(s,\omega)\|_{L^2(\Omega,L^2(D\times T))}$ is a.s. finite
- → This is sufficient to prove optimality conditions!

To show the existence of pathwise optimal controls, need more:

- pathwise interpretation of the stochastic integral
- $y(s, t, .) \in L^2(\Omega, \mathcal{H}^s(D))$
- the sample paths of y(s)(x,t) are $C^{\delta}([0,T], L^2(D))$ for $\delta \in (0, \frac{1}{2})$

 \rightsquigarrow Need to restrict the set of admissible controls s

Example: set of admissible controls

Additional assumptions

- on the fractional Diffusion operator: $\sum_{i=1}^{\infty} \lambda_i^{-s} < \infty$
- on the Covariance operator: $\mu_j \sim \lambda_j^{-2s-\epsilon}$

Example: $\mathcal{L} = -\Delta$ on $(0, \pi)$ with Dirichlet boundary conditions

$$\sum_{j=1}^{\infty} \frac{1}{\lambda_j^{s+\varepsilon}} = \sum_{j=1}^{\infty} \frac{1}{j^{2s+\varepsilon}} \qquad <\infty \quad \text{for } s \geq \frac{1}{2}$$

 \rightsquigarrow Set of admissible controls is $s \in (\frac{1}{2}, L)$

Remark: No such extra condition needed in deterministic case.

Outline

General Framework

- Optimization under (uncertain) constraints
- Setting

2 The SPDE

Optimality conditions

- Why is this interesting?
- 5 Existence of optimal controls

Optimality conditions

Naive idea:

- necessary condition for optimality: $\mathcal{J}'(s) = 0$
- sufficient condition for optimality: $\mathcal{J}^{''}(s) > 0$

Make it rigorous, step 1: show that the map

$$s \mapsto \mathcal{J}(s) := \mathcal{J}(y(s), s)$$

is twice differentiable on $(0, +\infty)$. Then apply the chain rule

$$\mathcal{J}'(\bar{s}) = \frac{d}{ds} \mathcal{J}(y(\bar{s}), \bar{s}) = \partial_y \mathcal{J}(y(\bar{s}), \bar{s}) \circ \partial_s y(\bar{s}) + \partial_s \mathcal{J}(y(\bar{s}), \bar{s}).$$

Step 2: Define the *s*-derivative of a Wiener Integral

Carina Geldhauser (SPbGU)

optimizing fractional SPDEs

Deriving explicit optimality conditions

A property of Wiener Integrals

Let $B_j(t)$ be standard Brownian motion. Then

$$\frac{d}{ds} \int_0^t g(s,\tau) dB_j(\tau) = \int_0^t \partial_s g(s,\tau) dB_j(\tau)$$
 (WInt)

As

$$\left|\frac{d^{k}}{ds^{k}}\exp(-\lambda_{j}^{s}\tau)\right| \leq \left|\frac{C_{k}}{s^{k}}\left(1+|\ln(t)|\right)^{k}\right| \in L^{2}([0,T])$$

we get, using (WInt) with $g(s, \tau) = exp(-\lambda_i^s(t - \tau))$,

$$\partial_{s} y(\bar{s}), \ \partial^{2}_{ss} y(\bar{s}) \in L^{2}(\Omega, L^{2}(D \times [0, T])).$$

Carina Geldhauser (SPbGU)

Optimality conditions

Let $y_0 \in L^2(D)$ be deterministic, and let y = y(s) be a solution to the state equation (SPDE) Then the following holds true for a fixed realisation $\omega \in \Omega$:

(i) necessary condition: If \bar{s} is an optimal parameter for (IP) and $y(\bar{s})$ the associated unique solution to the state system (SPDE), then

$$\int_0^T \int_D (y(\bar{s}) - y_D) \partial_s y(\bar{s}) \, dx dt + \Phi'(\bar{s}) = 0 \tag{1}$$

(ii) sufficient condition: If $\bar{s} \in (\frac{1}{2}, L)$ satisfies the necessary condition (1) and if in addition

$$\int_0^T \int_D (\partial_s y(\bar{s}))^2 + (y(\bar{s}) - y_D) \partial_{ss}^2 y(\bar{s}) \, dx dt + \Phi''(\bar{s}) > 0 \qquad (2)$$

then \bar{s} is optimal for (IP).

Carina Geldhauser (SPbGU)

٠

Outline

General Framework

- Optimization under (uncertain) constraints
- Setting

2 The SPDE

Optimality conditions

Why is this interesting?

5 Existence of optimal controls

Natural and optimal exponents

- \bar{s} optimal exponent found by our optimization problem
- s_0 minimum of $\Phi(s)$

The optimal \bar{s} can be different from $s_0!$

Case 1 - equality: $\bar{s} = s_0$ iff $\Phi'(\bar{s}) = 0 = \Phi'(s_0)$ Reason: optimality conditions

$$-\Phi'(\bar{s}) = \int_0^T \int_D (y(\bar{s}) - y_D) \partial_s y(\bar{s}) \, dx dt$$

Case 2 - the optimal exponent is different from the "natural" choice: Example for $\bar{s} < s_0$ on next page

Natural and optimal exponents

Choose zero noise and $\mathcal{L} = -\Delta$ on $(0, \pi)$ with Dirichlet B.C.

For fixed $j_0 \in \mathbb{N}$

- Initial data: $y_0 = \epsilon e_{j_0}(x)$ for all $[0, \pi]$
- target function $y_D(x, t) := \epsilon e_{j_0}(x)$.
- Calculate solution of PDE: $y(s)(x,t) = \epsilon e_{j_0}(x)e^{-j_0^{2s}t}$

Optimality condition gives

$$0 = \int_0^T \int_D (y(\bar{s}) - y_D) \partial_s y(\bar{s}) \, dx dt + \Phi'(\bar{s})$$

- **3** some calculation $\Rightarrow \Phi'(\bar{s}) < 0$.

\rightsquigarrow The optimal exponent given by the full cost functional is smaller than the natural one

Carina Geldhauser (SPbGU)

The calculation of the last slide

The solution can be written as the sum

$$\mathbf{y}(\mathbf{s})(\mathbf{x},t) = \sum_{j=1}^{+\infty} \mathbf{e}_j(\mathbf{x}) \mathbf{y}_{j,0} \mathbf{e}^{-\lambda_j^s t} + \sum_{j=1}^{+\infty} \mathbf{e}_j(\mathbf{x}) \sqrt{\mu_j} \int_0^t \mathbf{e}^{-\lambda_j^s(t-\tau)} dB_j(\tau)$$

Plug in eigenfunctions $e_j(x) := c_j \sin(jx)$, eigenvalues $\lambda_j = j^2$. Then, take the necessary optimality condition, plug in

$$\partial_s y(s) = -2\epsilon j_0^{2s} \ln(j_0) \cdot t \cdot e_{j_0}(x) e^{-j_0^{2s}t}$$

$$\int_0^T \int_D (y(\bar{s}) - y_D) \partial_s y(\bar{s}) \, dx dt = -2\epsilon^2 j_0^{-2\bar{s}} \ln(j_0) \int_0^{j_0^{2\bar{s}}T} \vartheta(e^{-\vartheta} - 1) e^{-\vartheta} d\vartheta$$
(*)

(we substituted $\vartheta := j_0^{2s} t$) For $\epsilon \neq 0$ and $j_0 \ge 1$, obtain from (\star) that $\Phi'(\bar{s}) < 0$.

Outline

General Framework

- Optimization under (uncertain) constraints
- Setting

2 The SPDE

- 3 Optimality conditions
- Why is this interesting?
- 5 Existence of optimal controls

Existence of pathwise optimal controls - Idea

- Fix ω . Pick a minimizing sequence s_k of controls and consider the solution $y_k = y(s_k)$ to (SPDE).
- ② By properties of Φ, s_k is bounded and wlog s_k → s̄ (and s̄ is in the admissible set 𝒴)
- A priori estimates + compactness ⇒ for fixed ω , a subsequence $\{y_k(\omega)\}_{k\in\mathbb{N}}$ converges strongly in $L^2(D \times [0, T])$ to $\bar{y}(\omega)$ Challenge: $y_k(\omega) \in L^2([0, T], \mathcal{H}^{s_k}(D))$

 \rightsquigarrow with every s_k also the Banach space $\mathcal{H}^{s_k}(D)$ changes

 \rightsquigarrow Need a compactness result which can deal with varying Banach spaces

• Identify $\bar{y} = y(\bar{s})$ - open problem

Existence of optimal controls - prerequisites

Need a compactness result which can deal with varying Banach spaces.

Summary of properties of solutions to the state equation

• For almost every
$$\omega \in \Omega$$
,
$$\sup_{k} \left(\| y_{k}(\omega) \|_{L^{2}(0,T,\mathcal{H}^{s_{k}}(D))} \right) < \infty$$

2 For almost every
$$\omega \in \Omega$$
,

$$\sup_{k} \left(\| y_k(\omega) \|_{L^2([0,T] \times D)} \right) < \infty$$

• The trajectories of the family of stochastic processes $y_k(t)$ are in $C^{\delta_k}([0, T], L^2(D))$ for every k and $\delta_k \ge \delta_* \ge 1/4$

A compactness result

Compactness lemma

Given a sequence $\{y_{s_k}\}_{k\in\mathbb{N}}$ of $L^2(D)$ -valued stochastic processes with δ -hölder continuous sample paths and $y_{s_k}(\omega) \in L^2(0, T, \mathcal{H}^{s_k}(D))$. Then $\{y_k\}_{k\in\mathbb{N}}$ contains a subsequence that converges strongly in $L^2(D \times [0, T])$ for fixed ω .

Idea of the proof:

Solution properties \Rightarrow the infinite string $(\{y_{k,1}\}_{k\in\mathbb{N}}, \{y_{k,2}\}_{k\in\mathbb{N}}, ...)$ lies in

$$\mathfrak{C} := C^{1/4}([0, T]) \times C^{1/4}([0, T]) \times \dots$$

⇒ existence of a subsequence y_{k_m} which converges in \mathfrak{C} to an infinite string $(y_1^*, y_2^*, \ldots, \text{ and every } y_j^* \in C^{1/4}([0, T]).$

Existence of optimal controls

Theorem: existence of pathwise optimal controls

Assume the eigenvalues of \mathcal{L}^s and Q are such that $\sum_{j=1}^{\infty} \mu_j \lambda_j^s < \infty$. Let the initial data y_0 be deterministic and satisfy

 $\sup_{s\in\mathscr{S}}\|y_0\|_{\mathcal{H}^s}<+\infty.$

Then for almost every fixed $\omega \in \Omega$, the functional $\mathcal{J}(\omega)$ attains a minimum in the interior of \mathscr{S} (the set of admissible controls). Moreover

 $\inf_{\pmb{s}\in\mathscr{S}}\mathcal{J}(\omega)<+\infty.$

Idea of the proof:

Show that for a fixed realisation $\omega \in \Omega$, the sequence $\{y_{s_k}(\omega)\}_{k \in \mathbb{N}}$ of solutions to the state equation (SPDE) with initial datum y_0 contains a subsequence that converges strongly in $L^2(D \times [0, T])$.

Thanks....

Дякую за увагу!

Thank you all for your attention

Carina Geldhauser (SPbGU)

optimizing fractional SPDEs

Swansea 2018 25 / 25

References

Giuseppe Da Prato and Jerzy Zabczyk.

Stochastic equations in infinite dimensions, volume 152 Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 2014.

J. Sprekels and E. Valdinoci.

A new type of identification problems: Optimizing the fractional order in a non-local evolution equation. SIAM J. Contr. Optim., 2017.

C. Geldhauser and E. Valdinoci.

Optimizing the fractional power in a model with stochastic PDE constraints

Advanced Nonlinear Studies,

http://arxiv.org/abs/1703.09329, 2018.