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0 General Framework
@ Optimization under (uncertain) constraints
@ Setting
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General Framework Optimization under (uncertain) constraints

Motivation for fractional operators

@ foraging of wandering albatrosses use a Lévy flight strategy
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Figure: Humphries et al, Foraging success of biological Levy flights recorded in situ, PNAS 2012
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General Framework Optimization under (uncertain) constraints

Optimization problems with uncertain constraints

Optimization problems with uncertain constraints appear in...

@ biology: hunting strategies of predators: optimizing over the
“average excursion” in the hunting procedure

@ finance: efficient portfolios: minimize the risk (uncertainty of the
return) of a portfolio with finitely many assets

© engineering:

e want optimal response of a system and a quantification of the
statistics of the system response, not only "mean response”
(deterministic)

e want to find optimal position of injection wells in oil fields
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General Framework Setting

General Framework

Optimization problem under (S)PDE contraints

min J(y,u) subjectto Constr(y,u) =0
yeY,ueU

@ J is a cost functional

@ y state variable, solution to Constr(y,u) =0
@ u control variable

@ Constr is a constraint (in our case: a (S)PDE)

Typical cost functional: J(y, u) = ||y — ypl? + c|ul?
Or, with a convex fct. ®: J(y,u) = |ly — yp||? + ®(u)
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General Framework Setting

Minimization under SPDE constrains

For fixed w minimize

j(yv S,w) = Hy - yDTH§2(D><[07T]) + (D(S) (COStht)
subject to the state system
dy = L%ydt + dW inDx [0, T
Y 4 + in D>10. 7] (SPDE)
y(-0)=yo inD

New features:
@ optimization w.r.t. fractional exponent s of differential operator £

@ output of the optimization should be a random variable 7 (w), in
applications one studies quantities such as Var[J(w)]
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General Framework Setting

The penalty function

Let L < oo and s € (0, L). The penalty function ®(s)
@ is given a priori
@ modellises e.g. “natural search radius”
@ should be strictly convex, growing to infinity at boundary

lim ®(s) = co = lim &(s).
s—0 s—L

@ assume ¢ € C?(0, L) non-negative (avoid degenerate or singular
situations)

@ has to be chosen such that the problem has sufficient
compactness properties in s.

Possible choice: ®(s) = g1

Carina Geldhauser (SPbGU) optimizing fractional SPDEs Swansea 2018 7125



General Framework Setting

The penalty function
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Figure: A possible choice of a penalty function with L = 10: &(s) = s(LLs)
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General Framework Setting

Solving a constrained control problem

Example in finite dimensions: A € R™" B € R™™

min __ J(y,u) subjectto Ay = Bu
yERM UERM

@ Define the solution matrix S € R™ " by y = A~'Bu
@ Get a reduced cost functional J(u) = J(Su, u)

© Derive necessary and sufficient optimality conditions
© Prove the existence of optimal controls

N.B.: PDE case: instead of solution matrix S have operator S, called
the control-to-state operator
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Outline

© The SPDE
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Fractional stochastic heat equation - definitions

dy(t) = Ly (t)dt + dW(t) in D x [0, T]

y(,0)=x in D (SPDE)

(1) Q-Wiener Process: L?(D)-valued stochastic process W(t) s.t.
e W(0)=0as.

@ For each w € Q, the path W(t) : [0, 00) — L?(D) is continuous
e W(t)— W(s)~N(0,(t—95)Q), TQ <
Important property
W(t,x)=> yme(x)Bi(t) as.
j=1
1 eigenvalues of Q, e; eigenfunctions of Q, B; i.i.d. BM
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Fractional stochastic heat equation - definitions

dy(t) = L8y (t)dt + dW(t) in D x [0, T]

y(,0)=x in D (SPDE)

(2) The fractional operator(Prototype: minus Laplacian)

@ L :D(L) C L?(D) — L2(D) densely defined, linear, self-adjoint,
positive operator with compact inverse.

® Lej = \jg;in D, g in suitable subspace of L2(D)

Important property
Lv=> X(v,e)e
j=1

(makes sense if v € H' := {¢ € L3(D) : {\;(¢, €))}jen € I?})
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The SPDE

The domain of LS

Useful properties for us: Can characterize the domain of £ by
D(L£) = vel®D):> N(v,g)? < 400 ;.
jeN
~» — L generator of analytic semigroup S(t) = Z, T e Ny (x)vi(y).

Analogously, define HS := {v € L?(D) : |v|us < 400} with the norm

1/2
[Vl == (Z AES|(v, 6/>2) :

jeN
Want: Solution to SPDE y(s)(.,t) € L?(Q,HS(D)) forany t € (0, T]

Carina Geldhauser (SPbGU) optimizing fractional SPDEs Swansea 2018 12/25



Solutions to the SPDE

@ For fixed s, expand y(s)(x, t) = > 2, yj(s, t)ej(x)
@ Each yj(s,t) = (y(s)(., 1), ej) solves an SDE

t t
Yi(t) =Yjo — /\js/o yi(r)dr + \//71/0 dB;(7)

with yj 0 = (o, €;) deterministic.
© By lto formula, get the explicit representation

yi(t) = yoe ! +f/ (D g (7)

(Semi-)explicit form of solutions to (SPDE)

Ze, )yjoe ! +Ze, \F/ N gBy(r).
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The SPDE

A priori estimates on the solution

By standard estimates, y(s)(x,t) = Zj’; yi(s, t)ej(x) is
@ a L?(D)-valued stochastic process with continuous sample paths
@ the rv. w — [ly(s,w)ll 2 c2(px ) IS @-s. finite

~ This is sufficient to prove optimality conditions!

To show the existence of pathwise optimal controls, need more:
@ pathwise interpretation of the stochastic integral
@ y(s,t,.) € L2(Q,H5(D))
@ the sample paths of y(s)(x, t) are C°([0, T], L?(D)) for 6 € (0, %)

~+ Need to restrict the set of admissible controls s
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Example: set of admissible controls

Additional assumptions
@ on the fractional Diffusion operator: 3°, )\/_—S < 00

@ on the Covariance operator: p; ~ /\j‘zs‘6

Example: £ = —A on (0, 7) with Dirichlet boundary conditions

o0

1 — 1
D ewE e <o forsz
j=1 7 j=1

N =

~+ Set of admissible controls is s € (3, L)

Remark: No such extra condition needed in deterministic case.
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Outline

@ Optimality conditions
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Optimality conditions

Optimality conditions

Naive idea:
@ necessary condition for optimality: 7'(s) = 0
e sufficient condition for optimality: 7" (s) > 0

Make it rigorous, step 1: show that the map
s— J(s) = J(y(s),s)

is twice differentiable on (0, +o0). Then apply the chain rule

J(8) = - T(¥(5),8) = 0y T (¥(5).5) 0 0sy(5) + 0sT(¥(5),5).

Step 2: Define the s-derivative of a Wiener Integral
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Optimality conditions

Deriving explicit optimality conditions

A property of Wiener Integrals
Let B;(t) be standard Brownian motion. Then

t t
53 /0 9(s, m)dBy(r) = /O dsg(s, 7)dBy(7) (Wint)
As " .
‘d 7 exp(=Af7)| < s—,f(1 +]In())¥ e L3([0, T])

we get, using (Wint) with g(s, 7) = exp(—X7(t — 7)),

0sy(8), O%y(3) € L3(Q,L2(D x [0, T])).
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Optimality conditions

Optimality conditions

Let yo € L?(D) be deterministic, and let y = y(s) be a solution to the
state equation (SPDE) Then the following holds true for a fixed
realisation w € Q:

(i) necessary condition: If s is an optimal parameter for (IP) and y(5s)
the associated unique solution to the state system (SPDE), then

/ / ~ Yp)dsy () dxat + &'(8) = 0 (1)

(ii) sufficient condition: If 5 € (}, L) satisfies the necessary condition
(1) and if in addition

)
/0 /D (@sy(3)) + (¥(3) - yp)Phy(3) dat + ®'(3) > 0 (2)

then s is optimal for (IP).
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Outline

e Why is this interesting?
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Natural and optimal exponents

@ S - optimal exponent found by our optimization problem
@ Sp - minimum of ®(s)

The optimal s can be different from sg!

Case 1 - equality: 5 = s iff ®'(5) = 0= ®'(sp)
Reason: optimality conditions

—0'(8) = / [ 0(3) - yo)osy(3) det

Case 2 - the optimal exponent is different from the “natural”
choice: Example for s <sy on next page
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Why is this interesting?

Natural and optimal exponents

Choose zero noise and £ = —A on (0, ) with Dirichlet B.C.
For fixed jo € N

@ Initial data: yp = € g;,(x) for all [0, ]

@ target function yp(x, t) := egj ().

@ Calculate solution of PDE: y(s)(x,t) = e g, (x)e %!
© Optimality condition gives

i
0= /0 /D ((3) - y)0sy(3) dxct + &'(3)

© some calculation = ¢'(3) < 0.
© convexity of ® = 5 < s

~+ The optimal exponent given by the full cost functional is smaller

than the natural one
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The calculation of the last slide

The solution can be written as the sum
—\s
Z &(x)y0e V"

Plug in eigenfunctions ej(x) := ¢; sin(jx), eigenvalues \; = j2.
Then, take the necessary optimality condition, plug in

dsy(s) = —2¢j8°In(jo) - t - ejo(x)e—jést

~ j2$T
/ / ) yp)dsy(3) dxdt = —2¢ -2 In(jy) / " e —1)edv
0

()
(we substituted ¥ := j&5¢)

For ¢ # 0 and j > 1, obtain from ( « ) that ¢'(3) < 0.
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6 Existence of optimal controls
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Existence of pathwise optimal controls - |dea

@ Fix w. Pick a minimizing sequence s of controls and consider the
solution yx = y(sk) to (SPDE).

© By properties of ¢, s, is bounded and wlog sy — § (and s is in the
admissible set .¥)

© A priori estimates + compactness =- for fixed w, a subsequence
{¥k(w)}xen converges strongly in L2(D x [0, T]) to y(w)
Challenge: yx(w) € L?([0, T], H%<(D))

~ with every sy also the Banach space H° (D) changes

~~ Need a compactness result which can deal with varying
Banach spaces

© Identify y = y(S) - open problem
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Existence of optimal controls

Existence of optimal controls - prerequisites

Need a compactness result which can deal with varying Banach
spaces.

Summary of properties of solutions to the state equation
@ For almost every w € Q,

su w s, < o0
up (Iyk()liz0.7 o)

© For almost every w € Q,
sup (lyk()lz(o.11<0)) < o0

© The trajectories of the family of stochastic processes y(t) are in
C%([0, T], L2(D)) for every k and oy > 6, > 1/4
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Existence of optimal controls

A compactness result

Compactness lemma

Given a sequence {ys, } .y Of L?(D)-valued stochastic processes with
5-hélder continuous sample paths and ys, (w) € L2(0, T, H5(D)).
Then {yx}xcn CONtains a subsequence that converges strongly in
L2(D x [0, T]) for fixed w.

Idea of the proof:

Solution properties = the infinite string <{yk,1 Fren s k2t ken s )
lies in

¢:=C'4([0, T]) x C'/4([0, T]) x ...

= existence of a subsequence yj, which converges in € to an infinite
string (y;,y3,- -, and every yr € C'/4([0, T]).
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Existence of optimal controls

Existence of optimal controls

Theorem: existence of pathwise optimal controls

Assume the eigenvalues of £° and Q are such that Zj’; 1y )\js < 0.
Let the initial data yy be deterministic and satisfy

SUPsc.o [[Yollas < +oo.

Then for almost every fixed w € Q, the functional 7 (w) attains a
minimum in the interior of . (the set of admissible controls).
Moreover

inf J(w) < +o0.
ses

Idea of the proof:

Show that for a fixed realisation w € €, the sequence {ys, (w)},y Of
solutions to the state equation (SPDE) with initial datum y, contains a
subsequence that converges strongly in L2(D x [0, T]).
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Thanks....

IAKylo 3a yBary!

Thank you all for your attention
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Existence of optimal controls
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