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General Framework Optimization under (uncertain) constraints

Motivation for fractional operators

foraging of wandering albatrosses use a Lévy flight strategy

Figure: Humphries et al, Foraging success of biological Levy flights recorded in situ, PNAS 2012
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General Framework Optimization under (uncertain) constraints

Optimization problems with uncertain constraints

Optimization problems with uncertain constraints appear in...

1 biology: hunting strategies of predators: optimizing over the
“average excursion” in the hunting procedure

2 finance: efficient portfolios: minimize the risk (uncertainty of the
return) of a portfolio with finitely many assets

3 engineering:
want optimal response of a system and a quantification of the
statistics of the system response, not only ”mean response”
(deterministic)
want to find optimal position of injection wells in oil fields
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General Framework Setting

General Framework

Optimization problem under (S)PDE contraints

min
y∈Y ,u∈U

J (y ,u) subject to Constr(y ,u) = 0

J is a cost functional
y state variable, solution to Constr(y ,u) = 0
u control variable
Constr is a constraint (in our case: a (S)PDE)

Typical cost functional: J (y ,u) = ‖y − yD‖2 + c|u|2

Or, with a convex fct. Φ: J (y ,u) = ‖y − yD‖2 + Φ(u)
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General Framework Setting

Minimization under SPDE constrains

For fixed ω minimize

J (y , s, ω) = ‖y − yDT ‖
2
L2(D×[0,T ]) + Φ(s) (costfct)

subject to the state system

dy = Lsydt + dW in D × [0,T ]

y(.,0) = y0 in D
(SPDE)

New features:
optimization w.r.t. fractional exponent s of differential operator L
output of the optimization should be a random variable J (ω), in
applications one studies quantities such as Var [J(ω)]
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General Framework Setting

The penalty function

Let L <∞ and s ∈ (0,L). The penalty function Φ(s)

is given a priori
modellises e.g. “natural search radius”
should be strictly convex, growing to infinity at boundary

lim
s→0

Φ(s) = ∞ = lim
s→L

Φ(s).

assume Φ ∈ C2(0,L) non-negative (avoid degenerate or singular
situations)
has to be chosen such that the problem has sufficient
compactness properties in s.

Possible choice: Φ(s) = 1
s(L−s) .
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General Framework Setting

The penalty function
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Figure: A possible choice of a penalty function with L = 10: Φ(s) = 1
s(L−s)
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General Framework Setting

Solving a constrained control problem

Example in finite dimensions: A ∈ Rn×n, B ∈ Rn×m

min
y∈Rn,u∈Rm

J (y ,u) subject to Ay = Bu

1 Define the solution matrix S ∈ Rm×n by y = A−1Bu
2 Get a reduced cost functional Ĵ (u) = J (Su,u)

3 Derive necessary and sufficient optimality conditions
4 Prove the existence of optimal controls

N.B.: PDE case: instead of solution matrix S have operator S, called
the control-to-state operator
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The SPDE

Fractional stochastic heat equation - definitions

dy(t) = Lsy(t)dt + dW (t) in D × [0,T ]

y(.,0) = y0 in D
(SPDE)

(1) Q-Wiener Process: L2(D)-valued stochastic process W (t) s.t.
W (0) = 0 a.s.
For each ω ∈ Ω, the path W (t) : [0,∞)→ L2(D) is continuous
W (t)−W (s) ∼ N (0, (t − s)Q), TrQ <∞

Important property

W (t , x) =
∞∑

j=1

√
µjej(x)Bj(t) a.s.

µj eigenvalues of Q, ej eigenfunctions of Q, Bj i.i.d. BM
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The SPDE

Fractional stochastic heat equation - definitions

dy(t) = Lsy(t)dt + dW (t) in D × [0,T ]

y(.,0) = y0 in D
(SPDE)

(2) The fractional operator(Prototype: minus Laplacian)
L : D(L) ⊂ L2(D)→ L2(D) densely defined, linear, self-adjoint,
positive operator with compact inverse.
Lej = λjej in D, ej in suitable subspace of L2(D)

Important property

Lv =
∞∑

j=1

λj〈v ,ej〉ej

(makes sense if v ∈ H1 := {φ ∈ L2(D) : {λj〈φ,ej〉}j∈N ∈ l2})
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The SPDE

The domain of Ls

Useful properties for us: Can characterize the domain of L by

D(L) =

v ∈ L2(D) :
∑
j∈N

λ2
j 〈v ,ej〉2 < +∞

 .

 −L generator of analytic semigroup S(t) =
∑+∞

j=1 e−λj tvj(x)vj(y).

Analogously, define Hs :=
{

v ∈ L2(D) : ‖v‖Hs < +∞
}

with the norm

‖v‖Hs :=

∑
j∈N

λ2s
j |〈v ,ej〉|2

1/2

.

Want: Solution to SPDE y(s)(., t) ∈ L2(Ω,Hs(D)) for any t ∈ (0,T ]
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The SPDE

Solutions to the SPDE

1 For fixed s, expand y(s)(x , t) =
∑∞

j=1 yj(s, t)ej(x)

2 Each yj(s, t) = 〈y(s)(., t),ej〉 solves an SDE

yj(t) = yj,0 − λs
j

∫ t

0
yj(τ)dτ +

√
µj

∫ t

0
dBj(τ)

with yj,0 = 〈y0,ej〉 deterministic.
3 By Ito formula, get the explicit representation

yj(t) = yj,0e−λ
s
j t +
√
µj

∫ t

0
e−λ

s
j (t−τ)dBj(τ)

(Semi-)explicit form of solutions to (SPDE)

y(s)(x , t) =
+∞∑
j=1

ej(x)yj,0e−λ
s
j t +

+∞∑
j=1

ej(x)
√
µj

∫ t

0
e−λ

s
j (t−τ)dBj(τ).
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The SPDE

A priori estimates on the solution

By standard estimates, y(s)(x , t) =
∑∞

j=1 yj(s, t)ej(x) is

a L2(D)-valued stochastic process with continuous sample paths
the r.v. ω 7→ ‖y(s, ω)‖L2(Ω,L2(D×T )) is a.s. finite

 This is sufficient to prove optimality conditions!

To show the existence of pathwise optimal controls, need more:
pathwise interpretation of the stochastic integral
y(s, t , .) ∈ L2(Ω,Hs(D))

the sample paths of y(s)(x , t) are Cδ([0,T ],L2(D)) for δ ∈ (0, 1
2)

 Need to restrict the set of admissible controls s
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The SPDE

Example: set of admissible controls

Additional assumptions
on the fractional Diffusion operator:

∑∞
j=1 λ

−s
j < ∞

on the Covariance operator: µj ∼ λ−2s−ε
j

Example: L = −∆ on (0, π) with Dirichlet boundary conditions

∞∑
j=1

1
λs+ε

j
=
∞∑

j=1

1
j2s+ε

<∞ for s ≥ 1
2

 Set of admissible controls is s ∈
(1

2 ,L
)

Remark: No such extra condition needed in deterministic case.

Carina Geldhauser (SPbGU) optimizing fractional SPDEs Swansea 2018 15 / 25



Optimality conditions

Outline

1 General Framework
Optimization under (uncertain) constraints
Setting

2 The SPDE

3 Optimality conditions

4 Why is this interesting?

5 Existence of optimal controls

Carina Geldhauser (SPbGU) optimizing fractional SPDEs Swansea 2018 15 / 25



Optimality conditions

Optimality conditions

Naive idea:
necessary condition for optimality: J ′(s) = 0
sufficient condition for optimality: J ′′

(s) > 0

Make it rigorous, step 1: show that the map

s 7→ J (s) := J (y(s), s)

is twice differentiable on (0,+∞). Then apply the chain rule

J ′(s̄) =
d
ds
J (y(s̄), s̄) = ∂yJ (y(s̄), s̄) ◦ ∂sy(s̄) + ∂sJ (y(s̄), s̄).

Step 2: Define the s-derivative of a Wiener Integral
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Optimality conditions

Deriving explicit optimality conditions

A property of Wiener Integrals

Let Bj(t) be standard Brownian motion. Then

d
ds

∫ t

0
g(s, τ)dBj(τ) =

∫ t

0
∂sg(s, τ)dBj(τ) (WInt)

As ∣∣∣∣ dk

dsk exp(−λs
j τ)

∣∣∣∣ ≤ Ck

sk (1 + | ln(t)|)k ∈ L2([0,T ])

we get, using (WInt) with g(s, τ) = exp(−λs
j (t − τ)),

∂sy(s̄), ∂2
ssy(s̄) ∈ L2(Ω,L2(D × [0,T ])).
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Optimality conditions

Optimality conditions

Let y0 ∈ L2(D) be deterministic, and let y = y(s) be a solution to the
state equation (SPDE) Then the following holds true for a fixed
realisation ω ∈ Ω:
(i) necessary condition: If s̄ is an optimal parameter for (IP) and y(s̄)
the associated unique solution to the state system (SPDE), then∫ T

0

∫
D

(y(s̄)− yD)∂sy(s̄) dxdt + Φ
′
(s̄) = 0 (1)

(ii) sufficient condition: If s̄ ∈ (1
2 ,L) satisfies the necessary condition

(1) and if in addition∫ T

0

∫
D

(∂sy(s̄))2 + (y(s̄)− yD)∂2
ssy(s̄) dxdt + Φ

′′
(s̄) > 0 (2)

then s̄ is optimal for (IP).
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Why is this interesting?
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Why is this interesting?

Natural and optimal exponents

s̄ - optimal exponent found by our optimization problem
s0 - minimum of Φ(s)

The optimal s̄ can be different from s0!

Case 1 - equality: s̄ = s0 iff Φ
′
(s̄) = 0= Φ

′
(s0)

Reason: optimality conditions

−Φ
′
(s̄) =

∫ T

0

∫
D

(y(s̄)− yD)∂sy(s̄) dxdt

Case 2 - the optimal exponent is different from the “natural”
choice: Example for s̄ <s0 on next page
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Why is this interesting?

Natural and optimal exponents

Choose zero noise and L = −∆ on (0, π) with Dirichlet B.C.

For fixed j0 ∈ N
Initial data: y0 = εej0(x) for all [0, π]

target function yD(x , t) := εej0(x).

1 Calculate solution of PDE: y(s)(x , t) = εej0(x)e−j2s
0 t

2 Optimality condition gives

0 =

∫ T

0

∫
D

(y(s̄)− yD)∂sy(s̄) dxdt + Φ
′
(s̄)

3 some calculation⇒ Φ
′
(s̄) < 0.

4 convexity of Φ⇒ s̄ < s0

 The optimal exponent given by the full cost functional is smaller
than the natural one
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Why is this interesting?

The calculation of the last slide

The solution can be written as the sum

y(s)(x , t) =
+∞∑
j=1

ej(x)yj,0e−λ
s
j t +

+∞∑
j=1

ej(x)
√
µj

∫ t

0
e−λ

s
j (t−τ)dBj(τ)

Plug in eigenfunctions ej(x) := cj sin(jx), eigenvalues λj = j2.
Then, take the necessary optimality condition, plug in

∂sy(s) = −2ε j2s
0 ln(j0) · t · ej0(x)e−j2s

0 t

∫ T

0

∫
D

(y(s̄)−yD)∂sy(s̄) dxdt = −2ε2 j−2s̄
0 ln(j0)

∫ j2s
0 T

0
ϑ(e−ϑ−1)e−ϑdϑ

(?)
(we substituted ϑ := j2s

0 t)
For ε 6= 0 and j0 ≥ 1, obtain from ( ? ) that Φ

′
(s̄) < 0.
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Existence of optimal controls
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Existence of optimal controls

Existence of pathwise optimal controls - Idea

1 Fix ω. Pick a minimizing sequence sk of controls and consider the
solution yk = y(sk ) to (SPDE).

2 By properties of Φ, sk is bounded and wlog sk → s̄ (and s̄ is in the
admissible set S )

3 A priori estimates + compactness⇒ for fixed ω, a subsequence
{yk (ω)}k∈N converges strongly in L2(D × [0,T ]) to ȳ(ω)
Challenge: yk (ω) ∈ L2([0,T ],Hsk (D))

 with every sk also the Banach space Hsk (D) changes

 Need a compactness result which can deal with varying
Banach spaces

4 Identify ȳ = y(s̄) - open problem
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Existence of optimal controls

Existence of optimal controls - prerequisites

Need a compactness result which can deal with varying Banach
spaces.

Summary of properties of solutions to the state equation
1 For almost every ω ∈ Ω,

sup
k

(
‖yk (ω)‖L2(0,T ,Hsk (D))

)
<∞

2 For almost every ω ∈ Ω,

sup
k

(
‖yk (ω)‖L2([0,T ]×D)

)
<∞

3 The trajectories of the family of stochastic processes yk (t) are in
Cδk ([0,T ],L2(D)) for every k and δk ≥ δ∗ ≥ 1/4
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Existence of optimal controls

A compactness result

Compactness lemma

Given a sequence {ysk}k∈N of L2(D)-valued stochastic processes with
δ-hölder continuous sample paths and ysk (ω) ∈ L2(0,T ,Hsk (D)).
Then {yk}k∈N contains a subsequence that converges strongly in
L2(D × [0,T ]) for fixed ω.

Idea of the proof:

Solution properties⇒ the infinite string
({

yk ,1
}

k∈N ,
{

yk ,2
}

k∈N , . . .
)

lies in
C := C1/4([0,T ])× C1/4([0,T ])× . . .

⇒ existence of a subsequence ykm which converges in C to an infinite
string (y∗1 , y

∗
2 , . . ., and every y∗j ∈ C1/4([0,T ]).
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Existence of optimal controls

Existence of optimal controls

Theorem: existence of pathwise optimal controls

Assume the eigenvalues of Ls and Q are such that
∑∞

j=1 µj λ
s
j < ∞.

Let the initial data y0 be deterministic and satisfy
sups∈S ‖y0‖Hs < +∞.
Then for almost every fixed ω ∈ Ω, the functional J (ω) attains a
minimum in the interior of S (the set of admissible controls).
Moreover

inf
s∈S
J (ω) < +∞.

Idea of the proof:
Show that for a fixed realisation ω ∈ Ω, the sequence {ysk (ω)}k∈N of
solutions to the state equation (SPDE) with initial datum y0 contains a
subsequence that converges strongly in L2(D × [0,T ]).
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Existence of optimal controls

Thanks....

Thank you all for your attention
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Existence of optimal controls
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