

Branching Brownian motion with decay of mass and the non-local Fisher-KPP equation

Sarah Penington

Joint work with Louigi Addario-Berry and Julien Berestycki

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

University of Bath

- ▶ Start with a single individual with an Exp(1) lifetime
- The individual moves according to (one-dimensional) Brownian motion
- When the individual dies, it produces two offspring individuals
- Each new individual has an independent Exp(1) lifetime and moves independently according to a Brownian motion until it dies and has offspring and so on.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Start with a single individual with an Exp(1) lifetime
- The individual moves according to (one-dimensional) Brownian motion
- When the individual dies, it produces two offspring individuals
- Each new individual has an independent Exp(1) lifetime and moves independently according to a Brownian motion until it dies and has offspring and so on.

- Start with a single individual with an Exp(1) lifetime
- The individual moves according to (one-dimensional) Brownian motion
- > When the individual dies, it produces two offspring individuals
- Each new individual has an independent Exp(1) lifetime and moves independently according to a Brownian motion until it dies and has offspring and so on.

- ▶ Start with a single individual with an Exp(1) lifetime
- The individual moves according to (one-dimensional) Brownian motion
- When the individual dies, it produces two offspring individuals
- Each new individual has an independent Exp(1) lifetime and moves independently according to a Brownian motion until it dies and has offspring and so on.

BBM with decay of mass

Individuals within distance μ of each other have to share resources so their masses decay.

N(t) is number of particles at time t. Locations of particles given by $X(t) = (X_i(t), 1 \le i \le N(t))$. Masses of particles given by $M(t) = (M_i(t), 1 \le i \le N(t))$.

Let
$$\zeta_{\mu}(t,x) = rac{1}{2\mu} \sum_{\{i:|X_i(t)-x|\in(0,\mu)\}} M_i(t).$$

 $M_i(t)$ decays at rate $M_i(t)\zeta_{\mu}(t,X_i(t))$ so

$$M_i(t) = \exp\left(-\int_0^t \zeta_\mu(s, X_{i,t}(s)) \, ds\right)$$

where $X_{i,t}(s)$ is the location of the ancestor of $X_i(t)$ at time s. Total mass increases through branching.

Front location

If $x \ge \max_i X_i(t) + \mu$ then $\zeta_{\mu}(t, x) = 0$.

Maximum particle in BBM

Theorem (Bramson)

The rightmost particle location $\max_{i\geq 1} X_i(t)$ has median med(t) which satisfies

$$med(t) = \sqrt{2}t - \frac{3}{2\sqrt{2}}\log t + O(1).$$

Theorem (Hu and Shi) Almost surely

$$\limsup_{t\to\infty}\frac{|\max_{i\geq 1}X_i(t)-\mathit{med}(t)|}{\log t}<\infty.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Front location for BBM with decay of mass

Theorem (Addario-Berry, P.) Let $c^* = 3^{4/3}\pi^{2/3}/2^{7/6}$. Then for $m \in (0, 1)$, almost surely,

$$\limsup_{t\to\infty}\frac{\sqrt{2}t-d(t,m)}{t^{1/3}}\geq c^*\quad\text{and}\quad\liminf_{t\to\infty}\frac{\sqrt{2}t-D(t,m)}{t^{1/3}}\leq c^*.$$

There are

- ► large times t at which the first low-density region lags at least distance c*t^{1/3} + o(t^{1/3}) behind the rightmost particle
- ► large times t at which there is some high-density region within distance c*t^{1/3} + o(t^{1/3}) of the rightmost particle.

Front location for BBM with decay of mass

Theorem (Addario-Berry, Berestycki, P.) Let $c^* = 3^{4/3}\pi^{2/3}/2^{7/6}$. Then for $m \in (0, m^*]$, almost surely,

$$\limsup_{t\to\infty}\frac{\sqrt{2}t-D(t,m)}{t^{1/3}}\geq c^*\quad \text{and}\quad \liminf_{t\to\infty}\frac{\sqrt{2}t-d(t,m)}{t^{1/3}}\leq c^*.$$

Question: Do we have that for $m \in (0, 1)$, almost surely

$$\lim_{t \to \infty} \frac{\sqrt{2}t - D(t,m)}{t^{1/3}} = c^* \quad \text{and} \quad \lim_{t \to \infty} \frac{\sqrt{2}t - d(t,m)}{t^{1/3}} = c^* ?$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Density self-correction

Recall that $\zeta_{\mu}(t,x) = \frac{1}{2\mu} \sum_{\{i:|X_i(t)-x|\in(0,\mu)\}} M_i(t)$ and $\frac{d}{dt}M_i(t) = -M_i(t)\zeta_{\mu}(t,X_i(t)).$

Heuristically,

$$\frac{\mathrm{d}}{\mathrm{d}t}\zeta_{\mu}(t,x)\approx\zeta_{\mu}(t,x)-\frac{1}{2\mu}\sum_{\{i:|X_i(t)-x|\in(0,\mu)\}}M_i(t)\cdot\zeta_{\mu}(t,X_i(t))\,.$$

- If ζ_µ(t, y) ≪ 1 for all y s.t. |x − y| < µ, get exponential growth.</p>
- If ζ_µ(t, y) ≫ 1 for all y s.t. |x − y| < µ, get exponential decay.

Upper bound

Fix $c \in (0, c^*)$ and let $g(s) = \sqrt{2}s - cs^{1/3}$ for $s \ge 0$. Proposition (Jaffuel) There exists $\delta = \delta(c) > 0$ such that for t sufficiently large $\mathbb{P}(\exists i \le N(t) \ s.t. \ X_{i,t}(s) \ge g(s) \forall s \le t) \le e^{-\delta t^{1/3}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Upper bound

Fix
$$c\in (0,c^*)$$
 and let $g(s)=\sqrt{2}s-cs^{1/3}$ for $s\geq 0.$

Proposition (Jaffuel)

There exists $\delta = \delta(c) > 0$ such that for t sufficiently large

$$\mathbb{P}\left(\exists i \leq \mathsf{N}(t) \; s.t. \; X_{i,t}(s) \geq g(s) \; \forall s \leq t\right) \leq e^{-\delta t^{1/3}}$$

Proposition (using Jaffuel and Roberts)

For any C > 0, there exists $\delta = \delta(c, C) > 0$ such that for t sufficiently large

$$\mathbb{P}\left(\exists i \leq \mathsf{N}(t) \text{ s.t. } \operatorname{Leb}(\{s \leq t : X_{i,t}(s) \leq g(s)\}) \leq Ct^{1/3}\right) \leq e^{-\delta t^{1/3}}.$$

Upper bound

Fix
$$c\in (0,c^*)$$
 and let $g(s)=\sqrt{2}s-cs^{1/3}$ for $s\geq 0.$

Proposition (Jaffuel)

There exists $\delta = \delta(c) > 0$ such that for t sufficiently large

$$\mathbb{P}\left(\exists i \leq \mathsf{N}(t) \; s.t. \; X_{i,t}(s) \geq g(s) \, \forall s \leq t\right) \leq e^{-\delta t^{1/3}}$$

Proposition (using Jaffuel and Roberts)

For any C > 0, there exists $\delta = \delta(c, C) > 0$ such that for t sufficiently large

$$\mathbb{P}\left(\exists i \leq \mathsf{N}(t) \text{ s.t. } \operatorname{Leb}(\{s \leq t : X_{i,t}(s) \leq g(s)\}) \leq Ct^{1/3}\right) \leq e^{-\delta t^{1/3}}.$$

Proposition

For any m > 0, almost surely

$$\limsup_{t\to\infty}\frac{\sqrt{2}t-d(t,m)}{t^{1/3}}\geq c^*.$$

Lower bound

Proposition (Roberts)

There exists $C^* < \infty$ a.s. such that for all t,

$$\#\{i: orall s \in [0,t], X_{i,t}(s) > \sqrt{2}s - c^*s^{1/3} + rac{c^*s^{1/3}}{\log^2(s+e)} - \mathcal{C}^*\} \ \geq 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lower bound

Proposition (Roberts)

There exists $C^* < \infty$ a.s. such that for all t,

$$\#\{i: orall s \in [0, t], X_{i,t}(s) > \sqrt{2}s - c^*s^{1/3} + rac{c^*s^{1/3}}{\log^2(s+e)} - C^*\} \ge 1$$

Proposition

There exists Z such that for all t sufficiently large,

 $\mathbb{P}\left(\sup\{\zeta_{\mu}(s,x): 0\leq s\leq t, x\in\mathbb{R}\}> Z\log t\right)\leq t^{-4}.$

Lower bound

Proposition (Roberts)

There exists $C^* < \infty$ a.s. such that for all t,

$$\#\{i: orall s \in [0,t], X_{i,t}(s) > \sqrt{2}s - c^*s^{1/3} + rac{c^*s^{1/3}}{\log^2(s+e)} - C^*\} \ \geq 1$$

Proposition

There exists Z such that for all t sufficiently large,

$$\mathbb{P}\left(\sup\{\zeta_{\mu}(s,x): 0\leq s\leq t, x\in\mathbb{R}\}>Z\log t\right)\leq t^{-4}.$$

Proposition

For any $m \in (0,1)$, almost surely

$$\liminf_{t\to\infty}\frac{\sqrt{2}t-D(t,m)}{t^{1/3}}\leq c^*.$$

PDE approximation - non-local Fisher-KPP equation

For
$$\delta > 0$$
, let $z_{\delta}(t, x) = \frac{1}{2\delta} \sum_{\{i:|X_i(t)-x|<\delta\}} M_i(t)$.

Theorem (Addario-Berry, Berestycki, P.) For $t \ge 1$, let $\delta(t) = t^{-1/5}$. Let u denote the solution to

$$\begin{cases} \frac{\partial u}{\partial s} = \frac{1}{2}\Delta u + u(1 - \phi_{\mu} * u), \quad s > 0, \quad x \in \mathbb{R}, \\ u(0, x) = z_{\delta(t)}(t, x), \quad x \in \mathbb{R}, \end{cases}$$

where $\phi_{\mu}(y) = \frac{1}{2\mu} \mathbb{1}_{\{|y| \le \mu\}}$ and $\phi_{\mu} * u(s, x) = \frac{1}{2\mu} \int_{x-\mu}^{x+\mu} u(s, y) dy$.

For $T < \infty$, there exists $C < \infty$ such that for t sufficiently large, $\mathbb{P}\left(\sup_{s \in [0,T], x \in \mathbb{R}} |z_{\delta(t)}(t+s,x) - u(s,x)| \ge C\delta(t)\right) \le t^{-n}.$

PDE approximation - non-local Fisher-KPP equation

Proposition

For any $\alpha < 1$ and $n \in \mathbb{N}$, for t sufficiently large,

$$\mathbb{P}\left(\max_{i\leq N(t)}M_i(t)\geq t^{-lpha}
ight)\leq t^{-n}.$$

Proposition (Feynman-Kac formula)

Let u denote the solution to

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{1}{2}\Delta u + u(1 - \phi_{\mu} * u), & t > 0, \quad x \in \mathbb{R}, \\ u(0, x) = u_0(x), & x \in \mathbb{R}. \end{cases}$$

Then for $t \geq 0$, $x \in \mathbb{R}$,

$$u(t,x) = e^t \mathbb{E}_x \left[e^{-\int_0^t \phi_\mu * u(t-s,B(s))ds} u_0(B(t)) \right].$$

Front location for the non-local Fisher-KPP equation

Suppose $u_0 \in L^{\infty}(\mathbb{R})$, $u_0 \geq 0$, $u_0 \not\equiv 0$ and u_0 is compactly supported, and take $\phi \in L^1(\mathbb{R})$, $\phi \ge 0$, $\phi(0) > 0$, $\int_{-\infty}^{\infty} \phi(x) dx = 1$. Let u denote the solution to

$$\left\{egin{aligned} &rac{\partial u}{\partial t}=rac{1}{2}\Delta u+u(1-\phi*u),\quad t>0,\quad x\in\mathbb{R},\ &u(0,x)=u_0(x),\quad x\in\mathbb{R}, \end{aligned}
ight.$$

where $\phi * u(t, x) = \int_{-\infty}^{\infty} \phi(y) u(t, x - y) dy$.

Theorem (P.)

If there exists $\alpha > 2$ such that for r sufficiently large, $\int_{-\infty}^{\infty} \phi(x) dx \leq r^{-\alpha}$, then there exists $A < \infty$ such that

$$\lim_{t \to \infty} \inf_{x \in [0,\sqrt{2}t - \frac{3}{2\sqrt{2}}\log t - A(\log\log t)^3]} u(t,x) > 0$$

and
$$\lim_{t \to \infty} \sup_{x \ge \sqrt{2}t - \frac{3}{2\sqrt{2}}\log t + 10\log\log t} u(t,x) = 0.$$

Front location for the non-local Fisher-KPP equation

Suppose $u_0 \in L^{\infty}(\mathbb{R})$, $u_0 \ge 0$, $u_0 \not\equiv 0$ and u_0 is compactly supported, and take $\phi \in L^1(\mathbb{R})$, $\phi \ge 0$, $\phi(0) > 0$, $\int_{-\infty}^{\infty} \phi(x) dx = 1$. Let u denote the solution to

$$\left\{egin{aligned} &rac{\partial u}{\partial t}=rac{1}{2}\Delta u+u(1-\phi*u),\quad t>0,\quad x\in\mathbb{R},\ &u(0,x)=u_0(x),\quad x\in\mathbb{R}, \end{aligned}
ight.$$

where $\phi * u(t, x) = \int_{-\infty}^{\infty} \phi(y) u(t, x - y) dy$.

Theorem (Bouin, Henderson, Ryzhik) If there exists $\alpha > 2$ such that for r sufficiently large, n

$$\int_{r}^{\infty} \phi(x) dx \leq r^{-lpha}, then$$

$$\lim_{t \to \infty} \inf_{x \in [0,\sqrt{2}t - \frac{3}{2\sqrt{2}}\log t]} u(t,x) > 0$$

and
$$\lim_{A \to \infty} \limsup_{t \to \infty} \sup_{x \ge \sqrt{2}t - \frac{3}{2\sqrt{2}}\log t + A} u(t,x) = 0.$$

Behaviour behind the front

Suppose $u_0 \in L^{\infty}(\mathbb{R})$, $u_0 \ge 0$ and $u_0 \not\equiv 0$. Let u denote the solution to

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{1}{2} \Delta u + u(1 - \phi_{\mu} * u), \quad t > 0, \quad x \in \mathbb{R}, \\ u(0, x) = u_0(x), \quad x \in \mathbb{R}, \end{cases}$$

where $\phi_{\mu}(y) = \frac{1}{2\mu} \mathbb{1}_{\{|y| \le \mu\}}$ and $\phi_{\mu} * u(t, x) = \frac{1}{2\mu} \int_{x-\mu}^{x+\mu} u(t, y) dy$.

Theorem (Addario-Berry, Berestycki, P.) There exists $\mu^* > 0$ such that for any $\mu \in (0, \mu^*]$, $c \in (0, \sqrt{2})$,

$$\lim_{t\to\infty}\sup_{x\in[-ct,ct]}|u(t,x)-1|=0.$$

Behaviour behind the front

Let
$$\zeta_{\mu}(t,x) = \frac{1}{2\mu} \sum_{\{i:|X_i(t)-x|\in(0,\mu)\}} M_i(t)$$
 and
 $M_i(t) = \exp\left(-\int_0^t \zeta_{\mu}(s,X_{i,t}(s)) ds\right)$.

Theorem (Addario-Berry, Berestycki, P.)

There exists $\mu^* > 0$ such that for $\mu \in (0, \mu^*]$, $c \in (0, \sqrt{2})$, $\epsilon > 0$, for t sufficiently large,

$$\mathbb{P}\left(\sup_{s\geq t}\sup_{|x|\leq cs}|\zeta_{\mu}(s,x)-1|\geq\epsilon
ight)\leq t^{-n}.$$

Question: What happens for large μ ?