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Branching Brownian motion

» Start with a single individual with an Exp(1) lifetime

» The individual moves according to (one-dimensional)
Brownian motion

» When the individual dies, it produces two offspring individuals

» Each new individual has an independent Exp(1) lifetime and
moves independently according to a Brownian motion until it
dies and has offspring and so on.
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BBM with decay of mass

Individuals within distance i of each other have to share resources
so their masses decay.

N(t) is number of particles at time t.
Locations of particles given by X(t) = (Xj(t),1 < :
Masses of particles given by M(t) = (M;(t),1 < i < N(t)).

Let Gu(t,x) = 25 X gixi(0)-xle(o,y Mit)
M;(t) decays at rate M;(t)(,(t, Xi(t)) so
Mi(t) = exp (- /0 Culs, Xia(9)) ds)

where X; ¢(s) is the location of the ancestor of Xj(t) at time s.

Total mass increases through branching.



Front location

Let d(t, m) = min{x > 0: {,(t,x) < m} and
D(t, m) = max{x : (u(t,x) > m}.

¢(t,x)

max; X;(t) + u

X

0 d(t, ,in)éD(t’ m)

If x > max; Xi(t) + p then (,(t,x) = 0.



Maximum particle in BBM

Theorem (Bramson)

The rightmost particle location max;>1 Xj(t) has median med(t)
which satisfies

med(t) = V2t — 2\35 log t + O(1).

Theorem (Hu and Shi)
Almost surely

i~1 Xi(t) — d(t
lim sup | maxiz1 Xi(t) — med(t) < 00.
t—00 log t




Front location for BBM with decay of mass

Theorem (Addario-Berry, P.)
Let c¢* = 3%/372/3/27/6  Then for m € (0,1), almost surely,

: ﬁt—d(tu m) * N ﬁt—D(t’ m) *
I|£rl>solipT2c and I|trg£fT§c .
There are

> large times t at which the first low-density region lags at least
distance c*t1/3 + o(t1/3) behind the rightmost particle

> large times t at which there is some high-density region within
distance c*t'/3 + o(t'/3) of the rightmost particle.



Front location for BBM with decay of mass

Theorem (Addario-Berry, Berestycki, P.)
Let c* = 3%/372/3/27/% Then for m € (0, m*], almost surely,

: \/Et_D(tv m) * R ﬂt—d(t’m) *
Ilzrl)s;pTzc and l'ﬂngSC'
Do we have that for m € (0,1), almost surely

2t—D 2t —
im Y2E2D(Em) o Y2E )

t—00 t1/3 t—o0 t1/3



Density self-correction

Recall that C#(t,x) = ﬁ Z{i:\X,-(t)fX|€(O,u)} M,(t) and
SMi(t) = =Mi(t)Cu(t, Xi(1))-

Heuristically,

SGENRGE o Y MGl (1),

H xio—xlem}

» If (u(t,y) < 1forall yst. [x—y|<pu, get exponential
growth.

> If u(t,y) > 1forall y sit. [x — y| < p, get exponential
decay.



Upper bound
Fix c € (0, c*) and let g(s) = v/2s — cs'/3 for s > 0.
Proposition (Jaffuel)
There exists § = 0(c) > 0 such that for t sufficiently large

P(3i < N(t) s.t. X;.(s) > g(s) Vs < t) < e 0",
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V2t — d(t, m)
lims — —~ 7> C*.
It—)olip t1/3 -



Lower bound

Proposition (Roberts)

There exists C* < oo a.s. such that for all t,

o sl/3
log?(s+e)

#{i : Vs € [0,t], X; (s) > V2s — c*s*/3 + —C*} >1



Lower bound

Proposition (Roberts)
There exists C* < oo a.s. such that for all t,

c*sl/3

#{i : Vs € [0,t], X ¢(s) > V2s — c*s'3 4 log2(s+e)

—C o >1

Proposition
There exists Z such that for all t sufficiently large,

P (sup{Cu(s,x): 0<s<t,x eR} > Zlogt) < t ™.



Lower bound

Proposition (Roberts)
There exists C* < oo a.s. such that for all t,

. * c*st/3 *
#{i: Vs €[0,t], X;.c(s) > V2s — ¢ s34 og?(s1e) c't >1

Proposition
There exists Z such that for all t sufficiently large,

P (sup{Cu(s,x): 0<s<t,x eR} > Zlogt) < t ™.

Proposition
For any m € (0, 1), almost surely

Vﬁit‘_'[)(tarn) < .

liminf
t—00 t1/3



PDE approximation - non-local Fisher-KPP equation

For 6 > 0, let zs(t,x) = 5 D (ix(8)—x| <5} Mi(t).
Theorem (Addario-Berry, Berestycki, P.)
Fort > 1, let 6(t) = t~'/5. Let u denote the solution to
u = IAu+u(l—¢,*xu), s>0, xeR,
U(O7X) :Z5(t)(tax)7 XER,
where ¢,,(y) = iﬂ{lylﬁu} and ¢, * u(s, x) = i f;fi u(s,y)dy.

For T < oo, there exists C < oo such that for t sufficiently large,

P ( sup | zs(e)(t +5,x) — u(s, x)| > C(S(t)) <t "
s€[0,T],xeR



PDE approximation - non-local Fisher-KPP equation

Proposition
For any a < 1 and n € N, for t sufficiently large,

P (.max Mi(t) > t‘“) <t "

i<N(t)

Proposition (Feynman-Kac formula)
Let u denote the solution to

8‘;:1Au+ u(l—¢uxu), t>0, xeR,
u(0,x) = up(x), xe€R.

Then fort > 0, x € R,

u(t,X) _ etE fo ¢uxu(t—s,B(s))d ( (t))



Front location for the non-local Fisher-KPP equation

Suppose ug € L*(R), up > 0, up #Z 0 and up is compactly
supported, and take ¢ € L}(R), ¢ >0, ¢(0) >0, [ ¢(x)dx = 1.
Let u denote the solution to
8“—1Au+u(1—gb>ku) t>0, xeR,
u(0,x) = wp(x), x€R,

where ¢ u(t,x) = [*_ ¢(y —y)dy.

Theorem (P.)

If there exists o > 2 such that for r sufficiently large,
[ ¢(x)dx < r=, then there exists A < oo such that

liminf |nf u(t,x) >0
=00 xc[0,v/2t— Iogt A(log log t)3]
and  lim sup u(t,x) =0.

oo X>\/7t77 log t+10log log t



Front location for the non-local Fisher-KPP equation

Suppose ug € L*(R), up > 0, up #Z 0 and up is compactly
supported, and take ¢ € L}(R), ¢ >0, ¢(0) >0, [ ¢(x)dx = 1.
Let u denote the solution to

”—1Au+u(1—gb*u) t>0, xeR,

u(0,x) = uo(x), x€R,

where ¢« u(t,x) = [0 ¢(y)u(t,x — y)dy.

Theorem (Bouin, Henderson, Ryzhik)

If there exists o > 2 such that for r sufficiently large,
[ d(x)dx < r=2, then

lim inf inf u(t,x) >0
t—o0 XG[O,\@t—ﬁlog t]

and  lim limsup sup u(t,x) =0.
A=00  t—o0 x>\[t7—|ogt+A
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Behaviour behind the front

Suppose up € L*(R), up > 0 and up # 0. Let u denote the
solution to

%:%Au—ku(l—cﬁu*u), t>0 xeR,
u(0,%) = wo(x), xER,

where ¢,(y) = iﬂ{lﬂﬁﬂ} and ¢, x u(t,x) = i f;jlf u(t, y)dy.

Theorem (Addario-Berry, Berestycki, P.)
There exists yu* > 0 such that for any p € (0, u*], ¢ € (0,v/2),

lim  sup J|u(t,x)—1|=0.

E=00 se[—ct,ct]



Behaviour behind the front
Let (£ %) = 5 2ogigx(e)-xle(o) Mi(t) and
M;(t) = exp (— /ot Cu(s, Xie(s)) ds) .
Theorem (Addario-Berry, Berestycki, P.)

There exists ju* > 0 such that for u € (0, ], ¢ € (0,v/2), € > 0,
for t sufficiently large,

P <sup sup [Cu(s,x) — 1] > e> <t "

s>t |x|<cs

What happens for large u?



