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Branching Brownian motion

I Start with a single individual with an Exp(1) lifetime

I The individual moves according to (one-dimensional)
Brownian motion

I When the individual dies, it produces two offspring individuals

I Each new individual has an independent Exp(1) lifetime and
moves independently according to a Brownian motion until it
dies and has offspring and so on.
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BBM with decay of mass

Individuals within distance µ of each other have to share resources
so their masses decay.

N(t) is number of particles at time t.
Locations of particles given by X(t) = (Xi (t), 1 ≤ i ≤ N(t)).
Masses of particles given by M(t) = (Mi (t), 1 ≤ i ≤ N(t)).

Let ζµ(t, x) = 1
2µ

∑
{i :|Xi (t)−x |∈(0,µ)}Mi (t).

Mi (t) decays at rate Mi (t)ζµ(t,Xi (t)) so

Mi (t) = exp

(
−
∫ t

0
ζµ(s,Xi ,t(s)) ds

)
where Xi ,t(s) is the location of the ancestor of Xi (t) at time s.

Total mass increases through branching.



Front location

Let d(t,m) = min{x > 0 : ζµ(t, x) < m} and
D(t,m) = max{x : ζµ(t, x) > m}.

0
x

m

d(t,m)D(t,m)

ζ(t, x)

maxi Xi (t) + µ

If x ≥ maxi Xi (t) + µ then ζµ(t, x) = 0.



Maximum particle in BBM

Theorem (Bramson)

The rightmost particle location maxi≥1 Xi (t) has median med(t)
which satisfies

med(t) =
√

2t − 3

2
√

2
log t + O(1).

Theorem (Hu and Shi)

Almost surely

lim sup
t→∞

|maxi≥1 Xi (t)−med(t)|
log t

<∞.



Front location for BBM with decay of mass

Theorem (Addario-Berry, P.)

Let c∗ = 34/3π2/3/27/6. Then for m ∈ (0, 1), almost surely,

lim sup
t→∞

√
2t − d(t,m)

t1/3
≥ c∗ and lim inf

t→∞

√
2t − D(t,m)

t1/3
≤ c∗.

There are

I large times t at which the first low-density region lags at least
distance c∗t1/3 + o(t1/3) behind the rightmost particle

I large times t at which there is some high-density region within
distance c∗t1/3 + o(t1/3) of the rightmost particle.



Front location for BBM with decay of mass

Theorem (Addario-Berry, Berestycki, P.)

Let c∗ = 34/3π2/3/27/6. Then for m ∈ (0,m∗], almost surely,

lim sup
t→∞

√
2t − D(t,m)

t1/3
≥ c∗ and lim inf

t→∞

√
2t − d(t,m)

t1/3
≤ c∗.

Question: Do we have that for m ∈ (0, 1), almost surely

lim
t→∞

√
2t − D(t,m)

t1/3
= c∗ and lim

t→∞

√
2t − d(t,m)

t1/3
= c∗ ?



Density self-correction

Recall that ζµ(t, x) = 1
2µ

∑
{i :|Xi (t)−x |∈(0,µ)}Mi (t) and

d
dtMi (t) = −Mi (t)ζµ(t,Xi (t)).

Heuristically,

d
dt
ζµ(t, x) ≈ ζµ(t, x)− 1

2µ

∑
{i :|Xi (t)−x |∈(0,µ)}

Mi (t) · ζµ(t,Xi (t)) .

I If ζµ(t, y)� 1 for all y s.t. |x − y | < µ, get exponential
growth.

I If ζµ(t, y)� 1 for all y s.t. |x − y | < µ, get exponential
decay.



Upper bound

Fix c ∈ (0, c∗) and let g(s) =
√

2s − cs1/3 for s ≥ 0.

Proposition (Jaffuel)

There exists δ = δ(c) > 0 such that for t sufficiently large

P (∃i ≤ N(t) s.t. Xi ,t(s) ≥ g(s)∀s ≤ t) ≤ e−δt
1/3
.
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Proposition

For any m > 0, almost surely

lim sup
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√
2t − d(t,m)

t1/3
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Lower bound

Proposition (Roberts)

There exists C ∗ <∞ a.s. such that for all t,

#{i : ∀s ∈ [0, t],Xi ,t(s) >
√

2s − c∗s1/3 + c∗s1/3

log2(s+e)
− C ∗} ≥ 1
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PDE approximation - non-local Fisher-KPP equation

For δ > 0, let zδ(t, x) = 1
2δ

∑
{i :|Xi (t)−x |<δ}Mi (t).

Theorem (Addario-Berry, Berestycki, P.)

For t ≥ 1, let δ(t) = t−1/5. Let u denote the solution to{
∂u
∂s = 1

2∆u + u(1− φµ ∗ u), s > 0, x ∈ R,
u(0, x) = zδ(t)(t, x), x ∈ R,

where φµ(y) = 1
2µ1{|y |≤µ} and φµ ∗ u(s, x) = 1

2µ

∫ x+µ
x−µ u(s, y)dy .

For T <∞, there exists C <∞ such that for t sufficiently large,

P

(
sup

s∈[0,T ],x∈R

∣∣zδ(t)(t + s, x)− u(s, x)
∣∣ ≥ Cδ(t)

)
≤ t−n.



PDE approximation - non-local Fisher-KPP equation

Proposition

For any α < 1 and n ∈ N, for t sufficiently large,

P
(

max
i≤N(t)

Mi (t) ≥ t−α
)
≤ t−n.

Proposition (Feynman-Kac formula)

Let u denote the solution to{
∂u
∂t = 1

2∆u + u(1− φµ ∗ u), t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R.

Then for t ≥ 0, x ∈ R,

u(t, x) = etEx

[
e−

∫ t
0 φµ∗u(t−s,B(s))dsu0(B(t))

]
.



Front location for the non-local Fisher-KPP equation

Suppose u0 ∈ L∞(R), u0 ≥ 0, u0 6≡ 0 and u0 is compactly
supported, and take φ ∈ L1(R), φ ≥ 0, φ(0) > 0,

∫∞
−∞ φ(x)dx = 1.

Let u denote the solution to{
∂u
∂t = 1

2∆u + u(1− φ ∗ u), t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,

where φ ∗ u(t, x) =
∫∞
−∞ φ(y)u(t, x − y)dy .

Theorem (P.)

If there exists α > 2 such that for r sufficiently large,∫∞
r φ(x)dx ≤ r−α, then there exists A <∞ such that

lim inf
t→∞

inf
x∈[0,

√
2t− 3

2
√
2
log t−A(log log t)3]

u(t, x) > 0

and lim
t→∞

sup
x≥
√
2t− 3

2
√
2
log t+10 log log t

u(t, x) = 0.
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∫∞
−∞ φ(x)dx = 1.

Let u denote the solution to{
∂u
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2∆u + u(1− φ ∗ u), t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,

where φ ∗ u(t, x) =
∫∞
−∞ φ(y)u(t, x − y)dy .

Theorem (Bouin, Henderson, Ryzhik)

If there exists α > 2 such that for r sufficiently large,∫∞
r φ(x)dx ≤ r−α, then

lim inf
t→∞

inf
x∈[0,

√
2t− 3

2
√
2
log t]

u(t, x) > 0

and lim
A→∞

lim sup
t→∞

sup
x≥
√
2t− 3

2
√
2
log t+A

u(t, x) = 0.



Behaviour behind the front

Suppose u0 ∈ L∞(R), u0 ≥ 0 and u0 6≡ 0. Let u denote the
solution to{

∂u
∂t = 1

2∆u + u(1− φµ ∗ u), t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,

where φµ(y) = 1
2µ1{|y |≤µ} and φµ ∗ u(t, x) = 1

2µ

∫ x+µ
x−µ u(t, y)dy .

Theorem (Addario-Berry, Berestycki, P.)

There exists µ∗ > 0 such that for any µ ∈ (0, µ∗], c ∈ (0,
√

2),

lim
t→∞

sup
x∈[−ct,ct]

|u(t, x)− 1| = 0.



Behaviour behind the front

Let ζµ(t, x) = 1
2µ

∑
{i :|Xi (t)−x |∈(0,µ)}Mi (t) and

Mi (t) = exp

(
−
∫ t

0
ζµ(s,Xi ,t(s)) ds

)
.

Theorem (Addario-Berry, Berestycki, P.)

There exists µ∗ > 0 such that for µ ∈ (0, µ∗], c ∈ (0,
√

2), ε > 0,
for t sufficiently large,

P

(
sup
s≥t

sup
|x |≤cs

|ζµ(s, x)− 1| ≥ ε

)
≤ t−n.

Question: What happens for large µ?


