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Motivation



Let X = (Xt)t≥0 be a branching Brownian motion.
Informally the process with X0 = {0} may be described as follows:
A particle starts from the origin and moves as a standard one-dimensional
Brownian Motion on a real line. It dies at a random time with an
exponential distribution of parameter 1. When the particle dies, it produces
two new points at the place of its death. Each of the two particles repeats
behaviour of the parent independently of each other. The process continues
indefinitely.

Denote R+ := [0,∞) and let 1 be an indicator function.

u(x, t) : = E{x}
[ ∏
y∈Xt

1R+(y)
]

= P{0}
[
y ≥ −x, ∀ y ∈ Xt

]
= P{0}

[
the left-most particle of Xt is ≥ −x

]
.

Then u solves the following equation
∂u

∂t
(x, t) =

1

2

∂2u

∂x2
(x, t) + u2(x, t)− u(x, t), x ∈ R, t > 0,

u(x, 0) = 1R+(x), x ∈ R.
(1)

Hence, 1− u solves the Fisher-KPP equation.

MkKean, 1975
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Theorem 1.
Let X = (Xt)t≥0 be a branching Brownian motion, then for some
constant C ∈ R its left-most particle Mt satisfies ,

lim
t→∞

P{0}
[
Mt + c∗t−

3

2λ∗
ln t+ C ≥ −x

]
= φ(x), x ∈ R,

where c∗=λ∗=
√

2, φ(x) = E{0}
[
e−e

−λ∗xD∞
]
, E{0}

[
D∞ > 0

]
= 1,

lim
x→+∞

φ(x) = 1, lim
x→−∞

φ(x) = E{0}
[
D∞ = 0

]
= 0.

In other words the solution to (1) satisfies

lim
t→∞

u(x+ c∗t−
3

2λ∗
ln t+ C, t) = φ(x), x ∈ R.

Moreover (x, t)→ φ(x−c∗t) solves (1), thus, it is a monotone
travelling wave solution.

Uchiama 1978; Bramson 1983; Lau 1985; Lalley, Selke 1987.



Goal: Generalize the previous theorem to more general
branching Markov processes (Lévy instead of BM + more

general branching mechanisms).



Relation between Branching Markov Processes and
Evolution Equations



• N0 = N ∪ {0} = {0, 1, 2, 3, . . . }.

• Rnsym - n-fold symmetric product of R (i.e. we identify permutations of
coordinates in Rn).

• R :=
⊔

n∈N0

Rnsym where R0
sym := {∅}.

• The sets of bounded Borel functions on R and R are denoted by B(R)
and B(R) correspondingly.

• The norms of f ∈ B(R) and g ∈ B(R) will be denoted

‖f‖ = ess sup
x∈R

|f(x)|, ‖g‖ = ess sup
x∈R

|g(x)|.

• The bold symbols x, y, z, X, T, P, E will be used for objects
related with the space R.

If a process X = (Xt)t≥0 takes values in R, then Xt ∈ Rnsym means that at
time t the process X consists of n points, which are located on the real line
R. X dies out if there exists t > 0 such that Xt ∈ R0

sym = {∅}.
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Definition 1.

Let X = (Xt,Px) be a right-continuous temporally homogeneous
Markov process on R. Then X is called a branching Markov process if
it satisfies

Ex

[ ∏
y∈Xt

f(y)
]

=
∏
x∈x

E{x}
[ ∏
y∈Xt

f(y)
]
,

for every x ∈ R, t ≥ 0, f ∈ B(R), ‖f‖ < 1.

Such definition is too general. We need more restrictions on the process to
be able to work with it.

Ikeda, Nagasawa and Watanabe, 1968,1969
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Definition 2.
Let X = (Xt,Px) be a branching strong Markov process and there
exist a random time τ , which satisfies the following conditions

1. There exists a stochastic kernel π(x,E) on R×R such that for
each x ∈ R, and E – Borel in R, on {τ <∞}:

E{x}
[
Xτ ∈ E

∣∣Xτ−
]

= π(Xτ−, E).

2. limn→0 Xτ− 1
n

exists almost surely on {τ <∞}.

3. P{x}
[
τ = s

]
= 0, s ≥ 0.

Also, up to time τ we identify X started from X0 = {x}, x ∈ R, with a
Markov process on R which we denote by X0 = (X0

t ,P0
x). We

terminate X0 at τ .
Then, we call X a (X0, π)-branching Markov process.

Moreover, X0 is called a non-branching part of X, τ – the first
branching time of X, and π – a branching law of X.

Starting from X0, τ and π one can construct a (X0, π)-branching Markov
process. Such process is unique up to finite dimensional distributions.

Ikeda, Nagasawa and Watanabe, 1968,1969
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Let Xt be a (X0, π)-branching Markov process and f ∈ B(R), ‖f‖ < 1.

u(x, t) := E{x}
[ ∏
y∈Xt

f(y)
]

= E{x}
[ ∏
y∈Xt

f(y), τ > t
]

+ E{x}
[ ∏
y∈Xt

f(y), τ ≤ t
]

= E{x}
[
f(X0

t ), τ > t
]

+

t∫
0

∫
R

∫
R

E{x}
[
τ ∈ ds,X0

s− ∈ dy,Xs ∈ dz,
∏
y∈Xt

f(y)
]

= E{x}
[
f(X0

t ), τ>t
]

+

t∫
0

∫
R

∫
R

P{x}
[
τ∈ds,X0

s−∈dy
]
π(y, dz)EXs=z

[ ∏
y∈Xt

f(y)
]

(
EXs=z

[ ∏
y∈Xt

f(y)
]

= Ez

[ ∏
y∈Xt−s

f(y)
]

=
∏
z∈z

E{z}
[ ∏
y∈Xt−s

f(y)
]

=
∏
z∈z

u(z, t−s)
)

We derive the so-called S-equation:

u(x, t) = E{x}
[
f(X0

t ), τ > t
]

+

t∫
0

∫
R

∫
R

P{x}
[
τ ∈ ds,X0

s− ∈ dy
]
π(X0

s−, dz)
∏
z∈z

u(z, t− s),

u(x, 0) =f(x).

Ikeda, Nagasawa and Watanabe, 1968,1969
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u(x, t) := E{x}
[ ∏
y∈Xt

f(y)
]

= E{x}
[ ∏
y∈Xt

f(y), τ > t
]

+ E{x}
[ ∏
y∈Xt

f(y), τ ≤ t
]

= E{x}
[
f(X0

t ), τ > t
]

+

t∫
0

∫
R

∫
R

E{x}
[
τ ∈ ds,X0

s− ∈ dy,Xs ∈ dz,
∏
y∈Xt

f(y)
]

= E{x}
[
f(X0

t ), τ>t
]

+

t∫
0

∫
R

∫
R

P{x}
[
τ∈ds,X0

s−∈dy
]
π(y, dz)EXs=z

[ ∏
y∈Xt

f(y)
]

(
EXs=z

[ ∏
y∈Xt

f(y)
]

= Ez

[ ∏
y∈Xt−s

f(y)
]

=
∏
z∈z

E{z}
[ ∏
y∈Xt−s

f(y)
]

=
∏
z∈z

u(z, t−s)
)

We derive the so-called S-equation:
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0
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Under additional regularity assumptions on the (X0, π)-branching Markov
process X we could derive the following PDE:

∂u

∂t
(x, t) = (A0u)(x, t) + k

∫
R

π(x, dz)
∏
z∈z

u(z, t), x ∈ R, t > 0,

u(x, 0) = f(x), x ∈ R.

where A0 is the generator of the non-branching part X0, k :=
dP{x}[τ∈dt]

dt
(0)

- value of the probability density of the branching time τ at 0.

Ikeda, Nagasawa and Watanabe, 1968,1969



1) Let the non-branching part X0 be a standard Brownian motion up to
the branching time τ , which is exponentially distributed with rate 1:

(A0u)(x) =
1

2
∂2
xxu(x)− u(x).

Suppose that a particle at the moment of its death gives birth to two
children which are positioned at the same point, where the parent dies:

π(x, dz) = 1R2
sym

(z)δx(dz1)δx(dz2).

As a result, we have

∂tu(x, t) =
1

2
∂2
xxu(x, t)− u(x, t) + u2(x, t).

2) Let the non-branching part X0 be trivial: the point does not move and
dies with a random exponentially distributed time with rate 1.

(A0u)(x) = −u(x).

Next, we assume that a particle gives birth to n children with a probability
pn, and children are placed at the same point where the parent dies.

π(x, dz) =
∑
n∈N0

pn1Rnsym(z) Π
j=1..n

δx(dzj).

Hence, we have

∂tu(t) = −u(t) +
∑
n∈N0

pnu
n(t).
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3) Let the non-branching part X0 of a branching Markov process X be the
pure-jump Markov process with a bounded jump-kernel a ∈ L1(R→R+)
and the jump rate 1. Namely, starting from a point x ∈ R, the process X0

waits a random exponentially distributed time with rate 1, and, then, it
jumps from x to a point y ∈ R with probability a(y − x)dy. Next, we
suppose, that the branching time τ is exponentially distributed with rate 1.
At time τ the particle X0

τ− dies.

(A0u)(x) =

∫
R

a(x− y)(u(y)− u(x))dy − u(x) = (a ∗ u)(x)− 2u(x).

Suppose, a particle at the moment of its death gives birth to two children
which are positioned at the same point, where the parent dies. Then,

∂tu(x, t) = (a ∗ u)(x, t)− 2u(x, t) + u2(x, t).

4) In the previous example assume that a particle at the moment of its
death gives birth to two children, one of which is positioned at the same
point where the parent dies, and the second one is placed randomly at z ∈ R
with a probability b(z −X0

τ−)dz, where b is a bounded probability density:

π(y, dz) = 1R2
sym

(z)δy(dz1)b(z2 − y)dz2.

Then,

∂tu(x, t) = (a ∗ u)(x, t)− 2u(x, t) + u(x, t)(b̄ ∗ u)(x, t), b̄(x) := b(−x).



3) Let the non-branching part X0 of a branching Markov process X be the
pure-jump Markov process with a bounded jump-kernel a ∈ L1(R→R+)
and the jump rate 1. Namely, starting from a point x ∈ R, the process X0

waits a random exponentially distributed time with rate 1, and, then, it
jumps from x to a point y ∈ R with probability a(y − x)dy. Next, we
suppose, that the branching time τ is exponentially distributed with rate 1.
At time τ the particle X0

τ− dies.

(A0u)(x) =

∫
R

a(x− y)(u(y)− u(x))dy − u(x) = (a ∗ u)(x)− 2u(x).

Suppose, a particle at the moment of its death gives birth to two children
which are positioned at the same point, where the parent dies. Then,

∂tu(x, t) = (a ∗ u)(x, t)− 2u(x, t) + u2(x, t).

4) In the previous example assume that a particle at the moment of its
death gives birth to two children, one of which is positioned at the same
point where the parent dies, and the second one is placed randomly at z ∈ R
with a probability b(z −X0

τ−)dz, where b is a bounded probability density:

π(y, dz) = 1R2
sym

(z)δy(dz1)b(z2 − y)dz2.

Then,

∂tu(x, t) = (a ∗ u)(x, t)− 2u(x, t) + u(x, t)(b̄ ∗ u)(x, t), b̄(x) := b(−x).



Assumption 1.

The (X0, π)-branching Markov process does not explode in finite time. This
is equivalent to the fact that u ≡ 1 is the unique solution to the
corresponding S-equation with the initial condition f ≡ 1.

Theorem 2.
Let X satisfy Assumption 1. Then, for f ∈ B(R), 0 ≤ f ≤ 1,

u(x, t) = E{x}
[ ∏
y∈Xt

f(y)
]
, x ∈ R, t ≥ 0,

is the minimal (in the class of non-negative functions) solution to the
S-equation with the initial condition f .

Ikeda, Nagasawa and Watanabe, 1968,1969



On Limiting Behaviour of a Branching Random Walk



Let Y = (Yn,Px)n∈N be a branching random walk on the real line.
Informally the process started from Y0 = {x}, x ∈ R, may be described as
follows: Its children, who form the first generation, are scattered in R
according to the distribution of a point process Ξ:

Y1 = {x+ y
∣∣ y ∈ Ξ}.

Each of the particles in the first generation produces its own children:

Y2 = ∪{z + y
∣∣ z ∈ Y1, y ∈ Ξ},

who are thus in the second generations and are positioned (with respect to
their parent) according to the same distribution of Ξ. Each individual in
the n-th generation Yn produces independently of each other and member
of earlier generations. The system goes on indefinitely, but can possibly die
if there is no particle at a generation.

Z. Shi, Lecture Notes, 2015

As a result, Y is a spatially and temporally homogenous Markov chain,
which satisfies

Ex

[ ∏
y∈Yn

f(y)
]

=
∏
x∈x

E{x}
[ ∏
y∈Yn

f(y)
]
,

for every x ∈ R, n ∈ N0, f ∈ B(R), ‖f‖ < 1.
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Denote the log-Laplace transform of Ξ (i.e. Y1 started from Y0 = {0}) by

ψ(λ) := lnE{0}
[ ∑
y∈Y1

e−λy
]
, λ ∈ R.

With the following assumption we ensure that Y survives with a positive
probability and its left-most particle propagates proportionally to n:

ψ(0) ∈ (0,∞) and ∃λ > 0 : ψ(λ) <∞. (A2)

Then, speed of the propagation equals c∗ = infλ>0
ψ(λ)
λ

. We assume that
the infimum is attained at a finite point:

∃λ∗ ∈ (0,∞) : inf
λ>0

ψ(λ)

λ
=
ψ(λ∗)

λ∗
,

ψ(λ)

λ
∈ C1({λ∗}), (A3)

λ∗ < sup{µ > 0 : ψ(µ) <∞}. (A4)

Moreover, we suppose that

E{0}
[(

Σ
x∈Y1

g1(x)
)(

ln+ Σ
x∈Y1

g1(x)
)2]

<∞ (H1)

E{0}
[(

Σ
x∈Y1

g2(x)
)(

ln+ Σ
x∈Y1

g2(x)
)]
<∞ (H2)

where, ln+ x := ln max{x, 1}, and for y ∈ R,

h(y) = λ∗y + ψ(λ∗), g1(y) = e−h(y), g2(y) = max{0, h(y)}e−h(y).
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Let (Mn) denote a position of the left-most particle of Y,

Mn := min{x ∈ R |x ∈ Yn}, n ∈ N0. (2)

Theorem 3 (E. Aı̈dékon, 2013).

Under (A2), (A3), (A4), (H1), (H2), if Y1 6⊂ {a+ bZ} for any
a, b ∈ R, then there exists a constant C∗ > 0, such that for any x ∈ R,

lim
n→∞

E{0}
[
Mn + c∗n−

3

2λ∗
lnn+ C∗ ≥ x

]
= E{0}

[
e−e

λ∗xD∞
]
,

where D∞ is the almost sure limit of the derivative martingale

Dn = Π
y∈Yn

(λ∗y + nψ(λ∗))e
−λ∗y−nψ(λ∗).

Moreover,
P{0}

[
D∞ > 0

∣∣Y does not extinct
]

= 1.

Aı̈dékon included: λ∗ ∈ [0,∞], λ∗ = sup{µ > 0 : ψ(µ) <∞}.



Main Result



Proposition 1.

Let X be a spatially homogeneous (X0, π)-branching Markov process.
Then for any T > 0 its sampling {XnT }n∈N0 is a branching random
walk.

Idea: Apply the result of Aı̈dékon to {X n
2k
}n∈N, k ∈ N. Take k →∞.

Problem: All parameters and assumptions a priori depend on k. Such
dependence must be clarified.
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Proposition 2.

Let X be a spatially homogeneous (X0, π)-branching Markov process
satisfying Assumption 1. Denote, for x ∈ R, t > 0, λ ∈ R,

vλ(x, t) := E{x}
[ ∑
y∈Xt

e−λy
]
∈ [0,∞].

Then vλ(x, 0) = e−λx and v is the minimal non-negative solution to

vλ(x, t) = E{x}
[
f(X0

t ), τ > t
]

+

t∫
0

∫
R

∫
R

P{x}
[
τ ∈ ds,X0

s− ∈ dy
]
π(X0

s−, dz)
∑
z∈z

vλ(z, t− s),

Under additional regularity assumptions on X,

∂vλ
∂t

(x, t) = (A0vλ)(x, t) + k

∫
R

π(x, dz)
∑
z∈z

vλ(z, t),

where A0 is the generator of X0, k :=
dP{x}[τ∈dt]

dt
(0).

Moreover, if vλ(0, t) <∞ and v0(0, t) <∞, then

vλ(0, t) = vλ(0, t− s)vλ(0, s) and vλ(0, s) <∞ for s ∈ [0, t].
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Corollary 1.

Denote ψk(λ) := ln vλ(0, 2−k). Then, 2kψk(λ) = ψ0(λ).

Therefore, (A2), (A3) and (A4) for ψ0 imply analogous assumptions
for ψk with the same λ and λ∗, namely

ψk(0) ∈ (0,∞), ψk(λ) <∞, ψk(λ∗)

λ∗
= inf
λ>0

ψk(λ)

λ
=
c∗
2k
.

λ∗ < sup{µ > 0 : ψk(µ) <∞}.

As a result, in order to check (A2), (A3) and (A4) uniformly in k it is
sufficient to compute vλ(0, 1), e.g. by solving the corresponding
evolution equation, and then check that there exist λ, λ∗ ∈ (0,∞):

ln vλ(0, 1) ∈ (0,∞), ln vλ(0, 1) <∞, ln vλ∗(0, 1)

λ∗
= inf
λ>0

ln vλ(0, 1)

λ
,

λ∗ < sup{µ > 0 : ln vµ(0, 1) <∞}.
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.
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The corresponding to {X n
2k
}n∈N0 derivative martingale {Dn(k)}n∈N0

satisfies
Dn(k)→ D∞(k), n→∞, a.s.

Since D2kn(k) = Dn(0), then a.s. D∞(k) = D∞(0) = D∞, k ∈ N.

Similarly C∗(k) = C∗(0) + 3
2
k ln 2.

As a result Mt = min{x ∈ Xt} satisfies,

lim
n→∞

E{0}
[
M n

2k
+

n

2k
c∗ −

3

2λ∗
ln

n

2k
+ C∗ ≥ x

]
= E{0}

[
e−e

λ∗xD∞
]
.

Taking k large one can show that the limit holds for all t ∈ R.



Theorem 4 (Main result).

Let X be a spatially homogeneous (X0, π)-branching Markov process
satisfying Assumption 1 (i.e. X does not blow up in finite time).
Suppose that the log-Laplace transform of X1 satisfies (A2), (A3) and
(A4) (which may be checked in termes of vλ). Assume also that there
exists δ > 0 such that

w0,0(0, 1) + w0,λ∗(0, 1) + wδ,λ∗(0, 1) <∞.

Then the left-most particle of Xt: Mt = min{x ∈ Xt} satisfies,

lim
n→∞

E{0}
[
Mt + c∗t−

3

2λ∗
ln t+ C∗ ≥ x

]
= E{0}

[
e−e

λ∗xD∞
]
.

Mt and the minimal solution u to the S-equation are connected by

u(x, t) = E{x}
[ ∏
y∈Xt

1R+(y)
]

= P{0}
[
Mt > −x

]
.

Therefore,

lim
t→∞

u(x+ c∗t−
3

2λ∗
ln t+ C∗, t) = E{0}

[
e−e

−λ∗xD∞
]

=: φ(x).

Moreover, (x, t)→ φ(x− c∗t) is a monotone solution to the
S-equation, and

lim
x→+∞

φ(x) = 1, lim
x→−∞

φ(x) = E{0}
[
D∞ = 0

]
∈ [0, 1).
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1) Branching Brownian Motion.

∂tu(x, t) =
1

2
∂2
xxu(x, t)− u(x, t) + u2(x, t);

∂tvλ(x, t) =
1

2
∂2
xxvλ(x, t) + vλ(x, t), ln vλ(x, t) =

λ2t

2
+ t− λx;

∂twλ,µ(x, t) =
1

2
∂2
xxwλ,µ(x, t) + wλ,µ(x, t) + 2vλ(x, t)vµ(x, t);

vλ(x, t) <∞, wλ,µ(x, t) <∞, x ∈ R, t ≥ 0, λ > 0, µ > 0;

c∗ = inf
λ>0

ln vλ(0, 1)

λ
= inf
λ>0

λ2

2
+ 1

λ
=
√

2, λ∗ =
√

2.

2) Galton-Watson Process.

∂tu(t) = −u(t) +
∑
j∈N0

pju
j(t);

∂tvλ(x, t) = −vλ(x, t) +
∑
j∈N0

jpjvλ(x, t), ln vλ(x, t) = (−1 +
∑
j∈N0

jpj)t− λx.

ln vλ(0, 1) = −1 +
∑
j∈N0

jpj , λ∗ =∞.
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3) Branching Pure-jump Process.

∂tu(x, t) = (a ∗ u)(x, t)− 2u(x, t) + u2(x, t);

∂tvλ(x, t) = (a ∗ vλ)(x, t), ln vλ(x, t) = t

∫
R

eλya(y)dy − λx;

c∗ = inf
λ>0

ln vλ(0, 1)

λ
= inf
λ>0

∫
R
eλya(y)dy

λ
=

∫
R
eλ∗ya(y)dy

λ∗
.

Let there exist l, δ, λ > 0 such that,

I := inf
y∈(−l−δ,−l)

a(y) > 0,

∫
R

eλya(y)dy <∞, (3)

and λ∗ be less than the abscissa of the Laplace transform of a. Then
conditions of the main theorem are satisfied.
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