Francesco Chiacchio (University of Naples)

Symmetrization and Neumann eigenvalues

Abstract

Using the so-called "symmetrization" methods, we prove a sharp lower bound for the first nontrivial Neumann eigenvalue $\mu_1(\Omega)$ of the *p*-Laplace operator in a Lipschitz, bounded domain $\Omega \subset \mathbb{R}^n$. Our estimate, on one hand, does not require any convexity assumption on Ω , on the other, at least for p = n = 2, is sharp. Moreover, in a suitable class of convex planar domains, our estimate improves the one provided by the celebrated Payne-Weinberger inequality.

Time permitting, we will mention another lower bound for $\mu_1(\Omega)$. We prove that, when p = n = 2 and Ω consists of the points on one side of a smooth curve γ , within a suitable distance δ from it, then $\mu_1(\Omega)$ can be sharply estimated from below in terms of the length of γ , the L^{∞} norm of its curvature and δ .