Pier Domenico Lamberti (University of Padua)

On the L^p Hardy inequality

Abstract

Given a domain Ω in \mathbb{R}^n and $p \in]1, \infty[$, we say that the L^p Hardy inequality is satisfied if there exists a constant c > 0 such that

$$\int_{\Omega} |\nabla u|^p dx \ge c \int_{\Omega} \frac{|u|^p}{\operatorname{dist}^p(x, \partial \Omega)} dx \,, \quad \text{ for all } u \in W^{1,p}_0(\Omega).$$

The best constant c is called L^p Hardy constant and is denoted by $H_p(\Omega)$.

In this talk we present a few stability results, jointly obtained with Gerassimos Barbatis, concerning the dependence of $H_p(\Omega)$ upon variation of p and Ω , with special attention to non-convex domains (in which case the value of $H_p(\Omega)$ is in general not explicitly known).

Time permitting, we shall also present some results obtained with Yehuda Pinchover devoted to the generalization of a few classical results to the case of $C^{1,\alpha}$ domains.