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Plan of the course:
Thursday 7 March, 3-5pm
1. An introduction to rearrangements
2. Polarization and symmetry of solutions to variational
problems
Thursday 14 March, 3-5pm
3. Continuous Steiner symmetrization and symmetry of
solutions to PDEs
4. Weighted rearrangements and isoperimetric
inequalities



1. An introduction to rearrangements

We set up the general framework of rearrangements and
their role in the calculus of variations. In particular, we
give a list of symmetrizations (Schwarz-, Steiner- and cap
symmetrisation) and some integral inequalities a la
Hardy-Littlewood and Polya-Szegö.
Most of the material of this lecture can be found in the
following articles. They also contain many further
references on rearrangements.
F. BROCK, Rearrangements and applications to symmetry
problems in PDE. Handbook of differential equations:
stationary partial differential equations. Vol. IV, 1–60,
Elsevier/North-Holland, Amsterdam, 2007.
F. BROCK, A. YU. SOLYNIN, An approach to
symmetrization via polarization. Trans. Amer. Math. Soc.
352 (2000), no. 4, 1759–1796.



1.1. Motivation
Consider a variational problem of the form

(P) J(v) ≡
∫
Ω

(1

p
|∇v|p−F (x, v)

)
dx −→ Stat. ! , v ∈ K,

where K is a closed subset of W 1,p(Ω), p > 1, and Ω is a
domain in RN . The non-negative minimizers of (P)
describe stable - so-called ground - states of equilibria,
as they appear in many physical applications.
We ask for symmetries of the solutions of (P), if F and Ω
have certain "symmetries".



Often the set of admissible functions K involves
constraints which have one of the following forms:

v ≥ 0,∫
Ω

G(v) dx = 0, (G continuous),

|{v > 0}| = C, (C > 0).

As we shall see, rearrangements are those
transformations

v 7−→ Tv

that preserve these constraints. Moreover, some of these
rearrangements turn v into a function Tv which has
symmetry properties, and

J(Tv) ≤ J(v) ∀v ∈ K.

This allows to show that problem (P) has indeed
symmetric solutions.



1.2. Notation

R+
0 = [0,+∞)

x = (x1, . . . , xN) points in RN

x · y =
N∑
i=1

xiyi

|x| =
√
x · x

M set of all Lebesgue-measurable -
measurable in short - sets of RN

M1∆M2 = (M1 \M2) ∪ (M2 \M1), (M1,M2 ∈M )

|M | measure of a set M ∈M

‖ · ‖p,M norm in the space Lp(M), (M ∈M)
‖ · ‖p = ‖ · ‖p,RN , (1 ≤ p ≤ +∞)



If Ω is an open set in RN , and if u ∈ L∞(Ω), we define the
modulus of continuity, ωu,Ω, by

ωu,Ω(t) := sup{|u(x)−u(y)| : x, y ∈ Ω, |x−y| < t}, (t > 0).

(Here and in the following sup (inf) means ess sup (ess
inf).)
We also write ωu,RN = ωu.
Note that if u ∈ C(Ω) then u is equicontinuous on Ω iff
lim t↘0 ωu,Ω(t) = 0.



W 1,p(Ω) is the usual Sobolev space, and W 1,p
0 (Ω) is the

completion of C∞0 (Ω) in the space W 1,p(Ω).
Usually we extend measurable functions u : Ω→ R by
zero outside Ω, so that W 1,p

0 (Ω) ⊂ W 1,p(RN) in that sense.
C0,1

0 (Ω) is the set of Lipschitz functions with compact
support in Ω.
The lower index "+" indicates the corresponding subset of
non-negative functions, e.g. Lp+(RN), W 1,p

0+ (Ω), C0,1
0+(Ω), . . .

A function G : R+
0 → R+

0 is called a Young function if G
is continuous and convex with G(0) = 0.



1.3. Rearrangements, general properties
We often treat measurable sets only in a.e. sense, that is
we identify a set M with its equivalence class given by all
measurable sets M̃ with |M∆M̃ | = 0. If M1,M2 ∈M , we
write

M1 = M2 ⇐⇒ |M1∆M2| = 0, and
M1 ⊂M2 ⇐⇒ |M1 \M2| = 0.

A set transformation T : M −→M is called a
rearrangement if, (M,M1,M2 ∈M ),

M1 ⊂M2 =⇒ TM1 ⊂ TM2, (monotonicity),
|M | = |TM |, (equimeasurability).

Also, for any M ∈M , the set TM is called a
rearrangement of M .



The notion of rearrangement is reserved for measurable
sets. If a rearrangement has certain regularizing
properties, as for instance the symmetrizations and the
polarization (see the next section), then one can introduce
pointwise representatives for the set TM when M is open
or compact.
The definition implies, (M1,M2 ∈M ),

T (M1 ∩M2) ⊂ TM1 ∩ TM2,

T (M1 ∪M2) ⊃ TM1 ∪ TM2,

|M1 \M2| ≥ |TM1 \ TM2|,
|M1∆M2| ≥ |TM1∆TM2|.



Next we introduce rearrangements of measurable
functions u : RN → R. We will usually not distinguish
between u and its equivalence class given by all
measurable functions which differ from u on a nullset.
We define

S+ := {u : RN → R+
0 , measurable, |{u > t}| < +∞ ∀t > 0}.

Note that Lp+(RN), W 1,p
+ (RN), (1 ≤ p < +∞) , and

C0,1
0+(RN) are subsets of S+.

If u ∈ S+, its distribution function µu is given by

µu(t) := |{u > t}|, (t ∈ R+
0 ).

Note, µu is non-increasing and right-continuous with
µu(t) = 0 ∀ > supu, and µu(t) <∞ ∀t ∈ (0,+∞).



We will say that two functions u, v ∈ S+ are
equidistributed, u ∼ v, if µu(t) = µv(t) ∀t > 0. %

The distribution function of µu - that is, the
right-continuous inverse of µu - is called the symmmetric
decreasing rearrangement of u and is denoted by u].
Note, u] is a non-increasing, right-continuous function on
R+

0 with u](0) = supu, lims→+∞ u
](s) = 0, and

u](s) = inf {t ≥ 0 : µu(t) ≤ s}, (s ≥ 0).



We will say that two functions u, v ∈ S+ are
equidistributed, u ∼ v, if µu(t) = µv(t) ∀t > 0. %
The distribution function of µu - that is, the
right-continuous inverse of µu - is called the symmmetric
decreasing rearrangement of u and is denoted by u].
Note, u] is a non-increasing, right-continuous function on
R+

0 with u](0) = supu, lims→+∞ u
](s) = 0, and

u](s) = inf {t ≥ 0 : µu(t) ≤ s}, (s ≥ 0).



Let T be a rearrangement and u ∈ S+. We define a
function Tu ∈ S+ by

Tu(x) := sup
{
t ∈ R+

0 : x ∈ T{u > t}
}
, (x ∈ RN).

From this one obtains

{Tu > t} = T{u > t} and
{Tu ≥ t} = T{u ≥ t}, (t > 0).

The function Tu is also called a rearrangement of u.



Note that

u ≤ v =⇒ Tu ≤ Tv, (monotonicity),
|{u > t}| = |{Tu > t}| ∀t > 0, (equimeasurability),

and in the special case that u is a characteristic function
of a set M ∈M , i.e. u = χ(M), we have

Tχ(M) = χ(TM).

Moreover, if ϕ : R+
0 → R+

0 is non-decreasing with ϕ(0) = 0,
then

T (ϕ(u)) = ϕ (Tu) .



The definition of Tu can be written in a more compact
form using the so-called layer-cake formula,

u(x) =

+∞∫
0

χ({u > t})(x) dt, (x ∈ RN),

i.e. u is the superposition of the characteristic functions of
its superlevel sets. Note that the integral is à la Bochner,
i.e., if 0 = tk0 < tk1 < . . . < tkk,
where k ∈ N, max{tki − tki−1} : 1 ≤ i ≤ k} → 0, tkk → +∞
as k → +∞, then

k∑
i=1

χ({u > tki })(tki − tki−1) −→ u in measure.

Then

Tu(x) =

+∞∫
0

χ(T{u > t})(x) dt, (x ∈ RN).



Note, if u ∈ L1
+(RN) then we have that∫

RN
u dx =

∫ ∞
0

|{u > t}| dt,

which is a variant of Fubini’s Theorem.
Then the above formulas yield∫

RN
u dx =

∫
RN
Tu dx.



A more general property is the following one. It is often
called Cavalieri’s principle.
Theorem 1.1. Let T be a rearrangement, f : R+

0 → R
continuous or non-decreasing with f(0) = 0, u ∈ S+ and
f(u) ∈ L1(RN). Then∫

RN

f(u) dx =

∫
RN

f(Tu) dx.

Note that the Theorem follows for non-decreasing f from
the previous remarks. We drop the proof in the case of
continuous functions f .
The next Theorem has many applications, too. It has been
shown by Crowe, Rosenbloom and Zweibel in 1986 for
the Schwarz symmetrization. However, their proof carries
over to arbitrary rearrangements without difficulties.



Theorem 1.2. Let F ∈ C((R+
0 )2), F (0, 0) = 0, and

F (A,B)− F (a,B)− F (A, b) + F (a, b) ≥ 0

∀a, b, A,B with 0 ≤ a ≤ A, 0 ≤ b ≤ B, (∗)

and let T be a rearrangement. Furthermore, let u, v ∈ S+

and F (u, 0), F (0, v), F (u, v) ∈ L1(RN). Then∫
RN

F (u, v) dx ≤
∫
RN

F (Tu, Tv) dx.

Note, if F ∈ C2, then property (*) is equivalent to

∂2F (s, t)

∂s∂t
≥ 0 ∀s, t ≥ 0.



Important special cases of Theorem 1.2. are given for
F (u, v) = uv and F (u, v) = −G(|u− v|), where G is any
Young function.
Corollary 1.3. (i) If u, v ∈ L2

+(RN), then∫
RN
uv dx ≤

∫
RN
TuTv dx, (Hardy-Littlewood inequality).

(ii) If u, v ∈ S+ and G(|u− v|) ∈ L1(RN) for some Young
function G, then∫

RN
G(|u− v|) dx ≥

∫
RN
G(|Tu− Tv|) dx.

In particular, if u, v ∈ Lp+(RN), (1 ≤ p < +∞), then

‖u− v‖p ≥ ‖Tu− Tv‖p, (Nonexpansivity in Lp).



Let us show only the Hardy-Littlewood inequality:
If u, v ∈ L2

+(RN), then∫
RN
uv dx =

∫
RN

∫ ∞
0

χ({u > s})(x) ds

∫ ∞
0

χ({v > t})(x) dt dx

=

∫ ∞
0

∫ ∞
0

∫
RN
χ({u > s})(x)χ({v > t})(x) dx ds dt

=

∫ ∞
0

∫ ∞
0

|{u > s} ∩ {v > t}| ds dt

≤
∫ ∞

0

∫ ∞
0

|{Tu > s} ∩ {Tv > t}| ds dt

=

∫
RN
TuTv dx.



Rearrangements are nonexpansive in L∞, too.
Corollary 1.4. Let u, v ∈ S+ ∩ L∞(RN), and let T be a
rearrangement. Then

‖Tu− Tv‖∞ ≤ ‖u− v‖∞.

Proof : Let C := ‖u− v‖∞. Then we have −C ≤ u− v ≤ C
a.e. on RN . By the monotonicity this means that

Tv−C = T (v−C) ≤ Tu ≤ T (v+C) = Tv+C, a.e. on RN ,

and the assertion follows. 2



1.4. A list of rearrangements
1.4.1. Schwarz symmetrization
Let M ∈M . If |M | <∞, then let M? be the ball BR with
|BR| = |M |, and if |M | =∞, then let M? = RN .
Correspondingly, for any function u ∈ S+ we introduce u?

by the layer-cake formula with Tu = u? and
T{u > λ} = {u > λ}?. An equivalent definition is

u?(x) := u](κN |x|N), (x ∈ RN).

(Here κN = |B1|.)
The objects M? and u? are called the Schwarz
symmetrizations of M and u, respectively.



Note that u? is radially symmetric and radially
non-increasing, that is, u? depends on the radial
distance |x| only, and is non-increasing in |x|. The
superlevel sets {u? > t} are balls centered at zero, and
they have the same measure as {u > t}, (t ∈ R).
Note also that two functions u, v ∈ S+ are equidistributed,
u ∼ v, iff u? = v?.





1.4.2. Steiner symmetrization
We write x = (x1, x

′) for points in RN , |N |1 for the
one-dimensional measure of a set N ⊂ R and l(x′) for the
line {x = (x1, x

′) : x1 ∈ R}, (x′ ∈ RN−1).
If M ∈M , its Steiner symmetrization, M∗, is given by

M∗ := {x = (x1, x
′) : 2|x1| < |M ∩ l(x′)|1, x′ ∈ RN−1}.

If u ∈ S+, its Steiner symmetrization, u∗, is given by the
layer-cake formula with Tu = u∗ and T{u > t} = {u > t}∗.
An equivalent definition is

u∗(x1, x
′) := sup

{
t ∈ R : 2|x1| < |{u(·, x′) > t}|1

}
,

(x = (x1, x
′) ∈ RN).

(Here {u(·, x′) > t} is a short-hand for {x1 : u(x1, x
′) > t}.)



The function u∗ is even in the variable x1 and
nonincreasing in x1 for x1 ≥ 0, and

|{u(·, x′) > t}|1 = |{u∗(·, x′) > t}|1 (∗)
∀t ∈ R and for a.e. x′ ∈ RN−1,

the set on the right-hand side of (*) being an interval
centered at zero.





1.4.3. Cap symmetrization
Let P := (1, 0, . . . , 0) - the ’north pole’. If M ∈M , then
there is for a.e. r > 0 a unique value ρ ≥ 0 such that the
spherical cap Bρ(P ) ∩ ∂Br has the same (N − 1)-
Lebesgue measure as M ∩ ∂Br. We denote this spherical
cap by CM(r). The set

CM := {x ∈ RN : x ∈ CM(r), r > 0}

is called the cap symmetrization of M .





Furthermore, if u : RN → R is measurable, we define its
cap symmetrization, Cu, by

Cu(x) := sup
{
t ∈ R : x ∈ C{u > t}

}
.

Note, the superlevel sets {Cu > t} ∩ ∂Br are spherical
caps centered at P and have the same (N − 1)-measure
as {u > t} ∩ ∂Br, (r > 0, t ∈ R). Hence Cu depends only
on the radial distance r = |x| and on the geographical
lattitude θ1 := arccos(x1/|x|) only, and is nonincreasing in
θ1 ∈ [0, π].
Note also, the cap symmetrization is frequently referred to
as foliated Schwarz symmetrization.



1.4.4. Polarization
Now we study a simple rearrangement that can be used
to prove many functional inequalities for symmetrizations.
Let Σ be some (N − 1)− dimensional affine hyperplane in
RN and assume that H is one of the two open half-spaces
into which RN is subdivided by Σ. For any point x ∈ RN let
σx denote its reflection in Σ = ∂H. Furthermore, if
u : RN → R is measurable, then we define its
polarization (with respect to H), uH , by

uH(x) :=

{
max{u(x); u(σx)} if x ∈ H
min{u(x); u(σx)} if x ∈ RN \H.





If M ∈M we define its polarization (w.r.t. H), MH , via
its characteristic function,

χ(MH) :=
(
χ(M)

)
H
.

Note that polarization is also referred to as two-point
rearrangement.





The following properties are easy to prove:
Theorem 1.5. Let H be a half-space, Ω a domain in RN

and 1 ≤ p < +∞.
(i) Assume Ω = σΩ. If u ∈ C(Ω) ∩ L∞(Ω), or
u ∈ C(Ω) ∩ L∞(Ω), then so does uH and

ωuH ,Ω ≤ ωu,Ω.

In particular, if u is Lipschitz continuous with Lipschitz
constant L, then so is uH , with Lipschitz constant ≤ L.
(ii) Assume again Ω = σΩ. If u ∈ W 1,p

0 (Ω), then so is uH
and

‖∇u‖p = ‖∇uH‖p.

(iii) If u ∈ W 1,p
0+ (Ω), respectively u ∈ C0,1

0+(Ω), then
uH ∈ W 1,p

0+ (ΩH), respectively u ∈ C0,1
0+(ΩH).



Now we state a convolution-type inequality.
Theorem 1.6. Let H be a half-space, w : R+

0 → R+
0

measurable and non-increasing, and let u, v ∈ S+. Then∫∫
R2N

u(x)v(y)w(|x−y|) dxdy ≤
∫∫
R2N

uH(x)vH(y)w(|x−y|) dxdy,

provided that one of the integrals converges.



Proof: Let x, y ∈ H. Then

|x− y| = |σx− σy| ≤ |σx− y| = |x− σy|.

Hence, using the monotonicity of w, an elementary
calculation yields

u(x)v(y)w(|x− y|) + u(σx)v(y)w(|σx− y|) +

u(x)v(σy)|)w(|x− σy|) + u(σx)v(σy)|)w(|σx− σy|)
≤ uH(x)vH(y)w(|x− y|) + uH(σx)vH(y)w(|σx− y|) +

uH(x)vH(σy)|)w(|x− σy|) + uH(σx)vH(σy)|)w(|σx− σy|).

Then an integration over H ×H proves the claim. 2



1.5. Inequalities for Schwarz symmetrization
Many integral inequalities for symmetrizations can be
proved exploiting related properties for polarizations and
using an approximation procedure. Our aim is to present
some ideas of such a program. For convenience we will
restrict ourselves to the case of Schwarz symmetrization.
In the following, let H0 denote the set of half-spaces H in
RN such that 0 ∈ H.
The following separation property is crucial.
Lemma 1.6. Let u ∈ Lp+(RN) for some p ∈ [1,∞) and
suppose that u 6= u?. Then there exists H ∈ H0 such that

‖uH − u?‖p < ‖u− u?‖p.



Proof : If H ∈ H0 then we have that u = (u?)H , and an
elementary analysis shows that

|uH(x)− u?(x)|p + |uH(σx)− u?(σx)|p

≤ |u(x)− u?(x)|p + |u(σx)− u?(σx)|p ∀x ∈ H. (∗)

An integration of this over H then leads to
‖uH − u?‖p ≤ ‖u− u?‖p. Therefore to prove the claim it
suffices to show that, for a suitable choice of H, inequality
(*) becomes strict on a subset of H of positive measure.
Since u 6= u?, we find some number c > 0 such that
|{u > c}∆{u? > c}| > 0.
Let x1 and x2 density points of the sets {u > c} \ {u? > c}
and {u? > c} \ {u > c}, respectively.



We choose a halfspace H such that x1 = σx2 and x2 ∈ H.
(Note that from u?(x1) ≤ c < u?(x2) it follows that 0 ∈ H.)
Hence there is a subset K of H of positive measure
containing x2 such that

u?(x) > c ≥ u(x), u?(σx) ≤ c < u(σx) ∀x ∈ K.

But this means that the inequality (*) becomes strict on
the set K. 2



Next we show that the modulus of continuity does not
increase under Schwarz symmetrization.
Theorem 1.7. Let u ∈ S+ ∩ L∞(RN) ∩ C(RN). Then
u? ∈ C(RN) and

ωu? ≤ ωu . (∗)

Proof: Assume first that u ∈ C0,1
0+(BR) for some R > 0. Let

A?(u) := {v ∈ C0,1
0+(BR) : v ∼ u, ωv,BR ≤ ωu,BR},

and δ := inf{‖v − u?‖2 : v ∈ A?(u)}.
By Arzelá’s Theorem and by the nonexpansivity of the
Schwarz symmetrization in L2, δ is attained for some
U ∈ A?(u). Assume that δ > 0.



Then we find by Lemma 1.6. a halfspace H ∈ H0 such
that ‖UH − u?‖2 < δ. Since (BR)H = BR, UH ∼ u and
ωUH ,BR ≤ ωU,BR , we have that UH ∈ C0,1

0+(BR) and
UH ∈ A?(u). But this contradicts to the minimality of U .
Hence δ = 0 and thus U = u?, and inequality (*) follows in
this case.
In the general case we choose a sequence
{un} ⊂ C0,1

0+(RN) converging to u in C(RN). Then we have
that (un)? → u? in C(RN), and (*) follows. 2



Next we deal with norm inequalities in W 1,p for
rearrangements. Such inequalities are often referred to as
Polya-Szegö’s Principle in the literature.
A decisive role in the proofs plays the weak lower
semi-continuity of the norms.
Theorem 1.8. Let u ∈ W 1,p(RN) ∩S+ for some
p ∈ [1,+∞]. Then u? ∈ W 1,p(RN) ∩S+ and

‖∇u‖p ≥ ‖∇u?‖p. (∗)

Note that inequality (*) for p = 1 is equivalent to the
classical isoperimetric inequality.
Proof of Theorem 1.8.: For convenience we restrict
ourselves to the case p ∈ (1,+∞).
First assume u ∈ C0,1

0+(BR) for some R > 0, and

B?(u) := {v ∈ C0,1
0+(BR) : v ∼ u, ωv ≤ ωu, ‖∇v‖p ≤ ‖∇u‖p},

Furthermore, let δ = inf{‖v − u?‖2 : v ∈ B?(u)}.



In view of the weak lower semicontinuity of the norm and
the nonexpansivity of the Schwarz symmetrization, B?(u)
is weakly closed in C0,1

0+(BR).
Hence there exists some U ∈ B?(u) with δ = ‖U − u?‖2.
Since ‖∇UH‖p = ‖∇U‖p ∀H ∈ H0, we may then argue as
in the proof of Theorem 1.7. to obtain that δ = 0, and thus
U = u?. From this (*) follows in this case.
In the general case we choose a sequence
{un} ⊂ C0,1

0+(RN) which converges to u in W 1,p(RN). Then
we have that ‖∇un‖p ≥ ‖∇(un)?‖p, n = 1, 2, . . .. Hence we
find a subsequence {(u′n)?} and a function v ∈ W 1,p(RN)
such that (u′n)? ⇀ v weakly in W 1,p(RN). By the
nonexpansivity of the Schwarz symmetrization in Lp it
follows that (un)? → u? in Lp(RN), so that v = u?. Finally,
the weak lower semicontinuity of the norm gives
‖∇u?‖p ≤ lim inf ‖∇(u′n)?‖p ≤ lim ‖∇un‖p = ‖∇u‖p.
The Theorem is proved. 2



Using similar arguments one can show many further
integral inequalities involving functions, their gradients
and symmetrizations. We give just one more example for
the Schwarz symmetrization without proof.
Theorem 1.9. Let H be a half-space, w : R+

0 → R+
0

measurable and non-increasing, and let u, v ∈ S+. Then∫∫
R2N

u(x)v(y)w(|x−y|) dxdy ≤
∫∫
R2N

u?(x)v?(y)w(|x−y|) dxdy,

provided that one of the integrals converges.



2. Polarization and symmetry of solutions to
variational problems
In this chapter we use polarization in order to prove
symmetry results for minimizers of some elliptic
variational problems. We emphasize that this part does
not require any knowledge about the symmetrization
inequalities of the previous chapter.
F. BROCK, Rearrangements and applications to symmetry
problems in PDE. Handbook of differential equations:
stationary partial differential equations. Vol. IV, 1–60,
Elsevier/North-Holland, Amsterdam, 2007.
T. WETH, Symmetry of solutions to variational problems
for nonlinear elliptic equations via reflection methods.
Jahresber. Dtsch. Math.-Ver. 112 (2010), no. 3, 119–158.



2.1. Identification of symmetry
Polarizations can be used to identify symmetry.
We will use the following notation.
Let H the set of all affine half-spaces of RN , and

H0 := {H ∈ H : 0 ∈ H},
H∗ := {H ∈ H : H = {x : x1 > λ} or H = {x : x1 < λ},

for some λ ∈ R},
H∗0 := {H ∈ H∗ : 0 ∈ H},
CH := {H ∈ H : 0 ∈ ∂H}, and
CHP := {H ∈ CH : P ∈ H}.



The following properties are easy to check:
1. Let u ∈ S+. Then we have u = u? iff u = uH for all
H ∈ H0. Furthermore, we have u = u∗ iff u = uH for all
H ∈ H∗0.
2. Let u : RN → R be measurable. Then we have u = Cu
iff u = uH for all H ∈ CHP .



More complicated are the following criteria. We omit their
proof.
Theorem 2.1. Let u ∈ Lp(RN) for some p ∈ [1,∞).
(i) Let |{u > 0}| > 0. If, for every H ∈ H∗, there holds
either u = uH or σu = uH , then there is a point
ξ = (λ0, 0, . . . , 0) ∈ RN , (λ0 ∈ R), such that u ∈ S+ and
u(· − ξ) = u∗(·). In particular, if u = uH ∀H ∈ H∗0 then
u ∈ S+ and u = u∗.
(ii) Let |{u > 0}| > 0. If, for every H ∈ H, there holds
either u = uH or σu = uH , then there is a point ξ ∈ RN

such that u ∈ S+ and u(· − ξ) = u?(·). In particular, if
u = uH ∀H ∈ H0 then u ∈ S+ and u = u?.
(iii) If, for every H ∈ CH, there holds either u = uH or
σHu = uH , then there is a rotation ρ about zero such that
u(ρ ·) = Cu(·). In particular, if u = uH ∀H ∈ CHP then
u = Cu.



2.2. Symmetry of solutions to variational problems
Our proofs rely on polarization and the following Principle
of Unique Continuation (PUC):
Theorem 2.2. Let Ω be a domain in RN , and let
u ∈ W 2,2(Ω) satisfy

−∆u+ cu = 0 in Ω,

where c ∈ L∞(Ω). Furthermore, suppose that there is a
nonempty open subset U of Ω such that u ≡ 0 in U . Then
u ≡ 0 in Ω.

First we consider a problem in a domain with rotational
symmetry.



Let Ω1 = BR2 \BR1, or Ω1 = BR2, for some R2 > R1 ≥ 0,
and let F,G,H functions satisfying

F,G,H ∈ C2(R), F ′ =: f, G′ =: g, H ′ =: h,

|f(t)|, |g(t)| ≤ c(1 + |t|p), |h(t)| ≤ c(1 + |t|q),
with c > 0, 1 ≤ p < (N + 2)/(N − 2),
1 ≤ q < N/(N − 2), if N ≥ 3, and p, q finite if N = 2,
g does not vanish on intervals of R,

and let

K1 = {v ∈ W 1,2(Ω1) :

∫
Ω1

G(v) dx = 1}.

We consider the following variational problem

(P1) J1(v) ≡
∫
Ω1

( 1

2
|∇v|2 − F (v)

)
dx+

∫
∂Ω1

H(v) dS −→ Inf !,

v ∈ K1.



If u is a minimizer of (P1) then standard variational
calculus shows that

−∆u = f(u) + αg(u) in Ω1,

∂u/∂ν + h(u) = 0 on ∂Ω1, (ν : exterior normal),∫
Ω1

(
∇u∇ϕ− f(u)ϕ

)
dx+

∫
∂Ω1

h(u)ϕdS = 0, and

∫
Ω1

(
|∇ϕ|2 − (f ′(u) + αg′(u))ϕ2

)
dx+

∫
∂Ω1

h′(u)ϕ2 dS ≥ 0

for every ϕ ∈ W 1,2(Ω1) satisfying
∫
Ω1

g(u)ϕdx = 0, and

u ∈ W 2,2(Ω1) ∩ C1(Ω1),

with some α ∈ R.
Note that problem (P1) with F (v) = −(1/2)v2,
G(v) = |v|p+1 and H ≡ 0, has been extensively studied.



We first recall the well-known result that in case of the
unconstrained problem with Dirichlet boundary (or
Neumann) boundary conditions, that is, H ≡ 0 and
K1 = W 1,2

0 (Ω1) (respectively K1 = W 1,2(Ω)), minimizers u
of (P1) are radial. The idea is to show that the functions
vij := xiuxj − xjuxi, (i 6= j), vanish. Note that that proof
carries over to our more general boundary condition, as
well.
Theorem 2.3. Let u a be a minimizer of (P1). Then there
is a rotation about zero ρ such that u(ρ ·) = Cu(·).
Proof : We will assume that u is not constant in Ω1 - since
otherwise the assertion is trivially true.



First we claim that u cannot be constant on open subsets
of Ω1. Indeed, if u ≡ c on an open set U ⊂ Ω1, then
f(c) + αg(c) = 0. Setting v := u− c we have that
−∆v = c(x)v in Ω1, with some bounded function c, while
v ≡ 0 in U . The (PUC) then tells us that v ≡ 0 throughout
Ω1, a contradiction.
Let H ∈ CH. Then the results of Chapter 1 show that
J(uH) = J(u) and uH ∈ K1, so that uH is a minimizer, too.
This means that uH satisfies the same Euler equations,
with the Lagrangian multiplier α possibly replaced by
some other number α′.
We claim that actually α = α′. Indeed, there is an open
set V ⊂ Ω1 with u = uH or σu = uH on V . Then
αg(u) = α′g(uH), respectively αg(σu) = α′g(u), in V .
Since u, respectively σu, is not constant on V , this means
that α = α′, by the non-degeneracy condition for g.



Finally, setting v := u− uH , respectively v := σu− uH , we
find that v satisfies −∆v = c(x)v in Ω1, with some
bounded function c, while v ≡ 0 in V . By the (PUC) this
means that v ≡ 0, or equivalently u ≡ uH , respectively
σu ≡ uH throughout Ω1. Since H was arbitrary, the
assertion follows from Theorem 2.1. 2

Note, Theorem 2.3. remains valid in an unbounded
domain Ω1 = RN \BR1 and/or if the functions F,G and H
depend additionally on |x| and satisfy appropriate growth
conditions.
One can also obtain symmetry results for global and local
minimizers, and also for stationary solutions of (P1),
including situations with more than one integral constraint
and/or with Dirichlet boundary conditions.



Next we study a problem in the entire space. Let F,G as
before, except that the growth conditions are replaced by

|F (t)|, |G(t)| ≤ c(|t|p + |t|q), with c > 0 and p, q ≥ 1,

and let

K2 := {v ∈ Lp(RN)∩Lq(RN) : ∇v ∈ L2(RN),

∫
RN

G(v) dx = d},

where d ∈ R.
We consider the following variational problem:

(P2) J(v) ≡
∫
RN

( 1

2
|∇v|2 − F (v)

)
dx −→ Inf !, v ∈ K2.

Assume that u is a solution of (P2). Then u satisfies

−∆u = f(u) + αg(u) on RN ,

for some α ∈ R.



If in addition, u is bounded, then standard elliptic
estimates show that

u ∈ W 2,2
loc (RN) ∩ C1(RN), and

lim
|x|→∞

u(x) = 0.

Proceeding as in the previous proof and working with
halfspaces H ∈ H, we then obtain the following
Theorem 2.4. Let u a be bounded minimizer of (P2) and
|{u > 0}| > 0. Then there is a point ξ ∈ RN such that
u(· − ξ) = u?(·). In particular, u does not change sign.



Our method is also applicable to local minimizers of some
variational problems.
We will say that u is a local minimizer of (P2) if there
exists a number ε > 0 such that

‖u− v‖p + ‖u− v‖q + ‖∇(u− v)‖2 < ε ∀v ∈ K2.

The next result resembles those that have been obtained
for stationary solutions of (P2) using the well-known
Moving Plane Method (MPM). However, the (MPM)
requires either an asymptotic estimate of the solution u at
infinity, or some ’nice’ additional condition on the
nonlinearity f(t) + αg(t) near 0. Such information is not
needed here.
Theorem 2.5. Let u be a non-negative and bounded local
minimizer of (P2). Then there is a point ξ ∈ RN such that
u(· − ξ) = u?(·).



Sketch of the proof : We write Hλ = {x : x1 > λ} and
uHλ =: uλ. Further, let σλ denote reflexion in the
hyperplane {x1 = λ}.
First observe that uλ ∈ K2 and J2(uλ) = J2(u) ∀λ ∈ R.
Since u is is nonnegative, one can show that uλ → u in
Lp(RN) and Lq(RN) as λ→ −∞. Hence we find a number
λ1 ∈ R such that uλ is a local minimizer, too, ∀λ ≤ λ1.
Clearly we may assume that uλ 6≡ σλu for these λ.
Then, using the (PUC) as in the proof of Theorem 2.3. we
show that u = uλ for λ ≤ λ1. Similarly one proves that
there exists a number λ2, (λ2 > λ1), such that σλu = uλ
∀λ ≥ λ2.



Now let

λ∗ := max{λ ∈ R : u = uµ ∀µ ∈ (−∞, λ)}.

By continuity, we have that λ∗ ∈ [λ1, λ2] and u = uλ
∀λ ∈ (−∞, λ∗]. From this it follows that uλ → u in Lp(RN)
and Lq(RN) and ∇uλ → ∇u in L2(RN) as λ→ λ∗.
Hence there is a number δ > 0 such that uλ is a local
minimizer, too, ∀λ ∈ [λ∗, λ∗ + δ]. Using the (PUC) once
again, it follows that either u = uλ or σλu = uλ for each of
these λ.
On the other hand, we cannot have u = uλ on an interval
[λ∗, λ∗ + δ′], (0 < δ′ ≤ δ), in view of the maximality of λ∗.
By continuity, it then follows that u = uλ∗ = σλ∗u.



Hence u = uλ for λ ≤ λ∗ and σλu = uλ for λ ≥ λ∗, which
means that u(x1 − λ∗, x′) = u∗(x1, x

′) on RN .
We may repeat these considerations in any rotated
coordinate system, thus obtaining that if H ∈ H then
either u = uH or σu = uH . The assertion then follows from
Theorem 2.1. 2



Remark 2.6. Polarizations can also be used in proving
symmetry properties of sign-changing solutions to
variational problems in RN which are associated to
degenerate elliptic operators, such as the p-Laplacian.
In such a situation the (PUC) is not applicable, but instead
one relies on the regularity of the solution. This allows to
show that the solutions are locally symmetric in the
sense that the superlevel sets {u > t} and the sublevel
sets {u < −t} , (t > 0), are balls. Using this and the
Strong Maximum Principle for the degenerate elliptic
operators, one can prove in some cases that u is actually
non-negative and radially symmetric about some point.
More on local symmetry for solutions of elliptic equations
will follow in my next lecture, in the context of Continuous
Steiner Symmetrization.


