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3. Continuous Steiner symmetrisation and symmetry
of solutions to PDEs
We introduce a homotopy of rearrangements called
continuous Steiner symmetrization. The tool is used to
prove that non-negative solutions to some degenerate
elliptic boundary value problems are symmetric. These
symmetry results go beyond the classical ones obtained
via the textbook Moving Plane Method.



Most of the material of this lecture can be found in the
following articles. They also contain further references.
F.B., Radial symmetry for nonnegative solutions of
semilinear elliptic equations involving the p-Laplacian.
Progress in PDE, Vol. 1 (Pont-á-Mousson, 1997), Pitman
Research Notes 383 (1998), 46–57.
F.B., Continuous rearrangement and symmetry of
solutions of elliptic problems. Proc. Indian Acad. Sci.
Math. Sci. 110 (2000), no.2, 157–204.
F.B., Symmetry for a general class of overdetermined
elliptic problems. NoDEA 23 (2016), no.3, Art. 36, 16 pp.



3.1. Motivation
Consider the following variational problem:

(P) J(v) :=

∫
BR

(
1

p
|∇v|p − F (v)

)
dx −→ Stat.!,

v ∈ W 1,p
0 (BR),

where p > 1, R > 0 and F ∈ C1 and satisfies some further
conditions.
The critical points of (P) satisfy the Euler equation

(∗) −∆pu ≡ −∇
(
|∇u|p−2∇u

)
= f(u) in BR,

u = 0 on ∂BR,

where f = F ′. Using Schwarz symmetrization one can
show that problem (P) has a non-negative radially
symmetric (global) minimizer.



Questions :
Are all non-negative global minimizers radially
symmetric?
What about local minimizers?
Are nonnegative solutions of (*) radially symmetric?

Here are some results.
1. If u is a non-negative global minimizer of (P), then we
must have

‖∇u‖p = ‖∇u?‖p.

This implies that the super-level sets {u > t} are balls for
a.e. t ∈ [0, supu) - although they are not necessarily
concentric. See Brothers/Ziemer, 1989.



Next let u be a positive solution of (*).
2. Gidas, Ni, Nirenberg, 1979:
Let p = 2, u ∈ C2(B) and f ∈ C0,1. Then u is radially
symmetric and radially decreasing, that is, there is a
function U ∈ C1[0, R], such that

u(x) = U(|x|), U ′(r) < 0 for 0 < r ≤ R. (∗∗)

3. Damascelli, Pacella, 1998:
Let 1 < p < 2, u ∈ C1(BR) and f ∈ C0,1. Then (**) holds.
There are further symmetry results, also for problems in
RN , by Damascelli, Pacella, Sciunzi, Ramaswamy, Serrin,
H. Zou and others. The tool in all these works is the
Moving Plane Method (MPM).

In the case p > 2 the (MPM) works only under
additional assumptions on the solution.
Moreover, smoothness of f is sometimes insufficient to
ensure radiality of solutions, as the next example shows.



Example 3.1.



Let p > 1 and s > p
p−1

, and define

w(r) :=

{
(1− r2)s if r ≤ 1
0 if r > 1

,

v(r) :=

{
1 if r < 5

1−
(
r2−25

11

)s
if 5 ≤ r ≤ 6

.

Choose x1, x2 ∈ B4 with |x1 − x2| ≥ 2, and set

u(x) := v(|x|) + w(|x− x1|) + w(|x− x2|) ∀x ∈ B6.

Then u is a solution of (*) with R = 6, where f is given by



f(u) :=



(
2s
11

)p−1
[
25 + 11 (1− u)1/s

](p/2)−1

· (1− u)p−1−(p/s) ·
·
[

50
11

(p− 1)(s− 1) + (2ps− 2s− p+N)(1− u)1/s
]

if 0 ≤ u ≤ 1

(2s)p−1
[
1− (u− 1)1/s

](p/2)−1 · (u− 1)p−1−(p/s)·
·
[
−2(s− 1)(p− 1) + (2ps− 2s− p+N)(u− 1)1/s

]
if 1 ≤ u ≤ 2

.

Note that f ∈ C∞((0, 1) ∩ (1, 2)) ∩ C[0, 2).
Breaking of symmetry takes place at the level u = 1
where f(1) = 0.



Let us consider 3 cases:
(i) Let p = 2 (Laplacian case) and s > 2.
Then f ∈ C1−(2/s)[0, 2], but f 6∈ C0,1[0, 2].
(ii) If p ∈ (1, 2) and s > p

p−1
, or if p > 2 and s ∈ ( p

p−1
, p
p−2

),
then f ∈ Cp−1−(p/s)[0, 2), but f 6∈ C0,1[0, 2).
(iii) If p > 2 and s ≥ p

p−2
, then f ∈ C0,1[0, 2].



3.2. Continuous Steiner symmetrization
In this section we describe a continuous homotopy that
connects given sets and functions with their Steiner
symmetrizations.
History: Polya/Szegö 1951, McNabb 1967,
Brascamp/Lieb/Luttinger 1974, Kawohl 1989, Solynin
1990, F.B. 1995-.
3.2.1. Continuous rearrangement on R :
First we rearrange an interval continuously. Let
I = [x− r, x+ r], x ∈ R, r > 0. We set

St(I) := [xe−t − r, xe−t + r], t ∈ [0,+∞]. (∗)
Note that this implies S0(I) = I, S∞(I) =: I∗ = [−r, r],
|St(I)|1 = |I|1 and the following semigroup property,

St+s(I) = St(Ss(I)), (s, t ∈ [0,+∞].)

(We use the convention that t+∞ = +∞+ t = +∞ for
every t ∈ [0,+∞].)



LetM1 be the set of all measurable subsets of R. We
have the following
Theorem 3.2. There exists a unique family of
rearrangements

St :M1 →M1, (t ∈ [0,+∞]),

such that the following holds:
(i) If I = [x− r, x+ r] is an interval, (x ∈ R, r > 0), then
St(I) = [xe−t − r, xe−t + r];
(ii) If M ∈M1 and s, t ∈ [0,+∞], then
St+s(M) = St(Ss(M)) , (semigroup property).
Note that from the above requirements it follows that
S0(M) = M and

S∞(M) = M∗ =

[
−1

2
|M |1,+

1

2
|M |1

]
(= symmetrization of M.)



Let us construct the family {St(M)}t≥0 when M is a
simple set, M = ∪mk=1Ik, with mutually disjoint intervals Ik.
Then rule (*) gives

St(M) := ∪mk=1St(Ik),

as long as the intervals St(Ik) do not yet overlap.
One (or more) of these intervals will collide at some value
t = t0 > 0. That is, St0(M) is a simple set M ′ = ∪m′k=1I

′
k,

with mutually disjoint intervals I ′k and m′ < m.
Then, for t > t0, we have St(M) := St−t0(M

′), by the
semigroup property.
Continuing in this manner we arrive after a finite number
of steps at some value t′ > 0 at which St′(M) is a single
interval I ′′. Then, for t ∈ (t′,+∞], the semigroup property
and rule (*) give St(M) := St−t′(I

′′).



If M ∈M1, then we choose any sequence {Mk}∞k=1 of
simple sets that converges in measure to M . Then St(M)
is the limit of the sequence {St(Mk)}∞k=1, for every
t ∈ [0,+∞].



3.2.2. Continuous Steiner symmetrization of sets
For M ∈M we write

M(x′) := {x1 : (x1, x
′) ∈M}, (x′ ∈ RN−1).

We define set transformations St :M→M, (t ∈ [0,+∞]),
by

St(M) :=
{

(x1, x
′) : x1 ∈ St (M(x′)) , x′ ∈ RN−1

}
, (M ∈M).

Then the mappings St are rearrangements, and the
semigroup property and

S∞(M) = M∗(= Steiner symmetrization of M)

hold for every M ∈M . The family {St}t≥0 is called a
continuous Steiner symmetrization (CStS).



3.2.3. Continuous Steiner symmetrization of functions
We define mappings St : S+ → S+ by

St(u)(x) :=

∫ ∞
0

χ (St{u > s}) (x) ds,

(x ∈ RN , t ∈ [0,+∞], u ∈ S+).

Then the St’s are rearrangements, S0(u) = u, and the
semigroup property and

S∞(u) = u∗(= Steiner symmetrization of u),

hold for every u ∈ S+.
From now on we will use the shorthands

St(u) =: ut and St(M) =: M t for the CStS of sets and
functions.





3.3. Properties of CStS
1. Despite of the last picture, CStS ’improves’ the
regularity of functions:
If u is Lipschitz continuous with Lipschitz constant L, then
so is ut, with Lipschitz constant less than or equal to L, for
every t ∈ [0,+∞].
There also holds Polya-Szegö’s principle:
If G : R+

0 → R+
0 is convex, with G(0) = 0, and if u is

Lipschitz continuous with compact support, then∫
RN

G(|∇u|) dx ≥
∫
RN

G(|∇ut|) dx, (t ∈ [0,+∞]).

Moreover, if u ∈ W 1,p
+ (RN), (1 ≤ p < +∞), then so is ut

and
‖∇ut‖p ≤ ‖∇u‖p, (t ∈ [0,+∞)).



2. The mapping t 7−→ ut is continuous in Lp+(RN) and
continuous from the right in W 1,p

+ (RN), (1 ≤ p < +∞).
Moreover, if u ∈ C0,1

0+(BR), with Lipschitz constant L, then

|ut(x)− u(x)| ≤ RLt, (x ∈ BR, t ∈ (0,+∞]).



3.4. Local symmetry
In this section we discuss certain partial symmetries of
smooth functions.
Henceforth we will write ∇′ = (∂/∂x2, . . . , ∂/∂xN).
Let Ω be a domain in RN with Ω = Ω∗ and u ∈ C1

+(Ω) with
u = 0 on ∂Ω. We will say that u is locally symmetric in
x1-direction, if it has the following property:

(S)1 If (x−, x+) is a pair of points in Ω with
x− = (x−1 , x

′), x+ = (x+
1 , x

′), x−1 < x+
1 and

u(x−) = u(x+) < u(y, x′) for all y ∈ (x−1 , x
+
1 ),

then:
ux1(x

+) = −ux1(x−) and
∇′u(x+) = ∇′u(x−).





We will say that u is locally symmetric in every
direction, if it has the symmetry property (S)1 w.r.t. every
rotated coordinate system.
One can show the following
Theorem 3.3. Let u be locally symmetric in every
direction. Then u has the following symmetry property:

(S) Ω = ∪mk=1Ak ∪ S,
where the Ak’s and S are mutually disjoint,
Ak = BRk

(zk) \Brk(zk), zk ∈ Ω, 0 ≤ rk < Rk,

u(x) = Uk(|x− zk|) ∀x ∈ Ak,
for some function Uk ∈ C1[rk, Rk],
U ′k(r) < 0 ∀r ∈ (rk, Rk), and
∇u = 0 on S.

Note that the function u from our example 3.1. is locally
symmetric in every direction.





3.5. Identification of symmetry
An important feature of the CStS is that a quantitative
version of Polya-Szegö’s principle can help to identify
local symmetry of smooth functions.
Theorem 3.4. Let G ∈ C1[0,+∞) be strictly convex with
G(0) = 0 ≤ G′(0), and let u ∈ C1(BR), u ≥ 0 in BR and
u = 0 on ∂BR. Assume that

lim
t→0

1

t

∫
BR

(
G(|∇ut|)−G(|∇u|)

)
dx = 0. (∗)

Then u is locally symmetric in every direction.
The idea of the proof of Theorem 3.4. is that the CStS
’improves locally’ the symmetry of smooth functions.



More specifically, let (x−, x+) be a pair of points as in
property (S)1 and such that ux1(x−) 6= 0 and ux1(x+) 6= 0.
Defining a number D(x−, x+) as

D(x−, x+) :=
d

dt

{
G(|∇ut(x−)|)
|utx1(x−)|

+
G(|∇ut(x+)|)
|utx1(x+)|

} ∣∣∣∣∣
t=0

,

a calculation shows that D(x−, x+) ≤ 0, with equality only
if ux1(x−) = −ux1(x+) and ∇′u(x−) = ∇′u(x+).
On the other hand, if condition (*) is satisfied, then one
can show that D(x−, x+) = 0 at every such pair of points
(x−, x+).





3.6. Symmetry results
In the following, let g ∈ C[0,+∞) ∩ C1(0,+∞) with
g(0) = 0 and g′(z) > 0 for z > 0.
We will use the convention that g(|y|) y

|y| = 0 if y = 0 ∈ RN .
Our first symmetry result is
Theorem 3.5. Let f ∈ C[0,+∞), and let u ∈ C1(BR) be a
non-negative distributional solution of

(Q)

{
−∇ (g(|∇u|)|∇u|−1∇u) = f(u) in BR,
u = 0 on ∂BR.

Then u is locally symmetric in every direction.



Sketch of the proof:
Define

F (v) :=

∫ v

0

f(s) ds, (v ≥ 0), and

G(z) :=

∫ z

0

g(ζ) dζ, (z ≥ 0).

Then F ∈ C1[0,+∞), F (0) = 0, and G is strictly convex,
G ∈ C2[0,+∞) with G′(0) ≥ 0 = G(0).
Multiplying the equation with (ut − u) we have

I :=

∫
BR

g(|∇u|)|∇u|−1∇u · ∇(ut − u) dx

=

∫
BR

f(u)(ut − u) dx =: J.



Further, by Cavalieri’s principle and the continuity of f and
the mapping t 7−→ ut we obtain

0 =

∫
BR

(
F (ut)− F (u)

)
dx

=

∫
BR

∫ 1

0

f(u+ θ(ut − u))(ut − u) dθ dx

=

∫
BR

∫ 1

0

(
f(u+ θ(ut − u))− f(u)

)
(ut − u) dθ dx

+

∫
B

f(u)(ut − u) dx

= o(t) + J. (∗)



Finally, the convexity of G and Polya-Szegö’s principle
give

I ≤
∫
BR

(
G(|∇ut|)−G(|∇u|)

)
dx ≤ 0. (∗∗)

Now (*) and (**) yield

lim
t→0

1

t

∫
BR

(
G(|∇ut|)−G(|∇u|)

)
dx = 0,

and the assertion follows from Theorem 3.4. 2



Observe that if u is a solution of (Q) and is locally
symmetric in every direction, then the Maximum Principle
shows that f(u) must be zero on the boundaries of the
annuli Ak, (k = 1, . . . ,m), in the representation (S). Using
the Strong Maximum Principle for degenerate elliptic
operators and assuming that f satisfies appropriate
growth conditions near its zeros, one can then exclude the
occurence of such annuli alltogether. In turn, this implies
that the solution must be radial.
We give an example for the p-Laplace operator.



Theorem 3.6. Let f ∈ C[0,+∞), p ∈ (1,+∞), and let
u ∈ C1(BR) be a non-negative distributional solution of

(Q)p

{
−∆pu ≡ −∇ (|∇u|p−2∇u) = f(u) in BR,
u = 0 on ∂BR.

Furthermore, assume that f satisfies the following growth
condition near its zeros:

(∗ ∗ ∗) If f(V ) = 0, for some V ≥ 0,
then there is some C > 0 such that
|f(v)| ≤ C|v − V |p−1 ∀v ∈ [0,+∞).

Then u is radially symmetric and radially decreasing.



Remark 3.7.
1. The growth condition (***) is satisfied for instance, if
1 < p ≤ 2 and if f ∈ C0,p−1[0,+∞).
2. Note that we did not require f to be Lipschitz
continuous. Hence Theorem 3.6. is new even in the
Laplacian case p = 2.
The CStS can also be used to show the symmetry of
solutions to some overdetermined boundary value
problems.



Theorem 3.8. Let Ω be a bounded domain, and let
u ∈ C1(Ω) be a solution of the following overdetermined
boundary value problem:

(O)

{
−∇ (g(|∇u|)|∇u|−1∇u) = f(u), u > 0 in Ω,
u = 0, |∇u| = λ on ∂Ω,

where λ > 0, and f ∈ C[0,+∞). Then Ω is a ball and u is
locally symmetric in every direction.



Finally we mention that the results of this section can be
appropriately extended to nonlinearities of the form
f = f(|x|, u), where f is non-increasing in the first
variable.



4. Weighted rearrangements and isoperimetric
inequalities
A manifold with density is a manifold endowed with a
positive function, the density, which weights both the
volume and the perimeter. A natural issue then is to find
isoperimetric sets, that is, sets that minimize the
perimeter among all sets of a given fixed volume. The
problem becomes even more challenging when perimeter
and volume carry two different weights.
The related bibliography on this topic is very wide and, in
this lecture, it is impossible to give an exhaustive account
of it. We would like to refer the interested reader to the
following sources and the references cited therein.



F. MORGAN, A. PRATELLI, Existence of isoperimetric
regions in Rn with density, Annals of Global Analysis and
Geometry 43 (2013), 331–365.
F. MORGAN, Geometric Measure Theory. A Beginner’s
Guide. 5th edition. Elsevier/Academic Press, Amsterdam,
2016. viii+263 pp.
F. MORGAN, The log-convex density conjecture. Frank
Morgan’s blog.
In this chapter we present some weighted isoperimetric
inequalities, together with corresponding rearrangements.
We will show how these results can be used to find best
constants for imbedding inequalities between weighted
function spaces, as well as sharp a-priori bounds for
solutions to some boundary value problems involving
weighted elliptic operators.



Some of this work has been done in collaboration with
colleagues from the University of Napoli ’Federico II’, see
e.g.
A. ALVINO, F.B., F. CHIACCHIO, A. MERCALDO, M.R.
POSTERARO, Some isoperimetric inequalities on RN with
respect to weights |x|α. J. Math. Anal. Appl. 451 (2017),
no. 1, 280–318,
where also many further references can be found.



4.1. A weighted isoperimetric problem
Let f, g be two positive functions on RN with g being
locally integrable and f lower semi-continuous. For any
measurable set M ⊂ RN we define its weighted measure
and perimeter by

|M |g :=

∫
M

g(x) dx, and

Pf (M) :=

∫
∂M

f(x)HN−1(dx).

We consider the isoperimetric problem

(P) Find If,g(d) := inf
{
Pf (M) : M has locally finite

perimeter and |M |g = d
}
, (d > 0).



Here and throughout, ∂M and HN−1 denote the essential
boundary of M and (N − 1)-dimensional
Hausdorff-measure, respectively.
The function If,g is also called the isoperimetric profile
of problem (P).
A set M with locally finite perimeter is called
isoperimetric if If,g(d) = Pf (M) and |M |g = d.
Furthermore, we call a set Ω ⊂ RN a Cn-set, (n ∈ N), if for
every x0 ∈ ∂Ω ∩ RN , there is a number r > 0 such that
Br(x

0) ∩ Ω has exactly one connected component and
Br(x

0) ∩ ∂Ω is the graph of a Cn-function on an open set
in RN−1.



Consider a one-parameter family {ϕt}t of Cn-variations

RN × (−ε, ε) 3 (x, t) 7−→ ϕ(x, t) ≡ ϕt(x) ∈ RN ,

with ϕ(x, 0) = x, for any x ∈ RN .
The measure and perimeter functions of the variation are
m(t) := |ϕt(Ω)|g and p(t) := Pf (ϕt(Ω)), respectively.
We say that the variation {ϕt}t of Ω is
measure-preserving if m(t) is constant for any small t.
We say that a C1-set Ω is stationary if p′(0) = 0 for any
measure-preserving C1-variation.
Finally, we call a C2-set Ω stable if it is stationary and
p′′(0) ≥ 0 for any measure-preserving C2-variation of Ω.



The classical isoperimetric inequality says that in
the unweighted case, f = g ≡ 1, the infimum for problem
(P) is given by any ball having Lebesgue measure d. This
result has been known since ancient times, although
proofs were found only during the last 150 years. See
G. TALENTI, The standard isoperimetric problem.
Handbook of convex geometry, Vol. A, B, 73–123,
North-Holland, Amsterdam, 1993.



4.2. The case of radial weights with f = g

In this section we give a list of isoperimetric inequalities
with equal radial weights for perimeter and volume, that is,

f(x) = g(x) = h(|x|), (x ∈ RN).

For simplicity we will write If for the isoperimetric profile
If,f .
1. The Gauss space is a probability space endowed with
the weight function

h(|x|) = (2π)−N/2e−|x|
2/2 =: γN(x).

Then all halfspaces are isoperimetric. This isoperimetric
inequality in Gauss space is due to Sudakov/Tsirelson,
1974.



Note that the only finite radial measures with f = g for
which all half-spaces are stable are given by

h(r) = ce−dr
2

, (r ≥ 0),

for some numbers c, d > 0.
2. Let c > 0 and

h(r) = ecr
2

, (r ≥ 0; ’Anti-Gaussian measure’).

Then all balls BR, (R > 0), are isoperimetric, see C.
Borell, 1984.
3. Now assume, more generally, that
h : [0,+∞)→ (0,+∞) is log-convex - that is,

h(r) = ek(r), (r ≥ 0), with k being convex.

Then all balls BR, (R > 0), are stable.



G.R. Chambers, proved in 2016 (see arxiv.org:1311.4012)
the famous Log-convex-Theorem which says that, if in
addition f ∈ C1 - equivalently, if k′(0) = 0 - then these
balls are also isoperimetric.
4. Let

h(r) = rp, (r ≥ 0),

for some p > 0. Then all balls B with 0 ∈ ∂B are
isoperimetric, see Boyer/Brown/Chambers/Loving/
Tammen, 2016.



Remark 4.1. Interesting are also isoperimetric problems
where the admissible sets M are required to be subsets
of a given, fixed domain Ω. In such a case, only parts of
∂M that lie inside Ω count for the perimeter. The resulting
problem is called a relative isoperimetric problem, or, in
reference to a popular ancient legend, Dido’s problem:

(P)Ω Find inf
{
Pf (M,Ω) : M ⊂ Ω, M has locally finite

perimeter and |M |g = d
}
, (d > 0).

Here, Pf (M,Ω) is the perimeter relative to Ω and is
defined by

Pf (M,Ω) :=

∫
∂M∩Ω

f(x)HN−1(dx).



Let us give one example in the case that Ω is a half-space,

Ω = RN
+ := {x ∈ RN : xN > 0}.

Assume that

f(x) = g(x) = ec|x|
2

(xN)α, (x ∈ RN
+ ),

where c ≥ 0 and α ≥ 0. Then half-balls BR ∩ RN
+ , (R > 0),

are isoperimetric. See B./Chiacchio/Mercaldo, 2012, and
also Maderna/Salsa, 1981, for the case N = 2, c = 0.



4.3. Isoperimetric inequality w.r.t. weights |x|α

In this section we discuss problem (P) when

f(x) = |x|k and g(x) = |x|`,

for some numbers k, ` ∈ RN .
4.3.1. Introduction to the problem
Caffarelli, Kohn and Nirenberg proved in 1984 the
following:
∃C > 0, such that ∀u ∈ C∞0 (RN),

C
∥∥∥|x|bu∥∥∥

q
≤
∥∥∥|x|a|∇u|∥∥∥λ

p
·
∥∥∥|x|cu∥∥∥1−λ

r
,



where: p, q, r ≥ 1, 0 < λ ≤ 1,
1

p
+
a

N
,

1

q
+

b

N
,

1

r
+

c

N
> 0,

1

q
+

b

N
= λ

(
1

p
+
a− 1

N

)
+ (1− λ)

(
1

r
+

c

N

)
,

+ some further conditions.

In the case λ = 1, we obtain the inequality



(CKN) C
∥∥∥|x|bu∥∥∥

q
≤
∥∥∥|x|a|∇u|∥∥∥

p

where: p, q ≥ 1,
1

p
+
a− 1

N
=

1

q
+

b

N
> 0

and 0 ≤ a− b ≤ 1.

What is the best constant C in the inequality?
For p = 1 this becomes

C

(∫
RN

|x|bq|u|q dx
)1/q

≤
∫
RN

|x|a|∇u| dx.



It can be shown that this is equivalent to the following
weighted isoperimetric inequality:

C

(∫
M

|x|bq dx
)1/q

≤
∫
∂M

|x|aHN−1(dx)

for all sets M ⊂ RN with locally finite perimeter, and we
wish to find the largest possible constant C in this
inequality.
Let us reformulate this last problem.
Let N ∈ N, k, ` ∈ R, assume `+N > 0, and define

R(M) :=

∫
∂M

|x|kHN−1(dx)(∫
M

|x|` dx
) k+N−1

`+N

,

where M has locally finite perimeter and |M | > 0.



Note that R(M) = R(tM) for all t > 0.
Now our isoperimetric problem becomes

(R) Find C := inf
{
R(M) : |M | > 0,

M has locally finite perimeter
}
.

4.3.2. Necessary conditions
Lemma 4.2. A necessary condition for C > 0 is

`
N − 1

N
≤ k.

Idea of the proof: Choose M = B1(t, 0, . . . , 0) and send
t→ +∞. 2



Next we obtain a necessary condition for radiality of the
isoperimetric sets. We define

Crad := R(B1).

Lemma 4.3. If

` > `∗(k) := k − 1 +
N − 1

k +N − 1
, (∗)

then Crad > C.

Idea of the proof: The ball B1 is not stable for the
isoperimetric problem (R) iff (*) holds. 2



4.3.3. Sufficient conditions for radiality
Theorem 4.4. Let k, ` ∈ R with `+N > 0. We have
C = Crad in each one of the following cases:
(i) N ≥ 1 and `+ 1 ≤ k.
(ii) N ≥ 2, k ≤ `+ 1 and `N−1

N
≤ k ≤ 0.

(iii) N ≥ 3, 0 ≤ k ≤ `+ 1 and

` ≤ `1(k) :=
(k +N − 1)3

(k +N − 1)2 − (N − 1)2/N
−N.

(iv) N = 2, k ≤ l + 1, and

` ≤ `2(k) :=

{
0 if 0 ≤ k ≤ 1

3
(k+1)3

(k+1)2− 16
27

− 2 if k ≥ 1
3

.



Ideas of the proof:
to (i): See Howe, 2015. Use Gauss’ Divergence Theorem.
to (ii): See Chiba, Horiuchi (2015). Reduce to the case
k = 0 by means of a transformation of variables,
x 7−→ y := x|x|k/(N−1).
to (iii) and (iv): See Alvino, B., Chiacchio, Mercaldo,
Posteraro, 2017. Use the same transformation of
variables and some interpolation and rearrangement
arguments.
Note that the statements (iii) and (iv) cover the important
range

` = 0 ≤ k ≤ 1.

However, the numbers l1(k) and l2(k) in these cases are
less than l∗(k), which is the threshold number for radiality,
see Lemma 4.3.



We have the following
Conjecture 4.5. Assume that `+N > 0, k ≥ 0 and

` ≤ k − 1 +
N − 1

k +N − 1
.

Then Crad = C.
di Giosia, Habib, Kenigsberg, Pittman, Zhu have
published a proof of this conjecture on arXiv, in 2016.
However, as they communicated in March 2019 - see
arXiv:1610.05830 - that proof contained a mistake. They
had assumed convexity of the generating curve of
isoperimetric sets, a fact that still needs to be proved...

The following picture shows the established and the
conjectured regions of radiality in the (k, `)-plane, for
N ≥ 3.



l

K

l	= !
!"#

k

k	=-N+1

l =k-1

C > Crad

C = Crad

l	=- N

l=l*

l=l1



4.3.4. Weighted symmetrization
Let g be measurable and positive. If |M |g <∞ then let
M? be the ball BR such that |BR|g = |M |g. We define

S+,g := {u : RN → R+
0 , measurable, |{u > t}|g < +∞ ∀t > 0}.

If Ω is a domain in RN and p ∈ [1,+∞), then let Lpg(Ω) be
the weighted Hölder space

{u : Ω→ R, measurable, with ‖u‖p,g < +∞},

where

‖u‖p,g :=

(∫
Ω

|u|pg dx
)1/p

.

By W 1,p
0,g (Ω) we denote the completion of C∞0 (Ω) under the

norm ‖∇u‖p,g.



If u ∈ S+,g, then we define its g-symmetrization, u?, by
the layer-cake formula,

u?(x) :=

∫ ∞
0

χ
(
{u > t}?

)
(x) dt, (x ∈ RN).

Then u? is radial and radially non-increasing, and
appropriate modifications of the properties of section 1.3
follow for this type of rearrangement, too. For instance,
there hold versions of Cavalieri’s principle and the
Hardy-Littlewood inequality.



4.3.5. Polya-Szegö’s principle
For some radial weights which are powers of the distance
to the origin, we also have a Polya-Szegö principle:
Theorem 4.6. Let k, ` ∈ R, `+N > 0 and p ∈ [1,+∞).
Assume that k, ` satisfy one of the conditions (i)–(iv) of
Theorem 4.4, and let

f(x) := |x|kp+`(1−p) and
g(x) := |x|`, (x ∈ RN).

Then
‖∇u‖p,f ≥ ‖∇u?‖p,f ∀u ∈ W 1,p

0,f (RN),

where u? is the g-symmetrization of u.



Sketch of the proof in the special case p = 2, ` = 0,
k ∈ [0, 1]:
We employ the so-called method of level sets which has
been developed by G.Talenti and other Italian
Mathematicians since the seventieth of last century. Let

I :=

∫
RN

|∇u|2|x|2k dx, (u ∈ C∞0+(RN), and

I? := same for u?.

By the co-area formula,

I =

∫ ∞
0

(∫
u=t

|∇u||x|2kHN−1(dx)

)
dt,

I? = same for u?.



Further, the Cauchy-Schwarz inequality gives(∫
u=t

|x|k
)2

≤
(∫

u=t

|∇u||x|2k
)
·
(∫

u=t

|∇u|−1

)
,

for a.e. t ∈ (0, supu), where equality holds if u is replaced
by u?. Hence,

I ≥
∫ ∞

0

(∫
u=t

|x|k
)2

·
(∫

u=t

|∇u|−1

)−1

dt,

I? =

∫ ∞
0

(∫
u?=t

|x|k
)2

·
(∫

u?=t

|∇u?|−1

)−1

dt.



Moreover, since |{u > t}| = |{u? > t}|, Fleming-Rishel’s
formula gives∫

u=t

|∇u|−1 = − d

dt

∣∣∣{u > t}
∣∣∣

= − d

dt

∣∣∣{u? > t}
∣∣∣ =

∫
u?=t

|∇u?|−1.

Finally, the weighted isoperimetric inequality tells us that∫
u=t

|x|k ≥
∫
u?=t

|x|k for a.e. t > 0.

Putting together the above properties, we obtain I ≥ I?.
2



Remark 4.7.
The best constants in the Caffarelli-Kohn-Nirenberg
inequalities (CKN) of section 4.3.1. can be obtained by
solving an associated variational problem. For some
range of the parameters a, b, p, q, a reduction to radial
functions u is possible, using Theorem 4.6. In turn, this
leads to an ODE problem that can be solved explicitly.
See Alvino,B., Chiacchio, Mercaldo, Posteraro, 2017.



4.3.6. A-priori estimates for PDE
It is well-known that isoperimetric inequalities can be used
to obtain sharp a-priori estimates for some elliptic and
parabolic problems. The next Theorem is an unpublished
result for an elliptic problem associated to a weighted
p-Laplace operator. Its proof again uses the method of
level sets.
Theorem 4.8. Let Ω be a bounded domain in RN and
p ∈ (1,+∞). Further, let k, ` ∈ R satisfy one of the
conditions (i)-(iv) of Theorem 4.4.,

`+N > p(`+ 1− k),

g(x) = |x|`,
f(x) = |x|kp+`(1−p), (x ∈ RN), and

h ∈ Lp(`+N)/(p[2`+1−k+N ]−`−N)
+,g (Ω).



Finally let u ∈ W 1,p
0,f (Ω) and v ∈ W 1,p

0,f (Ω?) be distributional
solutions of

−∇
(
|x|kp+`(1−p)|∇u|p−2∇u

)
= h|x|` in Ω, and

−∇
(
|x|kp+`(1−p)|∇v|p−2∇v

)
= h?|x|` in Ω?,

where Ω? and h? are the g-symmetrizations of Ω and h,
respectively. Then

u? ≤ v in Ω?.



Sketch of the proof in the special case p = 2, ` = 0,
k ∈ [0, 1]:
We proceed similarly as in the proof of Theorem 4.6.
Assume that h ∈ C(Ω) and h > 0. Then the sets {u > t}
and {v > s} are C1-sets for a.e. t ∈ [0, supu), respectively
s ∈ [0, sup v). Using the isoperimetric inequality and
Fleming-Rishel’s formula and using the fact that u? is
radial, we find that for a.e. t ∈ [0, supu),

I(t) :=

∫
{u>t}

h dx = −
∫
{u>t}

∇(|x|2k∇u) dx

=

∫
u=t

|x|2k|∇u|HN−1(dx) ≥
(∫

u=t
|x|kHN−1(dx)

)2∫
u=t
|∇u|−1HN−1(dx)

≥
(∫

u?=t
|x|kHN−1(dx)

)2∫
u?=t
|∇u?|−1HN−1(dx)

=

∫
u?=t

|x|2k|∇u?|HN−1(dx).



Similarly we have for a.e. s ∈ [0, sup v),

J(s) :=

∫
{v>s}

h? dx =

∫
v=s

|x|2k|∇v|HN−1(dx).

On the other hand, Hardy-Littlewood’s inequality yields

I(t) =

∫
RN

hχ({u > t}) dx

≤
∫
RN

h? χ({u? > t}) dx

=

∫
u?>t

h? dx =: I?(t).

Since h > 0, we have |∇u?| 6= 0 and |∇v| 6= 0 a.e. in
Ω? =: BR. Hence we may find for every r ∈ (0, R] values
s = s(r) and t = t(r) such that
Br = {u? > t(r)} = {v > s(r)}.



The previous calulus then shows that∫
∂Br

|x|2k|∇u?|HN−1(dx) ≤ I(t(r))

≤ I?(t(r)) = J(s(r)) =

∫
∂Br

|x|2k|∇v|HN−1(dx),

which implies that |∇u?| ≤ |∇v| on ∂Br. From this the
assertion follows by integration from r to R. 2


