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Departamento de Matemáticas
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I. Diffusion
Populations diffuse, substances (like particles in a solvent)
diffuse, heat propagates, electrons and ions diffuse, the
momentum of a viscous (Newtonian) fluid diffuses (linearly),
there is diffusion in the markets, ...
• what is diffusion anyway?
• how to explain it with mathematics?
• A main question is: how much of it can be explained with linear
models, how much is essentially nonlinear?
• The stationary states of diffusion belong to an important world, elliptic
equations. Elliptic equations, linear and nonlinear, have many relatives:
diffusion, fluid mechanics, waves of all types, quantum mechanics, ...
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The heat equation origins
We begin our presentation with the Heat Equation
ut = ∆u and the analysis proposed by Fourier, 1807, 1822

(Fourier decomposition, spectrum). The mathematical models
of heat propagation and diffusion have made great progress
both in theory and application. They have had a strong
influence on the 5 areas of Mathematics already mentioned.
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The heat equation origins
We begin our presentation with the Heat Equation
ut = ∆u and the analysis proposed by Fourier, 1807, 1822

(Fourier decomposition, spectrum). The mathematical models
of heat propagation and diffusion have made great progress
both in theory and application. They have had a strong
influence on the 5 areas of Mathematics already mentioned.

The heat flow analysis is based on two main techniques:

integral representation (convolution with a Gaussian kernel)

and mode separation:

u(x, t) =
∑

Ti(t)Xi(x)

where the Xi(x) form the spectral sequence

−∆Xi = λi Xi.
This is the famous linear eigenvalue problem
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Linear heat flows
From 1822 until 1950 the heat equation has motivated

(i) Fourier analysis decomposition of functions (and set theory),

(ii) development of other linear equations

=⇒ Theory of Parabolic Equations

ut =
∑

aij∂i∂ju +
∑

bi∂iu + cu + f
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Main inventions in Parabolic Theory:

(1) aij , bi, c, f regular ⇒ Maximum Principles, Schauder

estimates, Harnack inequalities; Cα spaces (Hölder); potential

theory; generation of semigroups.
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Calderón-Zygmund theory, weak solutions; Sobolev spaces.
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(ii) development of other linear equations

=⇒ Theory of Parabolic Equations

ut =
∑

aij∂i∂ju +
∑

bi∂iu + cu + f

Main inventions in Parabolic Theory:

(1) aij , bi, c, f regular ⇒ Maximum Principles, Schauder

estimates, Harnack inequalities; Cα spaces (Hölder); potential

theory; generation of semigroups.
(2) coefficients only continuous or bounded ⇒ W 2,p estimates,
Calderón-Zygmund theory, weak solutions; Sobolev spaces.

The probabilistic approach: Diffusion as an stochastic
process: Bachelier, Einstein, Smoluchowski, Wiener, Levy, Ito,...

dX = bdt + σdW
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Nonlinear heat flows

In the last 50 years emphasis has shifted towards the Nonlinear

World. Maths more difficult, more complex and more realistic.

My group works in the areas of Nonlinear Diffusion and

Reaction Diffusion.

I will present an overview and recent results in the theory

mathematically called Nonlinear Parabolic PDEs. General

formula

ut =
∑

∂iAi(u,∇u) +
∑

B(x, u,∇u)
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Nonlinear heat flows

In the last 50 years emphasis has shifted towards the Nonlinear

World. Maths more difficult, more complex and more realistic.

My group works in the areas of Nonlinear Diffusion and

Reaction Diffusion.

I will present an overview and recent results in the theory

mathematically called Nonlinear Parabolic PDEs. General

formula

ut =
∑

∂iAi(u,∇u) +
∑

B(x, u,∇u)

Typical nonlinear diffusion: ut = ∆um

Typical reaction diffusion: ut = ∆u + up
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The Nonlinear Diffusion Models
The Stefan Problem (Lamé and Clapeyron, 1833; Stefan 1880)

SE :







ut = k1∆u for u > 0,

ut = k2∆u for u < 0.
TC :







u = 0,

v = L(k1∇u1 − k2∇u2).

Main feature: the free boundary or moving boundary where

u = 0. TC= Transmission conditions at u = 0.
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


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v = L(k1∇u1 − k2∇u2).

Main feature: the free boundary or moving boundary where

u = 0. TC= Transmission conditions at u = 0.

The Hele-Shaw cell (Hele-Shaw, 1898; Saffman-Taylor, 1958)

u > 0, ∆u = 0 in Ω(t); u = 0, v = L∂nu on ∂Ω(t).

The Porous Medium Equation →(hidden free boundary)

ut = ∆um, m > 1.

The p-Laplacian Equation, ut = div (|∇u|p−2∇u).
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The Reaction Diffusion Models
The Standard Blow-Up model (Kaplan, 1963; Fujita, 1966)

ut = ∆u + up

Main feature: If p > 1 the norm ‖u(·, t)‖∞ of the solutions goes

to infinity in finite time. Hint: Integrate ut = up.

Problem: what is the influence of diffusion / migration?
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to infinity in finite time. Hint: Integrate ut = up.

Problem: what is the influence of diffusion / migration?

General scalar model

ut = A(u) + f(u)

The system model: −→u = (u1, · · · , um) → chemotaxis.

The fluid flow models: Navier-Stokes or Euler equation

systems for incompressible flow. Any singularities?
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The Reaction Diffusion Models
The Standard Blow-Up model (Kaplan, 1963; Fujita, 1966)

ut = ∆u + up

Main feature: If p > 1 the norm ‖u(·, t)‖∞ of the solutions goes

to infinity in finite time. Hint: Integrate ut = up.

Problem: what is the influence of diffusion / migration?

General scalar model

ut = A(u) + f(u)

The system model: −→u = (u1, · · · , um) → chemotaxis.

The fluid flow models: Navier-Stokes or Euler equation

systems for incompressible flow. Any singularities?

The geometrical models: the Ricci flow: ∂tgij = −Rij .
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An opinion of John Nash, 1958:

The open problems in the area of nonlinear p.d.e. are
very relevant to applied mathematics and science as a
whole, perhaps more so that the open problems in any
other area of mathematics, and the field seems poised for
rapid development. It seems clear, however, that fresh
methods must be employed...

Little is known about the existence, uniqueness and
smoothness of solutions of the general equations of flow for
a viscous, compressible, and heat conducting fluid...

“Continuity of solutions of elliptic and parabolic equations”,
paper published in Amer. J. Math, 80, no 4 (1958), 931-954
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II. Porous Medium Diffusion

ut = ∆um = ∇ · (c(u)∇u)

density-dependent diffusivity

c(u) = mum−1[= m|u|m−1]

degenerates at u = 0 if m > 1
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Applied motivation for the PME
Flow of gas in a porous medium (Leibenzon, 1930; Muskat

1933) m = 1 + γ ≥ 2






ρt + div (ρv) = 0,

v = − k
µ∇p, p = p(ρ).

Second line left is the Darcy law for flows in porous media (Darcy,

1856). Porous media flows are potential flows due to averaging of Navier-Stokes

on the pore scales.

To the right, put p = po ργ , with γ = 1 (isothermal), γ > 1 (adiabatic

flow).

ρt = div (
k

µ
ρ∇p) = div (

k

µ
ρ∇(poρ

γ)) = c∆ργ+1.
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1933) m = 1 + γ ≥ 2






ρt + div (ρv) = 0,

v = − k
µ∇p, p = p(ρ).

Second line left is the Darcy law for flows in porous media (Darcy,

1856). Porous media flows are potential flows due to averaging of Navier-Stokes

on the pore scales.

To the right, put p = po ργ , with γ = 1 (isothermal), γ > 1 (adiabatic

flow).

ρt = div (
k

µ
ρ∇p) = div (

k

µ
ρ∇(poρ

γ)) = c∆ργ+1.

Underground water infiltration (Boussinesq, 1903) m = 2
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Applied motivation II
Plasma radiation m ≥ 4 (Zeldovich-Raizer, < 1950)

Experimental fact: diffusivity at high temperatures is not constant as

in Fourier’s law, due to radiation.

d

dt

∫

Ω
cρT dx =

∫

∂Ω
k(T )∇T · ndS.

Put k(T ) = koT
n, apply Gauss law and you get

cρ
∂T

∂t
= div(k(T )∇T ) = c1∆Tn+1.

→ When k is not a power we get Tt = ∆Φ(T ) with Φ′(T ) = k(T ).

Juan L. Vázquez - Nonlinear Diffusion. Porous Medium and Fast Diffusion Equations – p. 19/??



Applied motivation II
Plasma radiation m ≥ 4 (Zeldovich-Raizer, < 1950)

Experimental fact: diffusivity at high temperatures is not constant as

in Fourier’s law, due to radiation.

d

dt

∫

Ω
cρT dx =

∫

∂Ω
k(T )∇T · ndS.

Put k(T ) = koT
n, apply Gauss law and you get

cρ
∂T

∂t
= div(k(T )∇T ) = c1∆Tn+1.

→ When k is not a power we get Tt = ∆Φ(T ) with Φ′(T ) = k(T ).

Spreading of populations (self-avoiding diffusion) m ∼ 2.

Juan L. Vázquez - Nonlinear Diffusion. Porous Medium and Fast Diffusion Equations – p. 19/??



Applied motivation II
Plasma radiation m ≥ 4 (Zeldovich-Raizer, < 1950)

Experimental fact: diffusivity at high temperatures is not constant as

in Fourier’s law, due to radiation.

d

dt

∫

Ω
cρT dx =

∫

∂Ω
k(T )∇T · ndS.

Put k(T ) = koT
n, apply Gauss law and you get

cρ
∂T

∂t
= div(k(T )∇T ) = c1∆Tn+1.

→ When k is not a power we get Tt = ∆Φ(T ) with Φ′(T ) = k(T ).

Spreading of populations (self-avoiding diffusion) m ∼ 2.

Thin films under gravity (no surface tension) m = 4.

Juan L. Vázquez - Nonlinear Diffusion. Porous Medium and Fast Diffusion Equations – p. 19/??



Applied motivation II
Plasma radiation m ≥ 4 (Zeldovich-Raizer, < 1950)

Experimental fact: diffusivity at high temperatures is not constant as

in Fourier’s law, due to radiation.

d

dt

∫

Ω
cρT dx =

∫

∂Ω
k(T )∇T · ndS.

Put k(T ) = koT
n, apply Gauss law and you get

cρ
∂T

∂t
= div(k(T )∇T ) = c1∆Tn+1.

→ When k is not a power we get Tt = ∆Φ(T ) with Φ′(T ) = k(T ).
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Kinetic limits (Carleman models, McKean, PL Lions and Toscani et al.)
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Applied motivation II
Plasma radiation m ≥ 4 (Zeldovich-Raizer, < 1950)

Experimental fact: diffusivity at high temperatures is not constant as

in Fourier’s law, due to radiation.

d

dt

∫

Ω
cρT dx =

∫

∂Ω
k(T )∇T · ndS.

Put k(T ) = koT
n, apply Gauss law and you get

cρ
∂T

∂t
= div(k(T )∇T ) = c1∆Tn+1.

→ When k is not a power we get Tt = ∆Φ(T ) with Φ′(T ) = k(T ).

Spreading of populations (self-avoiding diffusion) m ∼ 2.

Thin films under gravity (no surface tension) m = 4.

Kinetic limits (Carleman models, McKean, PL Lions and Toscani et al.)

Many more (boundary layers, geometry).
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The basics
The equation is re-written for m = 2 as

1
2ut = u∆u + |∇u|2
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The basics
The equation is re-written for m = 2 as

1
2ut = u∆u + |∇u|2

and you can see that for u ∼ 0 it looks like the eikonal equation

ut = |∇u|2

This is not parabolic, but hyperbolic (propagation along characteristics).

Mixed type, mixed properties.
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The basics
The equation is re-written for m = 2 as

1
2ut = u∆u + |∇u|2

and you can see that for u ∼ 0 it looks like the eikonal equation

ut = |∇u|2

This is not parabolic, but hyperbolic (propagation along characteristics).

Mixed type, mixed properties.

No big problem when m > 1, m 6= 2. The pressure

transformation gives:

vt = (m − 1)v∆v + |∇v|2

where v = cum−1 is the pressure; normalization c = m/(m − 1).

This separates m > 1 PME - from - m < 1 FDE
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Planning of the Theory

These are the main topics of mathematical analysis (1958-2006):

The precise meaning of solution.
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The nonlinear approach: estimates; functional spaces.

Existence, non-existence. Uniqueness, non-uniqueness.

Regularity of solutions: is there a limit? Ck for some k?

Regularity and movement of interfaces: Ck for some k?.

Asymptotic behaviour: patterns and rates? universal?

The probabilistic approach. Nonlinear process. Wasserstein estimates

Generalization: fast models, inhomogeneous media,

anisotropic media, applications to geometry or image

processing; other effects.
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Barenblatt profiles (ZKB)
These profiles are the alternative to the Gaussian profiles.
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Barenblatt profiles (ZKB)
These profiles are the alternative to the Gaussian profiles.

They are source solutions. Source means that u(x, t) → M δ(x) as

t → 0.
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Barenblatt profiles (ZKB)
These profiles are the alternative to the Gaussian profiles.

They are source solutions. Source means that u(x, t) → M δ(x) as

t → 0.

Explicit formulas (1950):
(

α = n
2+n(m−1)

, β = 1
2+n(m−1)

< 1/2
)

B(x, t;M) = t−α
F(x/tβ), F(ξ) =

(

C − kξ2
)1/(m−1)

+
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Barenblatt profiles (ZKB)
These profiles are the alternative to the Gaussian profiles.

They are source solutions. Source means that u(x, t) → M δ(x) as

t → 0.

Explicit formulas (1950):
(

α = n
2+n(m−1)

, β = 1
2+n(m−1)

< 1/2
)

B(x, t;M) = t−α
F(x/tβ), F(ξ) =

(

C − kξ2
)1/(m−1)

+

x

u

BS

Height u = Ct−α Free boundary at distance |x| = ctβ

Scaling law; anomalous diffusion versus Brownian motion
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FDE profiles
We again have explicit formulas for 1 > m > (n − 2)/n:

B(x, t;M) = t−α
F(x/tβ), F(ξ) =

1

(C + kξ2)1/(1−m)

x 

u(⋅,t) t=1.15
t=1.25
t=1.4
t=1.6

α = n
2−n(1−m)

β = 1
2−n(1−m)

> 1/2

Solutions for m > 1 with fat tails (polynomial decay; anomalous distributions)
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FDE profiles
We again have explicit formulas for 1 > m > (n − 2)/n:

B(x, t;M) = t−α
F(x/tβ), F(ξ) =

1

(C + kξ2)1/(1−m)

x 

u(⋅,t) t=1.15
t=1.25
t=1.4
t=1.6

α = n
2−n(1−m)

β = 1
2−n(1−m)

> 1/2

Solutions for m > 1 with fat tails (polynomial decay; anomalous distributions)

Big problem: What happens for m < (n − 2)/n? Most active branch
of PME/FDE. New asymptotics, extinction, new functional properties, new geometry
and physics.
Many authors: J. King, geometers, ... → my book “Smoothing”.
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Concept of solution

There are many concepts of generalized solution of the PME:

Classical solution: only in nondegenerate situations, u > 0.
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Concept of solution

There are many concepts of generalized solution of the PME:

Classical solution: only in nondegenerate situations, u > 0.

Limit solution: physical, but depends on the approximation (?).
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Concept of solution

There are many concepts of generalized solution of the PME:

Classical solution: only in nondegenerate situations, u > 0.

Limit solution: physical, but depends on the approximation (?).

Weak solution Test against smooth functions and eliminate

derivatives on the unknown function; it is the mainstream; (Oleinik,

1958)
∫ ∫

(u ηt −∇um · ∇η) dxdt +

∫

u0(x) η(x, 0) dx = 0.

Very weak
∫ ∫

(u ηt + um ∆η) dxdt +

∫

u0(x) η(x, 0) dx = 0.
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More on concepts of solution
Solutions are not always weak:

Strong solution. More regular than weak but not classical: weak
derivatives are Lp functions. Big benefit: usual calculus is possible.
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More on concepts of solution
Solutions are not always weak:

Strong solution. More regular than weak but not classical: weak
derivatives are Lp functions. Big benefit: usual calculus is possible.

Semigroup solution / mild solution. The typical product of functional
discretization schemes: u = {un}n, un = u(·, tn),

ut = ∆Φ(u),
un − un−1

h
− ∆Φ(un) = 0
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More on concepts of solution
Solutions are not always weak:

Strong solution. More regular than weak but not classical: weak
derivatives are Lp functions. Big benefit: usual calculus is possible.

Semigroup solution / mild solution. The typical product of functional
discretization schemes: u = {un}n, un = u(·, tn),

ut = ∆Φ(u),
un − un−1

h
− ∆Φ(un) = 0

Now put f := un−1, u := un, and v = Φ(u), u = β(v):

−h∆Φ(u) + u = f, −h∆v + β(v) = f.

"Nonlinear elliptic equations"; Crandall-Liggett
Theorems Ambrosio, Savarè, Nochetto
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More on concepts of solution II

Solutions of more complicated equations need new concepts:

Viscosity solution Two ideas: (1) add artificial viscosity and pass to

the limit; (2) viscosity concept of Crandall-Evans-Lions (1984);

adapted to PME by Caffarelli-Vazquez (1999).
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More on concepts of solution II

Solutions of more complicated equations need new concepts:

Viscosity solution Two ideas: (1) add artificial viscosity and pass to

the limit; (2) viscosity concept of Crandall-Evans-Lions (1984);

adapted to PME by Caffarelli-Vazquez (1999).

Entropy solution (Kruzhkov, 1968). Invented for conservation laws;

it identifies unique physical solution from spurious weak solutions. It

is useful for general models degenerate diffusion-convection models;
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Renormalized solution (Di Perna - Lions).
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Solutions of more complicated equations need new concepts:

Viscosity solution Two ideas: (1) add artificial viscosity and pass to

the limit; (2) viscosity concept of Crandall-Evans-Lions (1984);

adapted to PME by Caffarelli-Vazquez (1999).

Entropy solution (Kruzhkov, 1968). Invented for conservation laws;

it identifies unique physical solution from spurious weak solutions. It

is useful for general models degenerate diffusion-convection models;

Renormalized solution (Di Perna - Lions).

BV solution (Volpert-Hudjaev).
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More on concepts of solution II

Solutions of more complicated equations need new concepts:

Viscosity solution Two ideas: (1) add artificial viscosity and pass to

the limit; (2) viscosity concept of Crandall-Evans-Lions (1984);

adapted to PME by Caffarelli-Vazquez (1999).

Entropy solution (Kruzhkov, 1968). Invented for conservation laws;

it identifies unique physical solution from spurious weak solutions. It

is useful for general models degenerate diffusion-convection models;

Renormalized solution (Di Perna - Lions).

BV solution (Volpert-Hudjaev).

Kinetic solutions (Perthame,...).
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The main estimates
Boundedness estimates: for every p ≥ 1

Ip(t) =

∫

Rn

up(x, t) dx ≤ Ip(0)

and goes down with time
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The main estimates
Boundedness estimates: for every p ≥ 1

Ip(t) =

∫

Rn

up(x, t) dx ≤ Ip(0)

and goes down with time

Derivative estimates for compactness: The basic L2 space

estimate

1

m + 1

∫∫

QT

|∇um|2 dxdt +

∫

Ω

|u(x, t)|m+1dx =

∫

Ω

|u0|
m+1dx

Idea: multiplier is um
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and goes down with time

Derivative estimates for compactness: The basic L2 space
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1

m + 1

∫∫

QT

|∇um|2 dxdt +

∫

Ω

|u(x, t)|m+1dx =

∫

Ω

|u0|
m+1dx

Idea: multiplier is um

The time derivative estimate.

c

∫∫

QT

|(u
(m+1)/2)
t |2 dxdt +

∫

Ω

|∇u(x, t)m|2dx =

∫

Ω

|∇u0(x)m|2dx

Idea: multiplier is (um)t
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The L1 estimate. Contraction. Existence

Problem: They are not stability estimates for differences.
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The L1 estimate. Contraction. Existence

Problem: They are not stability estimates for differences.

The main stability estimate (L1 contraction):

d

dt

∫

Ω
|u1(x, t) − u2(x, t)| dx ≤ 0
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The L1 estimate. Contraction. Existence

Problem: They are not stability estimates for differences.

The main stability estimate (L1 contraction):

d

dt

∫

Ω
|u1(x, t) − u2(x, t)| dx ≤ 0

Proof. Multiply the difference of the equations for u1 and u2 by ζ = hǫ(w), where hǫ is

a smooth version of Heaviside’s step function, and w = um
1 − um

2 , u = u1 − u2. Then,

∫

ut h(w) dx =

∫

∆w h(w) dx = −

∫

h′(w)|∇w|2 dx ≤ 0.

Now let hǫ → h = sign +. Observe that sign (u1 − u2) = sign (um
1 − um

2 ). Then

d

dt

∫

(u1 − u2)+ dx =

∫

ut h(u) dx ≤ 0

Juan L. Vázquez - Nonlinear Diffusion. Porous Medium and Fast Diffusion Equations – p. 37/??



The L1 estimate. Contraction. Existence

Problem: They are not stability estimates for differences.

The main stability estimate (L1 contraction):

d

dt

∫

Ω
|u1(x, t) − u2(x, t)| dx ≤ 0

Proof. Multiply the difference of the equations for u1 and u2 by ζ = hǫ(w), where hǫ is

a smooth version of Heaviside’s step function, and w = um
1 − um

2 , u = u1 − u2. Then,

∫

ut h(w) dx =

∫

∆w h(w) dx = −

∫

h′(w)|∇w|2 dx ≤ 0.

Now let hǫ → h = sign +. Observe that sign (u1 − u2) = sign (um
1 − um

2 ). Then

d

dt

∫

(u1 − u2)+ dx =

∫

ut h(u) dx ≤ 0

Contraction is also true in H−1 and in the Wasserstein W2 space
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The standard solutions

Let Ω = R
n or bounded set with zero Dirichlet boundary data,

n ≥ 1, 0 < T ≤ ∞. Let us consider the PME with m > 1.

For every u0 ∈ L1(Ω), u0 ≥ 0, there exists a weak solution such

that u, um ∈ L2
x,t and ∇um ∈ L2

x,t.
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The standard solutions

Let Ω = R
n or bounded set with zero Dirichlet boundary data,

n ≥ 1, 0 < T ≤ ∞. Let us consider the PME with m > 1.

For every u0 ∈ L1(Ω), u0 ≥ 0, there exists a weak solution such

that u, um ∈ L2
x,t and ∇um ∈ L2

x,t.

The weak solution is a strong solution in the following sense:

(i) um ∈ L2(τ,∞ : H1
0 (Ω)) for every τ > 0;

(ii) ut and ∆um ∈ L1
loc(0,∞ : L1(Ω)) and ut = ∆um a.e. in Q;

(iii) u ∈ C([0, T ) : L1(Ω)) and u(0) = u0.
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The standard solutions

Let Ω = R
n or bounded set with zero Dirichlet boundary data,

n ≥ 1, 0 < T ≤ ∞. Let us consider the PME with m > 1.

For every u0 ∈ L1(Ω), u0 ≥ 0, there exists a weak solution such

that u, um ∈ L2
x,t and ∇um ∈ L2

x,t.

The weak solution is a strong solution in the following sense:

(i) um ∈ L2(τ,∞ : H1
0 (Ω)) for every τ > 0;

(ii) ut and ∆um ∈ L1
loc(0,∞ : L1(Ω)) and ut = ∆um a.e. in Q;

(iii) u ∈ C([0, T ) : L1(Ω)) and u(0) = u0.

We also have bounded solutions that decay in time

0 ≤ u(x, t) ≤ C‖u0‖
2β
1 t−α

ultra-contractivity generalized to nonlinear cases
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Regularity results
The universal estimate holds (Aronson-Bénilan, 79):

∆v ≥ −C/t.

v ∼ um−1 is the pressure.
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Regularity results
The universal estimate holds (Aronson-Bénilan, 79):

∆v ≥ −C/t.

v ∼ um−1 is the pressure.

(Caffarelli-Friedman, 1982) Cα regularity: there is an α ∈ (0, 1)

such that a bounded solution defined in a cube is Cα

continuous.
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Regularity results
The universal estimate holds (Aronson-Bénilan, 79):

∆v ≥ −C/t.

v ∼ um−1 is the pressure.

(Caffarelli-Friedman, 1982) Cα regularity: there is an α ∈ (0, 1)

such that a bounded solution defined in a cube is Cα

continuous.

If there is an interface Γ, it is also Cα continuous in space time.
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Regularity results
The universal estimate holds (Aronson-Bénilan, 79):

∆v ≥ −C/t.

v ∼ um−1 is the pressure.

(Caffarelli-Friedman, 1982) Cα regularity: there is an α ∈ (0, 1)

such that a bounded solution defined in a cube is Cα

continuous.

If there is an interface Γ, it is also Cα continuous in space time.

How far can you go? Free boundaries are stationary (metastable) if
initial profile is quadratic near ∂Ω: u0(x) = O(d2). This is called
waiting time. Characterized by V. in 1983. Visually interesting in thin films

spreading on a table. Existence of corner points possible when
metastable, → no C1 Aronson-Caffarelli-V. Regularity stops here in n = 1
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Free Boundaries in several dimensions

x 

t 

Region where u(x,t)>0 

u=0 u=0 
u=0 

A complex free boundary in 1-D A regular free boundary in n-D

(Caffarelli-Vazquez-Wolanski, 1987) If u0 has compact support,

then after some time T the interface and the solutions are C1,α.
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Free Boundaries in several dimensions

x 

t 

Region where u(x,t)>0 

u=0 u=0 
u=0 

A complex free boundary in 1-D A regular free boundary in n-D

(Caffarelli-Vazquez-Wolanski, 1987) If u0 has compact support,

then after some time T the interface and the solutions are C1,α.

(Koch, thesis, 1997) If u0 is transversal then FB is C∞ after T .
Pressure is “laterally" C∞. it is a broken profile always when it moves.
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Free Boundaries II. Holes

A free boundary with a hole in 2D, 3D is the way of showing

that focusing accelerates the viscous fluid so that the speed

becomes infinite. This is blow-up for v ∼ ∇um−1.

The setup is a viscous fluid on a table occupying an annulus of

radii r1 and r2. As time passes r2(t) grows and r1(t) goes to

the origin. As t → T , the time the hole disappears, the speed

r′1(t) → −∞.

Juan L. Vázquez - Nonlinear Diffusion. Porous Medium and Fast Diffusion Equations – p. 45/??



Free Boundaries II. Holes

A free boundary with a hole in 2D, 3D is the way of showing

that focusing accelerates the viscous fluid so that the speed

becomes infinite. This is blow-up for v ∼ ∇um−1.

The setup is a viscous fluid on a table occupying an annulus of

radii r1 and r2. As time passes r2(t) grows and r1(t) goes to

the origin. As t → T , the time the hole disappears, the speed

r′1(t) → −∞.

There is a semi-explicit solution displaying that behaviour

u(x, t) = (T − t)αF (x(T − t)−β).

The interface is then r1(t) = a(T − t)β . It is proved that β < 1.
Aronson and Graveleau, 1993. Later Angenent, Aronson,...,
Vazquez,
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III. Asymptotics
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Asymptotic behaviour
Nonlinear Central Limit Theorem

Choice of domain: IRn. Choice of data: u0(x) ∈ L1(IRn). We can write

ut = ∆(|u|m−1u) + f

Let us put f ∈ L1
x,t. Let M =

∫

u0(x) dx +
∫∫

f dxdt.
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Nonlinear Central Limit Theorem

Choice of domain: IRn. Choice of data: u0(x) ∈ L1(IRn). We can write

ut = ∆(|u|m−1u) + f

Let us put f ∈ L1
x,t. Let M =

∫

u0(x) dx +
∫∫

f dxdt.

Asymptotic Theorem [Kamin and Friedman, 1980; V. 2001] Let
B(x, t;M) be the Barenblatt with the asymptotic mass M ; u
converges to B after renormalization

tα|u(x, t) − B(x, t)| → 0

For every p ≥ 1 we have

‖u(t) − B(t)‖p = o(t−α/p′

), p′ = p/(p − 1).

Note: α and β = α/n = 1/(2 + n(m − 1)) are the zooming
exponents as in B(x, t).
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Asymptotic behaviour
Nonlinear Central Limit Theorem

Choice of domain: IRn. Choice of data: u0(x) ∈ L1(IRn). We can write

ut = ∆(|u|m−1u) + f

Let us put f ∈ L1
x,t. Let M =

∫

u0(x) dx +
∫∫

f dxdt.

Asymptotic Theorem [Kamin and Friedman, 1980; V. 2001] Let
B(x, t;M) be the Barenblatt with the asymptotic mass M ; u
converges to B after renormalization

tα|u(x, t) − B(x, t)| → 0

For every p ≥ 1 we have

‖u(t) − B(t)‖p = o(t−α/p′

), p′ = p/(p − 1).

Note: α and β = α/n = 1/(2 + n(m − 1)) are the zooming
exponents as in B(x, t).

Starting result by FK takes u0 ≥ 0, compact support and f = 0
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Asymptotic behaviour. Picture
+ The rate cannot be improved without more information on u0

+ m also less than 1 but supercritical (→ with even better convergence called relative error
convergence)
m < (n − 2)/n has big surprises;
m = 0 → ut = ∆ log u → Ricci flow with strange properties;

Proof works for p-Laplacian flow
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Asymptotic behaviour. II
The rates. Carrillo-Toscani 2000. Using entropy functional
with entropy dissipation control you can prove decay rates
when

∫

u0(x)|x|2 dx < ∞ (finite variance):

‖u(t) − B(t)‖1 = O(t−δ),

We would like to have δ = 1. This problem is still open for m > 2. New results by JA

Carrillo, McCann, Del Pino, Dolbeault, Vazquez et al. include m < 1.
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The rates. Carrillo-Toscani 2000. Using entropy functional
with entropy dissipation control you can prove decay rates
when

∫

u0(x)|x|2 dx < ∞ (finite variance):

‖u(t) − B(t)‖1 = O(t−δ),

We would like to have δ = 1. This problem is still open for m > 2. New results by JA

Carrillo, McCann, Del Pino, Dolbeault, Vazquez et al. include m < 1.

Eventual geometry, concavity and convexity Result by
Lee and Vazquez (2003): Here we assume compact support.There exists a

time after which the pressure is concave, the domain convex, the level sets convex and

t ‖(D2v(·, t) − kI)‖∞ → 0

uniformly in the support. The solution has only one maximum. Inner Convergence in

C∞.
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Calculations of the entropy rates
We rescale the function as u(x, t) = r(t)n ρ(y r(t), s)

where r(t) is the Barenblatt radius at t + 1, and “new time" is
s = log(1 + t). Equation becomes

ρs = div (ρ(∇ρm−1 +
c

2
∇y2)).
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Calculations of the entropy rates
We rescale the function as u(x, t) = r(t)n ρ(y r(t), s)

where r(t) is the Barenblatt radius at t + 1, and “new time" is
s = log(1 + t). Equation becomes

ρs = div (ρ(∇ρm−1 +
c

2
∇y2)).

Then define the entropy

E(u)(t) =

∫

(
1

m
ρm +

c

2
ρy2) dy

The minimum of entropy is identified as the Barenblatt profile.
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where r(t) is the Barenblatt radius at t + 1, and “new time" is
s = log(1 + t). Equation becomes

ρs = div (ρ(∇ρm−1 +
c

2
∇y2)).

Then define the entropy

E(u)(t) =

∫

(
1

m
ρm +

c

2
ρy2) dy

The minimum of entropy is identified as the Barenblatt profile.

Calculate

dE

ds
= −

∫

ρ|∇ρm−1 + cy|2 dy = −D

Moreover,
dD

ds
= −R, R ∼ λD.

We conclude exponential decay of D and E in new time s, which is potential in real

time t.
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Asymptotics IV. Concavity
The eventual concavity results of Lee and Vazquez
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Probabilities. Wasserstein

Definition of Wasserstein distance.

Let P(IRn) be the set of probability measures. Let p > 0. µ1, µ2

probability measures.

(dp(µ1, µ2))
p = inf

π∈Π

∫

IRn×IRn

|x − y|p dπ(x, y),

Π = Π(µ1, µ2) is the set of all transport plans that move the

measure µ1 into µ2. This is a distance.

Technically, this means that π is a probability measure on the

product space IRn × IRn that has marginals µ1 and µ2. It can

be proved that we may use transport functions y = T (x)

instead of transport plans (this is Monge’s version of the

transportation problem).
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Wasserstein II

In principle, for any two probability measures, the infimum may

be infinite. But when 1 ≤ p < ∞, dp defines a metric on the set

Pp of probability measures with finite p-moments,
∫

|x|pdµ < ∞. A convenient reference for this topic is Villani’s

book, “Topics in Optimal Transportation”, 2003.
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Wasserstein II

In principle, for any two probability measures, the infimum may

be infinite. But when 1 ≤ p < ∞, dp defines a metric on the set

Pp of probability measures with finite p-moments,
∫

|x|pdµ < ∞. A convenient reference for this topic is Villani’s

book, “Topics in Optimal Transportation”, 2003.

The metric d∞ plays an important role in controlling the location

of free boundaries. Definition d∞(µ1, µ2) = infπ∈Π dπ,∞(µ1, µ2),

with

dπ,∞(µ1, µ2) = sup{|x − y| : (x, y) ∈ support(π)}.

In other words, dπ,∞(µ1, µ2) is the maximal distance incurred
by the transport plan π, i.e., the supremum of the distances
|x − y| such that π(A) > 0 on all small neighbourhoods A of
(x, y). We call this metric the maximal transport distance.
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Wasserstein III
The contraction properties in n = 1

Theorem (Vazquez, 1983, 2004) Let µ1 and µ2 be finite nonnegative

Radon measures on the line and assume that µ1(R) = µ2(R) and

d∞(µ1, µ2) is finite. Let ui(x, t) the continuous weak solution of the PME

with initial data µi. Then, for every t2 > t1 > 0

d∞(u1(·, t2), u2(·, t2)) ≤ d∞(u1(·, t1), u2(·, t1)) ≤ d∞(µ1, µ2).

Theorem (Carrillo, 2004) Contraction holds in dp for all p ∈ [1,∞).
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Wasserstein III
The contraction properties in n = 1

Theorem (Vazquez, 1983, 2004) Let µ1 and µ2 be finite nonnegative

Radon measures on the line and assume that µ1(R) = µ2(R) and

d∞(µ1, µ2) is finite. Let ui(x, t) the continuous weak solution of the PME

with initial data µi. Then, for every t2 > t1 > 0

d∞(u1(·, t2), u2(·, t2)) ≤ d∞(u1(·, t1), u2(·, t1)) ≤ d∞(µ1, µ2).

Theorem (Carrillo, 2004) Contraction holds in dp for all p ∈ [1,∞).

Contraction properties in n > 1

Theorem (McCann, 2003) For the heat equation contraction holds for

all p and n ≥ 1. (Carrillo, McCann, Villani 2004) For the PME

Contraction holds in d2 for all n ≥ 1.
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Wasserstein III
The contraction properties in n = 1

Theorem (Vazquez, 1983, 2004) Let µ1 and µ2 be finite nonnegative

Radon measures on the line and assume that µ1(R) = µ2(R) and

d∞(µ1, µ2) is finite. Let ui(x, t) the continuous weak solution of the PME

with initial data µi. Then, for every t2 > t1 > 0

d∞(u1(·, t2), u2(·, t2)) ≤ d∞(u1(·, t1), u2(·, t1)) ≤ d∞(µ1, µ2).

Theorem (Carrillo, 2004) Contraction holds in dp for all p ∈ [1,∞).

Contraction properties in n > 1

Theorem (McCann, 2003) For the heat equation contraction holds for

all p and n ≥ 1. (Carrillo, McCann, Villani 2004) For the PME

Contraction holds in d2 for all n ≥ 1.

Theorem (Vazquez, 2004) For the PME, contraction does not hold in

d∞ for any n > 1. It does not in dp for p ≥ p(n) > 2.
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New fields
Fast diffusion (m < 1)

ut = ∇ · (um−1∇u) = ∇ · (
∇u

up
)

Geometrical applications: Yamabe flow, m = (n − 2)/n. Extinction.
see our book Smoothing
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Systems. The chemotaxis system leads to the formation of
singularities in finite time through aggregation/concentration
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Geometrical applications: Yamabe flow, m = (n − 2)/n. Extinction.
see our book Smoothing

Systems. The chemotaxis system leads to the formation of
singularities in finite time through aggregation/concentration
Work by Herrero and Velazquez; Dolbeault and Perthame

General parabolic-hyperbolic equations and systems. Entropy
solutions, renormelized solutions, shocks; limited diffusion
Work by J. Carrillo, Bénilan, Wittbold, ...

Nonlinear diffusion in image processing. Gradient dependent
diffusion. Work on total variation models.
Andreu, Caselles, Mazón, ...
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