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Asymptotic Theory for Parabolic PDEs: Rules

Main Goal:
not only Existence-Uniqueness (of key Importance!), but also to
Describe the Actual Evolution Properties of the Solutions of the
Cauchy Problem (Key for Many Applications)... .



Asymptotic Theory for Parabolic PDEs: Rules

Main Goal:
not only Existence-Uniqueness (of key Importance!), but also to
Describe the Actual Evolution Properties of the Solutions of the
Cauchy Problem (Key for Many Applications)... .

General Rules for Discussions:
• ALL types of questions are encouraged! We have enough
time, 5 hours!, to discuss all we want.

• Stop the lecturer if he moves too fast, ANY TIME... .

• The audience is ALWAYS RIGHT!



Plan: Asymptotic Theory for Parabolic PDEs

Lecture 1
The Cauchy Problem for the Classic 1D Heat Equation (a
canonical PDE of Math. Phys.)

ut = uxx in R × R+,

with given bounded integrable initial data u0(x).

Back to C. Sturm (1836).

SHARP Asymptotic Theory:

(i) as t → +∞, large-time behaviour, and
(ii) blow-up behaviour, as t → T− <∞.

Hermitian Spectral Theory of Self-Adjoint Operators (Sturm,
1836).



Lecture 2
The Bi-Harmonic Equation, the fourth-order parabolic equation:

ut = −uxxxx in R × R+,

again, the Cauchy Problem with bounded data u0(x).

Twenty-First Century Theory (2004 − 1836 = 168 ≈ 170).

SHARP Asymptotic Theory:

(i) as t → +∞, large-time behaviour, and
(ii) blow-up behaviour, as t → T− <∞.

Hermitian Spectral Theory of Non Self-Adjoint Operators
(2004).



Tutorial, by Ray Fernandes, Bath

Third-order PDEs: Similarities with Parabolic Ones
An Important Digress to Third-Order Linear and Semilinear
Dispersion Equations, as other canonical PDEs:

ut = uxxx in R × R+,



Tutorial, by Ray Fernandes, Bath

Third-order PDEs: Similarities with Parabolic Ones
An Important Digress to Third-Order Linear and Semilinear
Dispersion Equations, as other canonical PDEs:

ut = uxxx in R × R+,

Semilinear Equation with Absorption:

ut = uxxx − |u|p−1u in R × R+,

again, the Cauchy Problem, where p > 1 is a constant.
(i) Self-Similar Solutions: Theory and
(ii) MatLab Experiments: How to Fight Strong Oscillatory Tails
(a Problem not Available for Parabolic PDEs)...



Lecture 3
The Fourth-Order Porous Medium Equation (the PME-4)

ut = −(|u|nu)xxxx in R × R+,

with given bounded integrable initial data u0(x),

where n > 0 is a fixed constant.

(i) Existence-Uniqueness Theory in Sobolev Spaces (1960s),

(ii) Nonlinear Eigenfunction Theory, Behaviour as t → +∞.

(iii) Homotopy Approach,

n → 0+ =⇒ convergence to the bi-harm. eq. (1)

(iv) Numerical Evidences by MatLab, as Unavoidable Tools of
PDE Theory of the XXI Century... .



Lectures 4 and 5
The Fourth-Order Thin Film Equation (the TFE-4)

ut = −(|u|nuxxx)x in R × R+,

where u0(x) is compactly supported and n > 0 is a constant.

(i) Self-Similar Solutions, Oscillatory Sign-Changing Behaviour,
Nonlinear Eigenfunction Theory.
(ii) Finite Interfaces, Homoclinic Bifurcation Parameter

nh = 1.758665... .

(iii) Existence-Uniqueness Concepts by Homotopy:

n → 0+ =⇒ convergence to ut = −uxxxx. (2)

(iv) ALL Supported by Numerical Evidences by MatLab... .



Lecture 1: The Classic HEAT EQUATION

The Cauchy problem for the heat equation

ut = uxx in R × R+,

with given bounded integrable initial data u0(x).
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Lecture 1: The Classic HEAT EQUATION

The Cauchy problem for the heat equation

ut = uxx in R × R+,

with given bounded integrable initial data u0(x).

u(x, t) is a classic solution, C∞, analytic.

Models various conductivity and viscosity phenomena, the
most well-known canonical PDE.



The Fundamental (Similarity) Solution

The 1D Heat Equation

ut = uxx in R × R+.
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The 1D Heat Equation

ut = uxx in R × R+.

The Fundamental Solution

b(x, t) = 1√
t
F(y), y = x√

t
.

BF ≡ F′′ + 1
2 (Fy)′ = 0,

∫

R

F = 1.



The Fundamental (Similarity) Solution

The 1D Heat Equation

ut = uxx in R × R+.

The Fundamental Solution

b(x, t) = 1√
t
F(y), y = x√

t
.

BF ≡ F′′ + 1
2 (Fy)′ = 0,

∫

R

F = 1.

Hence, F is the Gaussian:

F(y) = 1
2
√

π
e−y2/4 > 0.



The Positive Gaussian for the HE

Rescaled Kernel of the Fundamental Solution to ut = uxx
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The Positive Gaussian for the HE: exp. tail
enlarged

Rescaled Kernel of the Fundamental Solution to ut = uxx
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The Gaussian for the Heat Equation, strictly positive; tail enlarged

positive exponential tail



The Positive Gaussian for the HE: tail in log-scale

Rescaled Kernel of the Fundamental Solution to ut = uxx
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The Gaussian for the Heat Equation, strictly positive; tail in log−scale

ln F(y) ∼ −y2/4



By Convolution Theorem for Fourier Transforms

For bounded L1 data, ∃ ! solution

u(x, t) = b(t) ∗ u0 ≡ 1
2
√

π
1√

t

∫

R

e−(x−z)2/4t u0(z) dz.



By Convolution Theorem for Fourier Transforms

For bounded L1 data, ∃ ! solution

u(x, t) = b(t) ∗ u0 ≡ 1
2
√

π
1√

t

∫

R

e−(x−z)2/4t u0(z) dz.

Tikhonov-Täklind Uniqueness Theorem (1937)

∃ ! : |u(x, t)| ≤ Cecx2
, Tikhonov,

Täklind: |u(x, t)| ≤ e|x|h(|x|),
∫ ∞ ds

h(s) = ∞.



By Convolution Theorem for Fourier Transforms

For bounded L1 data, ∃ ! solution

u(x, t) = b(t) ∗ u0 ≡ 1
2
√

π
1√

t

∫

R

e−(x−z)2/4t u0(z) dz.

Tikhonov-Täklind Uniqueness Theorem (1937)

∃ ! : |u(x, t)| ≤ Cecx2
, Tikhonov,

Täklind: |u(x, t)| ≤ e|x|h(|x|),
∫ ∞ ds

h(s) = ∞.

Relation:

h(s) = s =⇒ Tikhonov, h(s) = s ln s... .



Positivity of the Gaussian rescaled kernel:

Implies various key properties of the flow:

Maximum Principle,
Comparison Principle,

Barrier Techniques (key anal. tools),
symmetry of rescaled operators, etc.



Positivity of the Gaussian rescaled kernel:

Implies various key properties of the flow:

Maximum Principle,
Comparison Principle,

Barrier Techniques (key anal. tools),
symmetry of rescaled operators, etc.

Positivity and Order-Preserving Properties:

are key for many nonlinear
second-order parabolic PDEs,

such as the PME, p-Laplacian and others.



Precise Asymptotic Behaviour as t → +∞

The Heat Equation

ut = uxx, x ∈ R, t > 0.
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The Heat Equation

ut = uxx, x ∈ R, t > 0.

Rescaled Variables, t 7→ 1 + t, Shifting

u(x, t) = 1√
1+t

v(y, τ), y = x√
1+t

, τ = ln(1 + t)



Precise Asymptotic Behaviour as t → +∞

The Heat Equation

ut = uxx, x ∈ R, t > 0.

Rescaled Variables, t 7→ 1 + t, Shifting

u(x, t) = 1√
1+t

v(y, τ), y = x√
1+t

, τ = ln(1 + t)

The Rescaled Equation

vτ = Bv ≡ vyy + 1
2 yvy + 1

2 v, y ∈ R, τ > 0.



B is the Hermite Classic Self-Adjoint Operator

Exponential Weight

Bv = vyy + 1
2 yvy + 1

2 v ≡ 1
ρ (ρvy)y + 1

2 v,

ρ(y) = ey2/4 = 1
2
√

π F(y) .



B is the Hermite Classic Self-Adjoint Operator

Exponential Weight

Bv = vyy + 1
2 yvy + 1

2 v ≡ 1
ρ (ρvy)y + 1

2 v,

ρ(y) = ey2/4 = 1
2
√

π F(y) .

Discrete Spectrum

σ(B) =
{

λk = − k
2 , k = 0, 1, 2, ...

}

,

ψk(y) = (−1)k
√

k!
Dk

yF(y) ≡ Hk(y) F(y).



B is the Hermite Classic Self-Adjoint Operator

Exponential Weight

Bv = vyy + 1
2 yvy + 1

2 v ≡ 1
ρ (ρvy)y + 1

2 v,

ρ(y) = ey2/4 = 1
2
√

π F(y) .

Discrete Spectrum

σ(B) =
{

λk = − k
2 , k = 0, 1, 2, ...

}

,

ψk(y) = (−1)k
√

k!
Dk

yF(y) ≡ Hk(y) F(y).

Hermite Polynomials (up to norm. factors)

H1(y) = 1, H2(y) ∼ 1 − y2

2 ,

H3(y) ∼ − 3y
2 + y3

4 , Hk(y) ∼ yk + ... .



Completeness and Closure of Φ = {ψk}

Metrics:

〈·, ·〉 : in L2,

〈·, ·〉ρ : in L2
ρ, so:

〈v,w〉ρ =
∫

R

ey2/4 v(y)w(y) dy



Completeness and Closure of Φ = {ψk}

Metrics:

〈·, ·〉 : in L2,

〈·, ·〉ρ : in L2
ρ, so:

〈v,w〉ρ =
∫

R

ey2/4 v(y)w(y) dy

Completeness (by the Riesz-Fischer theorem):

〈g, ψk〉ρ = 0 ∀ k ≥ 0 =⇒ g = 0. (3)



Closure of Φ = {ψk}

Closure in L2
ρ: for v ∈ L2

ρ,

v =
∑

(k) ckψk, ck = 〈v,Hk〉 ≡ 〈v, ψk〉ρ,

converging in the mean (in L2
ρ), a classic theory of linear

self-adjoint operators... .



Closure of Φ = {ψk}

Closure in L2
ρ: for v ∈ L2

ρ,

v =
∑

(k) ckψk, ck = 〈v,Hk〉 ≡ 〈v, ψk〉ρ,

converging in the mean (in L2
ρ), a classic theory of linear

self-adjoint operators... .

(Bi)-Orthonormality Property:

〈ψk, ψl〉ρ ≡ 〈ψk,Hl〉 = δkl.



C. Sturm, 1836; PDE Blow-up Theory

Hermitian Spectral Theory by Sturm

All eigenfunctions of B and all Hermite polynomials were
obtained by C. Sturm in 1836, in his classic analysis of
formation and collapse of multiple zeros (in x) of solutions of the
HE. This was the first finite-time blow-up theory!

Sturm’s PDE Paper:
C. Sturm, Mémoire sur une classe d’équations à différences
partielles, J. Math. Pures Appl., 1 (1836), 373–444.

Not confuse with Sturm’s ODE paper (the basics of
Sturm–Liouville Theory)
C. Sturm, Mémoire sur les équations différences du second
ordre, J. Math. Pures Appl., 1 (1836), 106–186.



C. Sturm, 1836; PDE Blow-up Theory

Completeness: described ALL types of multiple zeros

Sturm also used a kind of completeness of the eigenfunction
subset Φ of Hermite polynomials, and introduced other key
concepts... .



All Possible Types of Asymptotics as t → +∞

For u0 ∈ L2
ρ:

v(y, τ) =
∑

(k) cke−kτ/2ψk(y), ck = 〈u0,Hk〉
≡ 〈u0, ψk〉ρ.



All Possible Types of Asymptotics as t → +∞

For u0 ∈ L2
ρ:

v(y, τ) =
∑

(k) cke−kτ/2ψk(y), ck = 〈u0,Hk〉
≡ 〈u0, ψk〉ρ.

By Completeness/Closure: a Countable Set of Patterns:

For any u0 ∈ L2
ρ, u0 6= 0, there exists a finite l ≥ 0 (the first

non-zero Fourier coefficient!) such that

u(x, t) = cle−(1+l) t/2
[

ψl(x/
√

t) + o(1)
]

, t → +∞.



Precise Asymptotic Behaviour as t → 0−

Multiple zero at (0, 0−)

This is the actual Sturmian Theory (1836), written using
spectral language...
Let u(x, t) be defined in R × [−1, 0), and at the point (0, 0−)
(here T = 0 is the actual blow-up time)

u(0, 0) = 0, a multiple zero in x occurs. (4)



Precise Asymptotic Behaviour as t → 0−

Multiple zero at (0, 0−)

This is the actual Sturmian Theory (1836), written using
spectral language...
Let u(x, t) be defined in R × [−1, 0), and at the point (0, 0−)
(here T = 0 is the actual blow-up time)

u(0, 0) = 0, a multiple zero in x occurs. (4)

Sturm’s Problem:
Describe evolution (blow-up) formation of ALL possible types of
multiple zeros that can occur at (0, 0−).
Meaning micro-scale (“turbulent”) structure of a PDE... .



Adjoint Operator B∗: Blow-up Behaviour

Blow-up Rescaled Variables

The Heat Equation

ut = uxx, , x ∈ R, −1 < t < 0.

u(x, t) = v(y, τ), y = x√
−t
, τ = − ln(−t) → +∞

as t → 0−.



Adjoint Operator B∗: Blow-up Behaviour

Blow-up Rescaled Variables

The Heat Equation

ut = uxx, , x ∈ R, −1 < t < 0.

u(x, t) = v(y, τ), y = x√
−t
, τ = − ln(−t) → +∞

as t → 0−.

The Rescaled Equation

vτ = B∗v ≡ vyy − 1
2 yvy, y ∈ R, τ > 0.



B∗ is the Hermite Classic Self-Adjoint Operator

Exponential Weight ρ∗ = 1/ρ

B∗v = vyy − 1
2 yvy ≡ 1

ρ∗ (ρ∗vy)y,

ρ∗(y) = e−y2/4 = 1
ρ(y) .



B∗ is the Hermite Classic Self-Adjoint Operator

Exponential Weight ρ∗ = 1/ρ

B∗v = vyy − 1
2 yvy ≡ 1

ρ∗ (ρ∗vy)y,

ρ∗(y) = e−y2/4 = 1
ρ(y) .

B∗ is Adjoint to B in metric L2

One can see that

〈Bv,w〉 = 〈v,B∗w〉, v ∈ L2
ρ, w ∈ L2

ρ∗ ; (5)

by integration by parts, v,w,∈ C∞
0 , and by closure... .



B∗ is the Hermite Classic Self-Adjoint Operator

Exponential Weight ρ∗ = 1/ρ

B∗v = vyy − 1
2 yvy ≡ 1

ρ∗ (ρ∗vy)y,

ρ∗(y) = e−y2/4 = 1
ρ(y) .

B∗ is Adjoint to B in metric L2

One can see that

〈Bv,w〉 = 〈v,B∗w〉, v ∈ L2
ρ, w ∈ L2

ρ∗ ; (5)

by integration by parts, v,w,∈ C∞
0 , and by closure... .

Self-Adjoint Operator: B = B∗ in the Metric of L2
ρ

〈Bv,w〉ρ = 〈v,Bw〉ρ, v,w ∈ H2
ρ. (6)



Polynomial Eigenfunctions of B∗

Discrete Spectrum of B∗

Hence, classic self-adjoint theory applies. In particular, in L2
ρ∗

(not identifying B and B∗ in L2
ρ)

σ(B∗) =
{

λk = − k
2 , k = 0, 1, 2, ...

}

,

ψ∗
k (y) = Hk(y),

the Hermite polynomials.



Polynomial Eigenfunctions of B∗

Discrete Spectrum of B∗

Hence, classic self-adjoint theory applies. In particular, in L2
ρ∗

(not identifying B and B∗ in L2
ρ)

σ(B∗) =
{

λk = − k
2 , k = 0, 1, 2, ...

}

,

ψ∗
k (y) = Hk(y),

the Hermite polynomials.

Hermite Polynomials (up to norm. factors)

ψ∗
1 = H1(y) = 1, ψ∗

2 = H2(y) ∼ 1 − y2

2 ,

ψ∗
3 = H3(y) ∼ − 3y

2 + y3

4 , ψ∗
k ∼ yk + ... .



Sturm’s First Theorem: Full Classification of
Multiple Zeros

Asymptotic Blow-up Patterns

Returning to the rescaled blow-up equation

vτ = B∗v = vyy − 1
2 yvy, v

∣

∣

τ=0 = u0(y),

by completeness/closure of the eigenfunction subset Φ∗ = {ψ∗
k }

of Hermite polynomials:



Sturm’s First Theorem: Full Classification of
Multiple Zeros

Asymptotic Blow-up Patterns

Returning to the rescaled blow-up equation

vτ = B∗v = vyy − 1
2 yvy, v

∣

∣

τ=0 = u0(y),

by completeness/closure of the eigenfunction subset Φ∗ = {ψ∗
k }

of Hermite polynomials:

Countable Set of Blow-up Patterns

There exists a finite l ≥ 1 such that

v(y, τ) = cl
(

e−lτ/2ψ∗
l (y) + o(1)

)

as τ → +∞. (7)



Sturm’s First Theorem: Full Classification of
Multiple Zeros

Blow-up Asymptotics

In terms of the original function u(x, t) this means:

u(x, t) = cl(−t)
l
2
[

ψ∗
l

(

x√
−t

)

+ o(1)
]

(8)

as t → 0− (uniformly on compact subsets in y...).
Each ψ∗

l (y) has l transversal zeros {yj} (Sturm, 1836!), so

∃ l zero curves, xj(t) = yj
√−t → 0, j = 1, ..., l.



Sturm’s Second Theorem: the Number of Zeros of
Solutions does not Increase with Time

On Zero Curves
Since all the zeros of Hermite polynomials are transversal
(proved by Sturm), each multiple zero is produced by blow-up
focusing of a finite number of zero curves generated by a
Hermite polynomial.
Naturally extending the solution for t > 0:
(i) after blow-up at t = 0!
(ii) this extension is not related to any spectral theory, the
extensions are governed polynomials Ĥk(y), which are Hermite
ones, in which all negative coefficients are replaced by
POSITIVE.
Sturm showed:



Sturm’s Second Theorem: the Number of Zeros of
Solutions does not Increase with Time

Sturm’s Second Theorem
The number of zeros (sign changes) of solution u(x, t) does
not increase in time.

This is the so-called “Sturm’s Lost Theorem” (1836), which was
almost completely forgotten for almost 150 years.

It seems first Hurwitz in 1903 was the first who mentioned this
Sturm’s result. Sometimes, his lower bound on zeros of Fourier
series is referred to as the Hurwitz Theorem, which, possibly,
was better known than the Sturm’s PDE Theorem. This
Sturm-Hurwitz Theorem is the origin of many striking results,
ideas and conjectures in topology of curves and symplectic
geometry.



Sturm’s Second Theorem: the Number of Zeros of
Solutions does not Increase with Time

Sturm’s Second Theorem, cont.

The number of zeros (sign changes) of solution u(x, t) does
not increase in time.

A detailed history of Sturm’s discoveries from 19th century to
21st one is available in Chapter 1 (with a number of the original
Sturm’s computations in his variables; a nice history!) of

V.A. Galaktionov, Geometric Sturmian Theory of Nonlinear
Parabolic Equations and Applications, Chapman and Hall/CRC,
Boca Raton, Florida, 2004.


