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Notations

N the set of positive integers

Z the set of all integers

R the field of real numbers

Recommended Texts

This lecture notes follow closely first chapters of the book:

J. C. Robinson, An Introduction to Ordinary Differential Equations. Cambridge University
Press, 2004.

Robinson’s book is recommended as the principal reading for this course.

The following book (amongst many others) could be recommended as a complementary reading
for the Mathematica based part of the course:

M. L. Abell, J. P. Braselton, Differential Equations with Mathematica. Academic Press,
2004.

See also numerous resources available at http://www.wolfram.com/ and especially at Mathworld
website http://mathworld.wolfram.com
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1 RADIOACTIVE DECAY AND CARBON DATING

1 Radioactive decay and carbon dating

1.1 Radioactive decay model

Radioactive decay is the process in which an unstable atomic nucleus spontaneously loses
energy by emitting ionizing particles and radiation. This decay, or loss of energy, results
in an atom of one type, called the parent nuclide transforming to an atom of a different
type, named the daughter nuclide. For example: a Carbon-14 atom (the ”parent”) emits
radiation and transforms to a Nitrogen-14 atom (the ”daughter”). It is impossible to
predict when a given atom will decay, but given a large number of similar atoms the decay
rate, on average, is predictable.1

Let N(t) denote the number of radioactive atoms in some sample of material at time
t. Then the differential equation

(1.1)
dN

dt
= −kN,

is a model for the radioactive decay, where k > 0 is the rate of decay. Assume that at time
T0 there are N0 atoms. A direct computation verifies that the solution of (1.1) is

(1.2) N(t) = N0e
−k(t−T0).

Note that N(t) depends only on the time interval t− T0.

The half–life T1/2 of a particular radioactive isotope is the time it takes for half of the
radioactive atoms to decay, that is

N(T1/2) =
1

2
N(0),

and hence, using (1.2) with T0 = 0 we obtain

N0e
−kT1/2 =

1

2
N0.

Taking the (natural) logarithm of both sides we conclude that

(1.3) T1/2 =
log(2)

k
.

Note that T1/2 does not depend on N0.

1http://en.wikipedia.org/wiki/Radioactive decay
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1.2 Radiocarbon dating 1 RADIOACTIVE DECAY AND CARBON DATING

1.2 Radiocarbon dating

The solution (1.2) forms the basis of the technology of radiocarbon dating. The essence
of the method is as follows. Living matter is constantly taking up carbon from the air.
The result is that within such material the ratio of the number of isotopes of radioactive
Carbon-14 to the number of isotopes of stable Carbon-12 is essentially constant. Once the
specimen is dead (for example, a tree is cut down for its wood) the radioactive Carbon-14
atoms begin to decay according to the model (1.1). The half–life T1/2 of Carbon-14 is
approximately 5700 years, so the decay rate constant k in (1.1) to be

(1.4) k =
log(2)

5700
≈ 1.216× 10−4.

By examining the ratio of the number of isotopes of Carbon-12 to Carbon-14 in the sample
of material that we want to date, it is possible to work out the proportion remaining of
the Carbon-14 atoms that were initially present. Suppose that the sample stopped taking
up carbon from the air at time T0, and that the number of Carbon-14 atoms present then
was N(T0). If we know that the sample now (at time t) contains only a fraction p of the
initial level of Carbon-14, then N(t) = pN(T0). Using the explicit solution (1.2) we should
have

pN(T0) = N(t) = N(T0)e
−k(t−T0).

Taking the (natural) logarithm of both sides we conclude that log(p) = −k(t− T0) and so
the year T0 from which the sample dates is given by

(1.5) T0 = t+
log p

k
.

Example. In 1988, the Shroud of Turin2 was dated by several independent groups of
scientists. Fibres from the shroud were found to contain about 92% of the initial level of
Carbon-14 in the living matter. Using (1.5), we therefore obtain

T0 = 1988 +
log 0.92

0.0001216
' 1302,

which puts the origin of the Shroud in the Middle Ages.

2The Shroud of Turin (or Turin Shroud) is a linen cloth bearing the image of a man who appears to
have suffered physical trauma in a manner consistent with crucifixion. It is kept in the royal chapel
of the Cathedral of Saint John the Baptist in Turin, Italy. The origins of the shroud and its im-
age are the subject of intense debate among scientists, theologians, historians and researchers. See
http://en.wikipedia.org/wiki/Radiocarbon 14 dating of the Turin Shroud
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2 CLASSIFICATION OF DIFFERENTIAL EQUATIONS

2 Classification of differential equations

Unknown function and independent variable(s). Differential equations date back
to the mid–seventeenth century, when calculus was discovered by Newton and Leibniz.
Most generally, one can say that differential equations is an equation which contains an
unknown function of one or several independent variables and derivatives that function.
The analysis of a given differential equation starts from identifying correctly an unknown
function and independent variable(s). For example, in the Equation of Radioactive Decay

(2.1)
dN

dt
= −kN

the unknown function is N(t) (number of elements) and the independent variable is t
(time). However, we should not be confused by possible change of notations. For instance,
in the equation

(2.2)
dy

dx
= −ky,

the unknown function is denoted by y(x) and the independent variable is denoted by x, but
otherwise it is exactly the same equation as (2.1). The only difference is that the notation
y(x) is used instead of N(t). Similarly,

(2.3) z′ = −kz

is exactly the same equation as (2.1) and (2.2). The difference now is that the notation z
is used to denote the unknown function (because z′ denotes the differentiation, so z must
be a function!). We are free to decide ourself how to denote the independent variable. For
instance, we can denote the independent variable by x, as before, so that the unknown
function is z(x).

Classification of differential equations. The most significant distinction in Differen-
tial Equations is between Ordinary and Partial Differential Equations.

In a Partial Differential Equations the unknown function depends on more then one
independent variable, and the derivatives are therefore partial derivatives. For example,
the heat h in a rod at position x and time t obeys the heat equation

∂h

∂t
= k

∂2h

∂x2
.

Here the unknown function h(t, x) depends on two independent variables, x and t. Another
example of a Partial Differential Equations is the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0.
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2 CLASSIFICATION OF DIFFERENTIAL EQUATIONS

Here the unknown function u(x, y) depends on two independent variables, x and y. We do
not study Partial Differential Equations in this course.

In Ordinary Differential Equations there is only one independent variable, for example,
as in the equation of Radioactive Decay (2.1). Another example is the equation of Energy
Conservation, which is written as

1

2
mẋ2 + V (x) = E.

Here the unknown function x(t) depends on one independent variable, t, which is inter-
preted as time, and ẋ denotes the derivative of x with respect to the independent variable t.
The term 1

2
mẋ2 has the physical meaning of the kinetic energy, while V (x) is the potential

energy at point x.

Another example of an Ordinary Differential Equations of 2nd order is Newton’s 2nd
Law of Motion

mẍ = F,

where ẍ denotes the 2nd derivative of an unknown function x with respect to the indepen-
dent variable t.

The equation

ψ′′′ +
1

2
ψψ′ = 0

occurs in the theory of Fluid Boundary Layers. It is a 3rd order ordinary differential
equation, where the unknown function is ψ(x) and independent variable is x.

Generally, the order of a differential equation is the order of the highest order derivative
which appears in the equation. To be more precise, we introduce the following.

Definition 2.1. An n-th Ordinary Differential Equations for an unknown function y(t) is
an equation of the form

(2.4) F(y(n), y(n−1), . . . , y′, y, t) = 0.

A solution of the ODE (2.4) on the interval (a, b) is a function y(t) which is n–times
differentiable on the interval (a, b) and satisfies the equation (∗) for all t ∈ (a, b).

Another important concept in the classification of ODEs is linearity. Generally, linear
ODEs are relatively ”easy” and nonlinear problems are ”hard”.

Definition 2.2. An n-th order ODE for an unknown function y(t) is said to be linear if
it can be written in the form

(2.5) an(t)y(n) + an−1(t)y
(n−1) + · · ·+ a1(t)y

′ + a0(t)y = f(t).

Such a linear equation is called homogeneous if f(t) = 0 and inhomogeneous if f(t) 6= 0.

For example, the equation of Radioactive Decay is a linear homogeneous first order
ODE, the Energy Conservation equation is a 1st order nonlinear ODE, while Newton’s
2nd Law of Motion is a 2nd order linear inhomogeneous (if F 6= 0) equation. The equation
of Fluid Boundary Layers is a 3rd order nonlinear ODE.
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3 TRIVIAL ODES

3 Trivial ODEs

In this section we consider the simplest possible type of ODEs, equations of the form

y′ = f(x),

where y(x) is an unknown and f(x) is a given function of the independent variable x. The
equation asks us to find a function y whose graph has the slope f(x) at the point x. Such
ODEs can be solved by direct integration.

3.1 The Fundamental Theorem of Calculus

Any function F : (a, b)→ R that satisfies

F ′(x) = f(x) for all x ∈ (a, b)

is called an antiderivative or a primitive of the function f on the interval (a, b). Antideriva-
tives of a function f are also frequently referred to as indefinite integrals of the function f
and denoted ∫

f(x)dx,

so that, by the definition,
d

dx

(∫
f(x)dx

)
= f(x).

Clearly, if F is an antiderivative of f on (a, b), then so is F (x)+C, for any constant C ∈ R.

Example 3.1. sin(x) + C is an antiderivative of cos(x) on R, for any constant C ∈ R.

Example 3.2. log(x) +C is an antiderivative of x−1 on (0,+∞), for any constant C ∈ R.

Given a function F : [a, b]→ R, the definite integral∫ b

a

f(x) dx,

is defined informally to be the signed area of the region in the xy-plane bounded, by the
graph of f , the x-axis, and the vertical lines x = a and x = b.

Thus the definite integral is always a real number (”the area”) and antiderivative (in-
definite integral) is always a function of real variable. Definite integrals are related to
antiderivatives through the Fundamental Theorem of Calculus: the definite integral of a
function over an interval is equal to the difference between the values of an antiderivative
evaluated at the endpoints of the interval. More precisely, we formulate the following.
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3.2 General solutions and initial conditions 3 TRIVIAL ODES

Theorem 3.3. (The Fundamental Theorem of Calculus) Let f : [a, b] → R be a
continuous function. For x ∈ [a, b] define

(3.1) G(x) =

∫ x

a

f(s)ds.

Then G(a) = 0 and G is an antiderivative of f on (a, b), that is

G′(x) = f(x) for all x ∈ (a, b).

Furthermore, for any antiderivative F of f on (a, b) one has

(3.2) G(x) = F (x)− F (a).

In particular,

(3.3)

∫ b

a

f(s)ds = F (b)− F (a).

Essentially, this theorem says that differentiation reverses integration, since if we know
an antiderivative F of f then we can calculate integrals of f using formula (3.3) and if we
know how to calculate integrals (e.g. numerically using a software package) then we can
calculate an antiderivative using formula (3.1).

Note that identity (3.3) is frequently written in the form∫ b

a

f(s)ds =
[
F (s)

]b
y=a

.

Remark 3.4. In Mathematica,
Integrate[f, x]

gives the indefinite integral
∫
f(x)dx, and

NIntegrate[f, {x, a, b}]

gives a (numerical approximation) to the definite integral
∫ b
a
f(x)dx. Definite integral also

could be computed using
Integrate[f, {x, a, b}]

which essentially performs (3.3) to evaluate definite integral from an antiderivative.

3.2 General solutions and initial conditions

Let us return to the trivial ODE

(3.4) y′ = f(x).
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3.2 General solutions and initial conditions 3 TRIVIAL ODES

Any antidrivative of f is a solution of this equation, hence we could simply write

y(x) =

∫
f(s)ds.

If we choose one particular antiderivative F of f , then we know that

y(x) = F (x) + C

is an antiderivative of f for any C ∈ R. Thus (3.4) has many solutions. We say that

y(x) = F (x) + C

is the general solution of the (3.4) since every possible solution of (3.4) could be obtained
by choosing C appropriately. This is not a surprise: we can move a graph ’up and down’
and not to change its slope.

A possible way to pick out a particular solution of ODE (3.4) is to prescribe a point
that must lie on the graph of y, in other words to specify the value y(x0) at some particular
x. We refer to such a restriction

y(x0) = y0

as an initial condition. The idea is that we construct a solution of an ODE starting at
point (x0, y0) on the (x, y)–plane.

Example 3.5. Find the solution of the initial value problem

(3.5) y′ = x+ 10 sin(x), y(π) = 0.

Solution. Using standard integrals we see that

F (x) =
1

2
x2 − 10 cos(x)

is an antiderivative of f(x) = x+ 10 sin(x). Thus the general solution of the equation (3.5)
is

y(x) =
1

2
x2 − 10 cos(x) + C,

for any C ∈ R. To find the solution that satisfies y(π) = 0 we must have

0 = y(π) =
1

2
π2 − 10 cos(π) + C.

Hence

C = −1

2
π2 − 10

and so

y(x) =
1

2
x2 − 10 cos(x)−

(
π2

2
+ 10

)
is the solution of the initial value problem (3.5).

7 April 29, 2010



3.2 General solutions and initial conditions 3 TRIVIAL ODES

Example 3.6. Find the equation of a curve passing through the point (1, 0) on the (x, y)–
plane and has slope log(x).

Solution. We have to solve the initial value problem

(3.6) y′ = log(x), y(1) = 0.

Using formula (3.1) for an antiderivative, we obtain

y(x)− y(1)︸︷︷︸
=0

=

∫ x

1

log(s)ds =
[
s log(s)− s

]x
s=1

= (x log(x)− x)− (0− 1).

Therefore, the solution of the initial value problem (3.6) is given by

y(x) = x log(x)− x+ 1.

Plot@Erf@tD, 8t, -5, 5<D

-4 -2 2 4

-1.0

-0.5

0.5

1.0

Figure 1: Mathematica code which plots the graph of the error function Erf(t).

Example 3.7. Find the solution of the initial value problem

(3.7) ẋ = e−t
2

, x(0) = x0.

Solution. Using (3.1), we obtain that

x(t) = x0 +

∫ t

0

e−s
2

ds

is a solution of the initial value problem (3.7). However, there is no explicit form for the
antiderivative of e−s

2
in terms of elementary functions! In fact,

(3.8) erf(t) :=
2√
π

∫ t

0

e−s
2

ds

is known as error function. It is particularly important in statistics. However the integral
in the right hand side of (3.8) is merely the definition of erf. The graph of the error function
produced using Mathematica Plot instruction is displayed on Figure 1.
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3.3 Newton’s 2nd Law of Motion 3 TRIVIAL ODES

3.3 Newton’s 2nd Law of Motion

Newton’s 2nd Law of Motion states that the velocity v of an object satisfies the differential
equation

(3.9) mv̇ = F (t),

where F (t) is the force applied to the object at time t and m > 0 is the mass of the object.

Clearly equation (3.9) is a particular case of trivial differential equation (3.4), since
(3.9) can be rewritten in the form

(3.10) v̇ =
F (t)

m
.

Example 3.8. A car of mass m is traveling at a speed v0, when it suddenly starts to
brake. The brakes apply a constant force k. Using Newton’s second law of motion

mv̇ = −k,

where v(t) is the speed of the car at time t, find out how long does it take the car to stop,
and how far does the car travel before it comes to rest.

Solution. First of all, we need to solve the initial value problem

mv̇ = −k, v(0) = v0.

The general solution of the differential equation is

v(t) = − k
m
t+ C.

To satisfy the initial condition v(0) = v0 we need to set C = v0, so the particular solution
of the initial value problem is

v(t) = − k
m
t+ v0.

The stopping time Tstop of the car is the solution of the equation

v(Tstop) = 0,

or, using the explicit form of the solution v(t), we rewrite

− k
m
Tstop + v0 = 0.

Thus we obtain

Tstop =
mv0

k
.
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3.3 Newton’s 2nd Law of Motion 3 TRIVIAL ODES

Since the velocity of the car is the time derivative of the position of the car x,

ẋ = v,

or, using again the explicit form of the solution v(t) we have

ẋ = − k
m
t+ v0.

Integrating again, we obtain

x(t) = v0t−
k

2m
t2 + C.

Assume that at time t = 0 the car is at the zero position, that is

x(0) = 0.

Then C = 0 and therefore the stopping distance is computed as

x(Tstop) = v0Tstop −
k

2m
T 2
stop =

m

2k
v2

0.

Notice that the stopping distance depends on the square of the initial speed v0. For
instance, the stopping distance of the car, traveling at 40 mph is 1.78 times longer then
the stopping distance of the car traveling at 30 mph!
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4 SEPARABLE ODES

4 Separable ODEs

Separable ODE is a differential equation in the form

dx

dt
= f(x)g(t).

here x(t) is the unknown function and t is an independent variable. Note that in contrast
to trivial ODEs, the right hand side of the equation now depends not only on t, but also
on the unknown function x!

4.1 The solution ’recipe’

The practical solution ‘recipe’ is to divide by f(x) and multiply up by dt, to obtain

dx

f(x)
= g(t) dt.

This is ‘separation of variables’, since we now have all the xs on one side and all the ts on
the other, and that is why the equation is called separable. For the general solution we
integrate both sides to get ∫

dx

f(x)
=

∫
g(t) dt.

Note that the integral on the left is taken with respect to dx, while on the right it is with
respect to dt!

Example 4.1. Find the solution of the initial value problem

(4.1)
dx

dt
= x2, x(0) = x0.

Solution. This is a 1st order nonlinear separable equation. The unknown function is x(t)
and the independent variable is t.

Separating the variables in the equation we obtain

dx

x2
= dt.

Integrating both sides ∫
dx

x2
=

∫
dt,

we obtain

−1

x
+ C1 = t+ C2,
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4.1 The solution ’recipe’ 4 SEPARABLE ODES

or, absorbing arbitrary constants C1 and C2 into one constant C := C1 − C2, we get

−1

x
= t+ C.

Therefore,

x(t) = − 1

t+ C

is the general solution.

Substituting the initial condition x(0) = x0 we obtain

x(0) = − 1

0 + C
= x0,

so that C = −x−1
0 . Therefore

x(t) =
1

x−1
0 − t

is the particular solution of the initial value problem, provided that x0 6= 0 (otherwise the
formula is not well defined).

Note that if x0 > 0 then this solution ‘blows-up’ (has a vertical asymptote) when
t = x−1

0 , while for x0 < 0 the solution is well defined for all t > 0. Finally, note that if
x0 = 0 then x(t) = 0 is the ‘obvious’ solution of the initial value problem. This completes
our analysis.

Exercise 4.2. Find the solution of the initial value problem

dx

dt
= xα, x(0) = x0,

where α > 1. Show that solutions with x0 > 0 blow up in a finite time.

Example 4.3. Find the solution of the initial value problem

dy

dx
= −2xy, y(x0) = y0.

Solution. This is a 1st order linear separable equation. The unknown function is y(x) and
the independent variable is x.

Separating the variables in the equation we obtain

dy

y
= −2x dx.

Integration both sides ∫
dy

y
=

∫
−2xdx,
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4.1 The solution ’recipe’ 4 SEPARABLE ODES

ode = DSolve@8x'@tD � x@tD^2, x@0D � x0<, x@tD, tD

::x@tD ® -
x0

-1 + t x0
>>

x@t_D = First@x@tD �. odeD

-
x0

-1 + t x0

Plot@8x@tD �. 8x0 ® 1�5<, x@tD �. 8x0 ® 1�6<, x@tD �. 8x0 ® -1<, x@tD �. 8x0 ® -5<<,
8t, 0, 5<, PlotRange ® 880, 5<, 8-5, 10<<D

1 2 3 4 5

-4

-2

0

2

4

6

8

10

Figure 2: Mathematica code which solves initial value problem (4.1) and plots its solution
x(t) for x0 = −1 and x0 = 0.2 in the interval t ∈ [0, 10]. Note that the vertical asymptote
and the lower part of the hyperbola (when t > 5) are not parts of the solution with initial
data x0 = 0.2, however they are plotted by Mathematica.

and absorbing arbitrary constants, we obtain

log |y| = −x2 + C.

Exponentiating both sides we get
|y| = e−x

2+C ,

or
|y(x)| = Ae−x

2

,

where A := eC is positive. Taking |y(x)| = y(x) gives a positive solution, while taking
|y(x)| = −y(x) gives a negative solution. Notice that y(x) = 0 is also a solution of the
equation. Thus the general solution is

y(x) = Ae−x
2

allowing any A ∈ R.
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4.2 Malthus’ population model 4 SEPARABLE ODES

Substituting the initial condition y(x0) = y0, we obtain

y(x0) = Ae−x
2
0 = y0,

so that A = y0e
x2
0 . Therefore

y(x) = y0e
x2
0−x2

is the particular solution of the initial value problem, for any x0 ∈ R.

Remark 4.4. Note that ∫
dy

y
= log |y|+ C.

Indeed, for y > 0 we have

d

dy

(
log |y|+ C

)
=

d

dy

(
log(y) + C

)
=

1

y
,

while for y < 0 we obtain

d

dy

(
log |y|+ C

)
=

d

dy

(
log(−y) + C

)
= − 1

(−y)
=

1

y
.

Exercise 4.5. Show, using separation of variables, that the solution of the initial value
problem for the radioactive decay model (1.1):

dN

dt
= −kN, N(T0) = N0,

is indeed given by the formula (1.2):

N(t) = N0e
−k(t−T0).

4.2 Malthus’ population model

The simple linear equation

(4.2)
dp

dt
= kp

was proposed in 1798 by the English economist Thomas Malthus as a basic model for
population growth. Here p(t) is the population level at time t. The increase in the popu-
lation is taken to be proportional to the total number of people and k > 0 is the constant
representing the rate of growth (the difference between the birthrate and the deathrate).

As it is easy to see by the method of separation of variables the model predicts expo-
nential growth of the population

(4.3) p(t) = p(t0)e
k(t−t0),

where p(t0) is the population a given time t0. Note that the size of the population grows
without bound and doubles every log(2)/k years.
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Analysis of Census Data. We shall compare the predictions of the model with census
data. The population of Great Britain and Ireland in 1801, 1851, 1901 can be found in the
Census:

(4.4)

Y ear Population

1801 16 345 646
1851 27 533 755
1901 41 609 091

We can use the data from 801 and 1851 to estimate k. Our solution formula (4.3) predicts

p(1851) = p(1801)e50k,

so

k =
log(p(1851))− log(p(1801))

50
' 0.010.

Using this value of k, solution (4.3) gives a reasonable prediction for population in 1901:

p(1901) = p(1801)e100k ' 46 million.

However, it vastly overestimates the population in 2001: 3

p(2001) = p(1801)e200k ' 131 million.

We shall see in the next section that another model gives a better result.

4.3 Logistic population model

The so called ’logistic equation’ is

(4.5)
dp

dt
= kp

(
1− p

M

)
.

Here p(t) is the population level at time t, coefficient k > 0 is the constant representing
the rate of growth, and the parameter M > 0 is the maximum sustainable population.

Rewrite equation (4.5) in the form

dp

dt
= K(p)p,

where
K(p) = k

(
1− p

M

)
3The 2001 census found about 59 million. This does not include the figures for the Republic of Ireland.

The census held there in 2002 found around 4 million. So the total figure for 2001 should be approximately
63 million.
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can be considered as a nonconstant rate of growth, which depends on the population p
itself, so our population model becomes ‘self–organizing’.

When population p > 0 is small, the rate of growth K(p) is close to k, so the equation
is approximately the same as in the linear Malthus’ model (4.2). However, if 0 < p < M
and p is close to the ‘maximal sustainable’ level M , then the rate of growth K(p) is close to
0 and hence population grows very slowly. Finally, if p > M then the rate of growth K(p)
becomes negative. In other words, when population exceeds sustainable level M , death
rate becomes bigger then the birth rate and hence population decreases.

We now solve the equation explicitly. Equation (4.5) is a separable nonlinear first order
ODE. Separating the variables gives

M

kp(M − p)
dp = dt,

where we have multiplied top and bottom of the left hand side by M . Using partial
fractions on the left we obtain

1

k

(
1

p
+

1

M − p

)
dp = dt,

or (
1

p
+

1

M − p

)
dp = k dt.

Integrating both sides, ∫ (
1

p
+

1

M − p

)
dp =

∫
k dt,

we obtain
log |p| − log |M − p| = kt+ C,

or

log

(
|p|

|M − p|

)
= kt+ C.

Exponentiating, we get
|p|

|M − p|
= Aekt,

where A := eC > 0. Rearranging, we obtain

p = Aekt(M − p),

where we can remove modulus sign on both sides by allowing A to take negative values,
so that from now on A ∈ R. Further rearranging, we get the general solution of (4.5):

p(t) = M
ekt

A−1 + ekt
.
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Assume now that
p(0) = p0 > 0.

Substituting, we find that

A =
M − p0

p0

and therefore

p(t) =
Mp0 e

kt

(M − p0) + p0 ekt

is the particular solution of (4.5) with the initial data p(0) = p0.

To understand the asymptotic behavior of p(t) (i.e. the behavior of p(t) for large t),
observe that

lim
t→∞

p(t) = lim
t→∞

Mp0 e
kt

(M − p0) + p0 ekt
= lim

t→∞

M
M−p0
p0 ekt + 1

= M.

so the solution p(t) asymptotically converges to M . Moreover, if 0 < p0 < M then
0 < p(t) < M and p(t) is monotone increasing to M , while if p0 > M then p(t) > M
and p(t) is monotone decreasing to M . Finally, note that if p0 = M then p(t) = M is a
stationary solution of (4.5). Similarly, p0 = 0 then p(t) = 0 is another stationary solution
of (4.5).

Analysis of Census Data, continued. We shall compare the predictions of the logistic
model with the census data. To do this, we need to estimate the parameters M and k that
occur in the logistic equation (4.5), using data quoted above in (4.4), and assuming that
t0 = 0 corresponds to the year 1801, so that, for instance, t = 200 corresponds to the year
2001. The calculations to find M and k are just simple algebra which can be performed
using Mathematica, so we skip the details (see Robinson, p.68) and only state the result:

M ' 8.31365× 107, k ' 0.0140957.

Using these values to predict the population of the UK and the Republic of Ireland in 2001,
we obtain

p(200) = 6.68424× 107,

which is remarkably close to the true figure of about 63 million!

The complete Mathematica code which provides such analysis of the Census Data is
given below in Figure 4.
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p@t_D = M * p0 *Exp@k *tD � HHM - p0L + p0 *Exp@k *tDL

ãk t M p0

M - p0 + ãk t p0

M = 1; k = 1; p@tD

ãt p0

1 - p0 + ãt p0

Plot@8M, p@tD �. 8p0 ® 0.1<, p@tD �. 8p0 ® 0.5<, p@tD �. 8p0 ® 1.2<, p@tD �. 8p0 ® 1.4<<,
8t, 0, 5<, AxesOrigin ® 80, 0<D

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 3: Mathematica code which plots the graph of the solution p(t) of the logistic
equation (with M = 1 and k = 1) for initial values p0 = 0.1; 0.5; 1.2; 1.5 and p0 = M .

5 Existence and uniqueness of solutions of ODEs

In all considered examples of initial value problems for ODEs we were able to find a unique
particular solution. Is a general rule or there are exceptions ? Does initial value problem for
an ODE always has a unique solution ? There is a very general theorem which guarantees
existence and uniqueness, with hypothesis which are simple to check.

Theorem 5.1. (Existence and Uniqueness Theorem) Assume that the functions

f(x, t) and
∂f

∂x
(x, t)

are continuous for a < x < b and c < t < d. Then for any x0 ∈ (a, b) and t0 ∈ (c, d), the
initial value problem

(5.1)
dx

dt
= f(x, t), x(t0) = x0,

has a unique solution x(t), defined on some existence interval [t0, T ) ⊂ (c, d).
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ode = DSolve@8p'@tD � k * H1 - p@tD � ML * p@tD, p@0D � p0<, p@tD, tD

::p@tD ®
ãk t M p0

M - p0 + ãk t p0
>>

p0 = 16 345 646

16 345 646

p@t_D = First@p@tD �. odeD

16 345 646 ãk t M

-16 345 646 + 16 345 646 ãk t + M

reduced = Reduce@8p@50D � 27 533 755, p@100D � 41 609 091<, 8k, M<, RealsD

k �
1

50
LogB

465 527 045 498 919

230 070 459 587 056
F && M �

6 483 003 949 633 687 435 565

77 980 192 532 239

par = Solve@reduced, 8k, M<D

::k ®
1

50
LogB

465 527 045 498 919

230 070 459 587 056
F, M ®

6 483 003 949 633 687 435 565

77 980 192 532 239
>>

k = N@First@k �. parDD

0.0140957

M = N@Last@M �. parDD

8.31365 ´107

p@tD

1.35892 ´1015 ã0.0140957 t

6.67909 ´107 + 16 345 646 ã0.0140957 t

p@200D

6.68424 ´107

Plot@8p@tD, M, p0<, 8t, 0, 500<, AxesOrigin ® 80, p0<D

100 200 300 400 500

2. ´ 107

3. ´ 107

4. ´ 107

5. ´ 107

6. ´ 107

7. ´ 107

8. ´ 107

Figure 4: Mathematica code with the analysis of Census Data using Logistic Equation.
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Essentially, the theorem says that if the function f(x, t) and its derivative with respect
to x are both ‘sufficiently nice’, the the initial value problem will have a unique solution,
at least for t close to t0.

The following examples illustrate that all of the assumptions of the theorem are essen-
tial.

Example 5.2. (Blow–Up) Consider again the initial value problem (4.1), that is

dx

dt
= x2, x(0) = x0.

Here

f(x, t) = x2 and
∂f

∂x
(x, t) = 2x,

so the function f(x, t) and its derivative with respect to x are both continuous for all x and
t. Thus all assumptions of Theorem 5.1 are satisfied and the initial value problem must
have a unique solution. In Example 4.1, we have seen already that a particular solution of
the problem is given by

x(t) =
1

x−1
0 − t

.

Using the uniqueness claim of Theorem 5.1, we conclude that this is in fact the only solution
of the problem!

Note that if x0 > 0 then the solution x(t) is defined for 0 ≤ t < x−1
0 and ‘blows-

up’ (has a vertical asymptote) when T = x−1
0 (see also Figure 4.1). In other words, the

maximal existence interval of such solution is [0, x−1
0 ). This example shows, in particular,

that possible restriction of the existence interval [0, T ) in the statement of Theorem 5.1 is
indeed essential!

Exercise 5.3. Let α > 1. Find the unique solution of the initial value problem

dx

dt
= xα, x(0) = x0,

and determine its maximal existence interval.

Example 5.4. (Nonuniqueness) Consider the initial value problem

(5.2)
dx

dt
=
√
x, x(0) = 0.

Here

f(x, t) =
√
x and

∂f

∂x
(x, t) =

1

2
√
x
.

The function f(x, t) is defined and continuous for all x ≥ 0, however its x–partial derivative
is discontinuous when x = 0. In particular, conditions of Theorem 5.1 fail when x0 = 0.
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x@c_, t_D = Piecewise@880, t < c<, 8Ht - cL^2 � 4, t > c<<D
0 t < c
1
4

H-c + tL2 t > c

Plot@8x@1, tD, x@2, tD, x@3, tD<, 8t, 0, 5<D

1 2 3 4 5

1

2

3

4

Figure 5: Mathematica code which plots the graph of the solution xc(t) of equation (5.4)
for c = 1; 2; 3.

It easy to see that problem (5.2) has an obvious solution x(t) = 0, for all t ≥ 0. But if
we chose any value c > 0, then the function

(5.3) xc(t) =

{
0, t ≤ c,

1
4
(t− c)2, t > c,

also satisfies the equation and the initial data, for all t ≥ 0. Thus initial value problem
(5.2) has infinitely many solutions!

Exercise 5.5. Let 0 < α < 1. Find infinitely many solutions of the initial value problem

dx

dt
= xα, x(0) = 0.

Hint. Use separation of variables and a construction similar to (5.3).

Example 5.6. (Nonexistence) Consider the initial value problem

(5.4) t2
dx

dt
= x2, x(0) = 1.

In order to fit the problem into the setting of Theorem 5.1, we rewrite (5.4) in the equivalent
form

dx

dt
=
x2

t2
, x(0) = 1,

so that

f(x, t) =
x2

t2
.
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It is clear that f(x, t) is discontinuous when t = 0 and x 6= 0. In particular, conditions of
Theorem 5.1 fail for all t0 = 0 and x0 = 1.

Indeed, it is easy to see that initial problem (5.4) has no solutions when t0 = 0 and
x0 = 1: if t = 0 then the left hand of the differential equation in (5.4) is zero, and we must
have x(0) = 0.

Exercise 5.7. Initial value problem

(5.5) t2
dx

dt
= x2, x(0) = 0.

has an obvious solution x(t) = 0, for all t ≥ 0. Show that for any c ∈ R, the function

xc(t) =
t

ct− 1

is a solution of (5.5) for 0 ≤ t < 1/c, and hence (5.5) has many solutions.
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6 Linear ODEs and integrating factor

In this section we will look at general 1st order linear inhomogeneous ODEs

a1(t)ẋ+ a0(t)x = f(t).

(compare with Definition 2.2). Here x(t) is the unknown function of one independent
variable t, and a1(t), a0(t), f(t) are coefficients. In what follows we shall assume that
a1(t) 6= 0 and divide by a1(t) to obtain

ẋ+ p(t)x = q(t),

where p(t) := a0(t)/a1(t) and q(t) := f(t)/a1(t).

6.1 Constant coefficients

First we consider the simplest case when both coefficient p and q are constant,

(6.1) ẋ+ px = q.

This is a separable ODE which could be solved by the method of separation of variables,
see Problem Sheet 3, Q2(b). However, we are going to solve it by another method, which
involves a certain trick, which is called ”integrating factor” technique. It will be later
useful for more general equations.

The key point is to observe, using the product rule, that

(6.2)
d

dt

(
x(t)ept

)
=
dx

dt
ept + pxept = ept

(dx
dt

+ px
)
.

The right hand side of (6.2) is the same as the left hand side of our ODE (6.1), except
that it is multiplied by a factor ept. If we multiply both sides of (6.1) by ept we obtain

ept
(dx
dt

+ px
)

= q ept.

Using (6.2), this is simply
d

dt

(
x(t)ept

)
= q ept.

To obtain the general solution, we integrate both sides∫
d

dt

(
x(t)ept

)
dt =

∫
q ept dt,

to obtain
x(t)ept =

q

p
ept + C.
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Hence

(6.3) x(t) =
q

p
+ Ce−pt

is the general solution of (6.1).

Further, if we want to find a particular soltuion which satisfies the initial data x(t0) = x0

then we need

x(0) =
q

p
+ Ce−pt0 = x0, =⇒ C =

(
x0 −

q

p

)
ept0 ,

so this particular solution is given by the formula

(6.4) x(t) =
q

p
+
(
x0 −

q

p

)
e−p(t−t0).

Compare this result with the computation in Problem Sheet 3, Q2(b)!

6.2 Variable coefficients

We now use the same integrating factor trick for the more general equation with variable
coefficients

(6.5) ẋ+ p(t)x = q(t).

Define the integrating factor for equation (6.5) by the formula

I(t) = e
∫
p(t)dt.

and observe that, similarly to (6.2), by the product rule we have

d

dt

(
x(t)I(t)

)
=

d

dt

(
x(t)e

∫
p(t)dt

)
=
dx

dt
e

∫
p(t)dt + p(t)x e

∫
p(t)dt(6.6)

= I(t)
(dx
dt

+ p(t)x
)
.

If we multiply both sides of equation (6.5) by the integrating factor I(x) we obtain

I(t)
(dx
dt

+ p(t)x
)

= I(t)q(t).

Using (6.6), this is simply

d

dt

(
x(t)e

∫
p(t)dt

)
= q(t) e

∫
p(t)dt.
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To obtain the general solution, we integrate both sides∫
d

dt

(
x(t)e

∫
p(t)dt

)
dt =

∫
q(t) e

∫
p(t)dt dt,

to obtain

x(t)e
∫
p(t)dt =

∫
q(t) e

∫
p(t)dt dt.

Hence

(6.7) x(t) = e−
∫
p(t)dt

∫
q(t) e

∫
p(t)dt dt

is the general solution of (6.1). Although formula (6.7) might be looking complicated, in
practice it is often not difficult to handle. Consider some examples.

Example 6.1. Find the particular solution of the initial value problem

ẋ+ 3x = t, x(0) = 8/9.

Solution. The integrating factor for this ODE is

I(t) = e
∫

3 dt = e3t.

Multiplying the equation by I(t) we obtain

e3t
(dx
dt

+ 3x
)

= te3t,

or, by (6.6) this is equivalent to
d

dt

(
e3tx

)
= te3t.

Integrating both sides ∫
d

dt

(
e3tx

)
dt =

∫
te3tdt

and taking into account that ∫
te3tdt =

t

3
e3t − 1

9
e3t,

we obtain

e3tx(t) =
t

3
e3t − 1

9
e3t + C,

so the general solution is

x(t) =
t

3
− 1

9
+ Ce−3t.
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Since x(0) = 8/9 and hence

x(0) = −1

9
+ C = 8/9,

we conclude that C = 1. Therefore

x(t) =
t

3
− 1

9
+ e−3t

is the required particular solution of the initial value problem.

Example 6.2. Find the general solution of the equation

(x2 + 1)
dy

dx
+ 4xy = 12x.

Solution. If we divide both sides by x2 + 1 then we obtain equation in the form (6.5):

dy

dx
+

4x

x2 + 1︸ ︷︷ ︸
p(x)

y =
12x

x2 + 1︸ ︷︷ ︸
q(x)

.

The integrating factor for this ODE is

I(x) = e
∫

4x
x2+1

dx
= e2 log(x2+1) = (x2 + 1)2.

Multiplying the equation by I(x) we obtain

(x2 + 1)2
(dy
dx

+
4x

x2 + 1
y
)

= 12x(x2 + 1),

or, by (6.6) this is equivalent to

d

dx

(
(x2 + 1)2y

)
= 12x(x2 + 1).

Integrating both sides ∫
d

dx

(
(x2 + 1)2y

)
dx =

∫
12x(x2 + 1)dx,

we obtain
(x2 + 1)2y(x) = 3(x2 + 1)2 + C,

so the required general solution is

y(x) = 3 +
C

(x2 + 1)2
.

Note that y(x)→ 3 as x→∞, for any value of the arbitrary constant C!
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Example 6.3. Find the general solution of the equation

dy

dx
+
y

x
= x2.

Solution. The integrating factor for this ODE is

I(x) = e
∫

1
x
dx = elog(x) = x.

Multiplying the equation by I(x) we obtain

x
dy

dx
+ y = x3,

or, by (6.6) this is equivalent to
d

dx
(xy) = x3.

Integrating both sides ∫
d

dx
(xy) dx =

∫
x3dx,

we obtain

xy(x) =
x4

4
+ C,

so the required general solution is

y(x) =
x3

4
+
C

x
.

Note that the only solution which is finite when x = 0 is the solution obtained by taking
C = 0! 4

6.3 Newton’s law of cooling

An important example of a linear equation arises from Newton’s law of cooling, which states
that the temperature T (t) of an object in surroundings of temperature A(t) is governed by
the ODE

(6.8) Ṫ = −k(T − A(t)),

where k > 0 measures the rate that heat is absorbed (or emitted) by the object. Equation
(6.8) can be rewritten in the form

Ṫ + kT = kA(t),

so it is a 1st order linear inhomogeneous ODE which could be solved by the integrating
factor method.

Newton’s law of cooling plays important role in many applications.

4Compare with Example 5.6.
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Example 6.4. (Estimating time of death.) A forensic method for estimating the time
of death of a body is based on Newton’s law of cooling. The idea is to take temperature
of the body at two different different times in order to give an estimate of the constant k
to be used in (6.8).

To consider a specific example, suppose that a body is found in a room, which is kept
at a constant temperature 24◦C. At 8 a.m. in the morning its temperature is 28◦C, while
an hour later it is 26◦C.

With the time t measured in hours, we need to solve the equation

Ṫ + kT = 24k.

This is a linear 1st order ODE with constant coefficients, so according to (6.4) its particular
solution T (t) which satisfies the initial condition T (t0) = T0 is given by the formula

(6.9) T (t) = 24 +
(
T0 − 24

)
e−k(t−t0).

Using the available data, we can set t0 = 8 so that T0 = T (8) = 28 and hence

T (t) = 24 +
(

28− 24
)
e−k(t−8).

We also know that T (9) = 26 and therefore

T (9) = 24 +
(

28− 24
)
e−k(9−8) = 24 + 4e−k = 26 =⇒ e−k = 1/2,

which gives k = log(2).

Now we can use the value of k to estimate the actual time of death. If the time of death
was t0 then T0 = T (t0) = 37 (unless the deceased had a fever at the time of death). Using
(6.9) and the measurement T (8) = 28 again we obtain

T (8) = 24 +
(

37− 24
)
e− log(2)(8−t0) = 28 =⇒ e− log(2)(8−t0) = 4/13.

Taking the logarithms gives

− log(2)(8− t0) = log(4)− log(13) =⇒ t0 = 8− log(13)− log(4)

log(2)
' 6.3,

putting time of death approximately at 6.20 a.m.

Exercise 6.5. Use Newtons law of cooling to solve the following problem. At 7 a.m. I
made a cup of tea; after adding some milk it is about 90 ◦C. When I left at 7.30 a.m. the
tea is still drinkable at about 40 ◦C. When I get back home at 8 a.m. the tea has cooled
to 30 ◦C.

Assuming that the temperature of the house is constant, write down the differential
equation for the temperature of tea. What is the temperature of my house ?
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7 Some tricks for solving ODEs

In this section we discuss several tricks which could be used to solve some particular classes
of ODEs.

7.1 Substitution method

In some cases an equation could be simplified considerably by making an appropriate
substitution. Below we consider two particular classes of equations which could be solved
in this way.

7.1.1 Homogeneous equations

A 1st order ODE is called homogeneous if it can be written in the form

(7.1)
dy

dx
= F

(y
x

)
.

In this case we make the substitution

u =
y

x
.

Then

y = ux and
dy

dx
= x

du

dx
+ u.

Substituting into equation (7.1), we obtain the new equation

(7.2) x
du

dx
+ u = F (u),

which is a separable equation and could be integrated using the methods developed in
Section 4!

Example 7.1. Find the general solution of the equation

xy
dy

dx
= 2x2 + 3y2.

Solution. Divide the equation by xy to obtain

dy

dx
= 2

x

y
+ 3

y

x︸ ︷︷ ︸
F(x

y )

.

29 April 29, 2010



7.1 Substitution method 7 SOME TRICKS FOR SOLVING ODES

This is a homogeneous equation. Making the substitution

u =
y

x
,

we obtain

x
du

dx
+ u =

2

u
+ 3u,

or

x
du

dx
= 2

1 + u2

u
,

which is a separable equation. Separating the variables, we obtain

u

1 + u2
du = 2

dx

x
.

After integration on both sides we obtain the general solution

u = ±
√
C2x4 − 1,

and after ‘resubstitution’ u = y
x
, we finally obtain the required general solution

y(x) = ±x
√
C2x4 − 1.

7.1.2 Bernoulli equations

Bernoulli equation is an equation of the type

dy

dx
+ p(x)y = q(x)yn.

When n = 0 or 1 this is just linear equation. For other, possibly negative values of n this
equation is nonlinear. It appears, that the substitution

u = y1−n

turns it into a linear equation. Indeed,

du

dx
= (1− n)y−n

dy

dx
= (1− n)y−n (q(x)yn − p(x)y)

= (1− n)
(
q(x)− p(x)y1−n)

= (1− n) (q(x)− p(x)u) ,

so we obtain the linear equation

du

dx
+ (1− n)p(x)u = (1− n)q(x),

which could be integrated using the integrating factor method of Section 6.
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8 2nd order linear ODE

An ODE of the form

(8.1) a(t)ẍ+ b(t)ẋ+ c(t)x = f(t),

where a(t), b(t), c(t) and f(t) are continuous functions with a(t) 6= 0 is called a homo-
geneous 2nd order linear ODE. If f(t) = 0 then the equation is said to be homogeneous,
otherwise the equation is said to be inhomogeneous. Equation (8.1), coupled with two
initial conditions

x(t0) = x0, ẋ(t0) = x1

is called a 2nd order initial value problem for equation (8.1). Note that in order to determine
the solution uniquely, two initial conditions are required for the 2nd order equations.

In this section we discuss methods of solving some simple 2nd order ODEs.

8.1 Constant coefficients

An ODE of the form

(8.2) aẍ+ bẋ+ cx = 0,

where a, b and c are real numbers with a 6= 0, is called a homogeneous 2nd order linear
ODE with constant coefficients.

Our first important observation about linear homogeneous ODEs is the following im-
portant principle.

Superposition Principle. If x1(t) and x2(t) are solutions of the equation (8.2) then for
any real numbers A and B the superposition

Ax1(t) +Bx2(t)

is also a solutions of the equation (8.2).

Definition 8.1. The quadratic equation

ak2 + bk + c = 0

is called characteristic equation of the ODE (8.2).

We are going to give explicit formulas for the general solution of (8.2), which will
depend on the number of roots of the characteristic equation.
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The roots of the characteristic equation are determined by the formula

k =
−b±

√
D

2a
,

where the quantity
D = b2 − 4ac

is often called the discriminant of the characteristic equation.

• Case D > 0 – distinct roots. If D > 0 then

k1,2 =
−b±

√
D

2a
,

are two distinct roots of the characteristic equation. In this case the general solution of
the ODE (8.2) is

x(t) = Aek1t +Bek2t,

where A and B are arbitrary real constants.

Example 8.2. Find the solution of the initial value problem

ẍ+ ẋ− 6x = 0, x(0) = 0, ẋ(0) = 5.

Solution. The characteristic equation is

k2 + k − 6 = 0.

The discriminant D = 25 > 0 and the roots of the characteristic equation are k1 = −3 and
k2 = 2. Then the general solution of the equation is

x(t) = Ae−3t +Be2t.

To find the solution of the initial value problem we first compute the derivative of the
general solution:

ẋ(t) = −3Ae−3t + 2Be2t.

Using the initial conditions at t = 0 we obtain

x(0) = Ae0 +Be0 = A+B = 0,

ẋ(0) = −3Ae0 + 2Be0 = −3A+ 2B = 2.

Therefore A = −1, B = 1 and the required solution of the initial value problem is

x(t) = −e−3t + e2t.
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Example 8.3. Find the general solution of the equation

ẍ− 2ẋ = 0,

and a solution which satisfies two boundary conditions conditions x(0) = 0 and x(1) = 1.

Solution. The characteristic equation is

k2 − 2k = 0.

It has two roots k1 = 0 and k2 = 2. Then the general solution of the equation is

x(t) = A+Be2t.

To satisfy the boundary conditions, we first substitute t = 0 and t = 1 into the general
solution to obtain

x(0)︸︷︷︸
=0

= A+Be0 = A+B = 0,

x(1)︸︷︷︸
=1

= A+Be2 = 1.

Therefore A = − 1
e2−1

, B = 1
e2−1

and hence the required solution is

x(t) = − 1

e2 − 1
+

1

e2 − 1
e2t.

• Case D = 0 – repeated root. If D = 0 then

k = − b

2a

is the only (repeated) root of the characteristic equation. In this case the general solution
of the ODE (8.2) is

x(t) = Aekt +Btekt,

where A and B are arbitrary real constants.

Example 8.4. Find the solution of the initial value problem

ẍ+ 2ẋ+ x = 0, x(0) = 0, ẋ(0) = 1.

Solution. The characteristic equation is

k2 + 2k + 1 = 0.
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The discriminant D = 0 and the equation has repeated root k = −1. Then the general
solution of the equation is

x(t) = Ae−t +Bte−t.

To find the solution of the initial value problem we first compute the derivative of the
general solution:

ẋ(t) = (B − A)e−t −Bte−t.

Using the initial conditions at t = 0 we obtain

x(0) = A = 0,

ẋ(0) = B − A = 1,

so that A = 0, B = 1 and the required solution of the initial value problem is

x(t) = te−t.

• Case D < 0 – complex roots. If D < 0 then

k1,2 = − b

2a︸︷︷︸
ρ

± i
√
−D
2a︸ ︷︷ ︸
ω

,

are two complex roots of the characteristic equation. In this case the general solution of
the ODE (8.2) is

x(t) = eρt(A cos(ωt) +B sin(ωt)),

where A and B are arbitrary real constants.

Example 8.5. Find the solution of the initial value problem

ẍ+ 2ẋ+ 5x = 0, x(0) = 1, ẋ(0) = 0.

Solution. The characteristic equation is

k2 + 2k + 5 = 0.

The discriminant D = −16 < 0 and the characteristic equation has two complex roots

k1,2 = −1±
√
−4 = −1± 2i.

Then the general solution of the equation is

x(t) = e−t
(
A cos(2t) +B sin(2t)

)
.
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To find the solution of the initial value problem we first compute the derivative of the
general solution:

ẋ(t) = e−t
(
(2B − A) cos(2t)− (2A+B) sin(2t)

)
.

Using the initial conditions at t = 0 we obtain

x(0) = A = 1,

ẋ(0) = 2B − A = 0.

Therefore A = 1, B = 1/2 and the required solution of the initial value problem is

x(t) = e−t
(

cos(2t) +
1

2
sin(2t)

)
.
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Figure 6: Mathematica code which plots the graph of the oscillating solution in Example
8.5.

8.2 Inhomogeneous equations

An ODE of the form

(8.3) aẍ+ bẋ+ cx = f(t),

where a, b and c are real numbers with a 6= 0, and f(t) is a nonzero continuous function,
is called an inhomogeneous 2nd order linear ODE with constant coefficients.
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Complementary function. The complementary function of equation (8.3) is the general
solution of the homogeneous equation

aẍ+ bẋ+ cx = 0.

Particular integral. The particular integral is any particular solution of inhomogeneous
equation (8.3).

General solution of inhomogeneous equation (8.3). The general solution of inho-
mogeneous equation (8.3) is given by the formula

x(t) = xc(t) + xp(t),

where xc(t) is the complementary function and xp(t) a particular integral.

There is no general methods for finding particular integrals of inhomogeneous equations.
Below we consider several specific types of examples, where a particular integral could be
found.

8.2.1 Polynomial f(t).

When f(t) is a polynomial f(t) = cnt
n+ · · ·+ c1t+ c0 of degree n then a particular integral

usually can be found in the form of a polynomial of the same degree n. If however, f(t)
or its derivative is a solution of the homogeneous equation then one has to multiply our
guess solution by an additional factor t. Consider two examples.

Example 8.6. Find the general solution of the equation

ẍ− 4x = t2.

Solution. The complementary function xc(t) is the general solution of the homogeneous
ODE

ẍ− 4x = 0,

which is
xc(t) = Ae−2t +Be2t.

To solve the inhomogeneous ODE we need to find a particular integral xp(t). The function
on the right hand side, f(t) = t2, is a 2nd order polynomial. Neither f(t) nor any of
its derivative are solutions of the homogeneous equation. So we try to find a particular
integral in the form of a 2nd order polynomial

xp(t) = at2 + bt+ c.

Then
ẋp(t) = 2at+ b, ẍp(t) = 2a.
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Substituting into the equation we get

(2a)− 4(at2 + bt+ c) = t2.

This requires a = −1/4, b = 0 and c = −1/8. So the particular integral is

xp(t) = −1

4
t2 − 1

8
.

Hence the general solution of the inhomogeneous equation is

x(t) = Ae−2t +Be2t − 1

4
t2 − 1

8
.

Example 8.7. Find the general solution of the equation

ẍ− 2ẋ = 4.

Solution. Example 8.3 The complementary function xc(t) is the general solution of the
homogeneous ODE

ẍ− 2x = 0,

which is
xc(t) = A+Be2t,

see Example 8.3.

To solve the inhomogeneous ODE we need to find a particular integral xp(t). The
function on the right hand side, f(t) = 4, can be seen as a zero order polynomial. Note
that f(t) is a solution of the homogeneous equation. If we try

xp(t) = a

as a particular integral then after substitution into the inhomogeneous equation we will
get

0 = 4,

so xp(t) = a is a wrong choice.

Instead of xp(t) = a we multiply our ’guess solution’ by an extra factor t, and try a
particular integral in the form

xp(t) = at.

Then
ẋp(t) = a, ẍp(t) = 0.

Substituting into the equation we get

0− 2a = 4.

This requires a = −2, and so the particular integral is

xp(t) = −2t.

Hence the general solution of the inhomogeneous equation is

xc(t) = A+Be2t − 2t.
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8.2.2 Exponential f(t).

When f(t) is an exponential function of the form cekt then a particular integral usually
can be found in the form of the same exponential function with a different coefficient, e.g.
aekt. However, if ekt is a solution of the homogeneous equation then we have to try atekt,
or, if k is the repeated root of the characteristic equation then we try at2ekt. Consider two
examples.

Example 8.8. Find the general solution of the equation

ẍ+ ẋ− 6x = e−2t.

Solution. The complementary function xc(t) is the general solution of the homogeneous
ODE

ẍ+ ẋ− 6x = 0,

which is
xc(t) = Ae−3t +Be2t,

see Example 8.2.

To solve the inhomogeneous ODE we need to find a particular integral xp(t). The
function on the right hand side, f(t) = e−2t is an exponential function, which is not a
solution of the homogeneous equation. We try to find a particular integral in the form

xp(t) = ae−2t.

Then
ẋp(t) = −2ae−2t, ẍp(t) = 4ae−2t.

Substituting into the equation we get

(4a− 2a− 6a)e−2t = e−2t.

This requires a = −1/4. So the particular integral is

xp(t) = −1

4
e−2t.

Hence the general solution of the inhomogeneous equation is

x(t) = Ae−3t +Be2t − 1

4
e−2t.

Example 8.9. Find the general solution of the equation

ẍ+ ẋ− 6x = 5e−3t.
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Solution. The complementary function xc(t) here is the same as in the previous example:

xc(t) = Ae−3t +Be2t.

To solve the inhomogeneous ODE we need to find a particular integral xp(t). The
function on the right hand side, f(t) = e−3t is an exponential function, which is a solution
of the homogeneous equation. Therefore we try to find a particular integral in the form

xp(t) = ate−3t.

Then
ẋp(t) = −3ate−3t + ae−3t, ẍp(t) = 9ate−3t − 6ae−3t.

Substituting into the equation we get

(9ate−3t − 6ae−3t) + (−3ate−3t + ae−3t)− 6(ate−3t) = 5e−3t.

The terms te−3t cancel, so we get

−5ae−3t = 5e−3t.

This requires a = −1. So the particular integral is

xp(t) = −te−3t.

Hence the general solution of the inhomogeneous equation is

x(t) = Ae−3t +Be2t − te−3t.

8.2.3 Trigonometric f(t).

When f(t) is a trigonometric function such as sin(kt) or cos(kt) then a particular integral
usually can be found in the form

xp(t) = a sin(kt) + b cos(kt).

Note that xp(t) has to include both sin and cos components even f(t) involves only one of
those two. However, if sin(kt) and cos(kt) satisfy the homogeneous equation then we have
to try

xp(t) = at sin(kt) + bt cos(kt),

with an extra factor of t. Consider examples.

Example 8.10. Find the general solution of the equation

ẍ+ 2ẋ+ x = 100 cos(2t).
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Solution. The complementary function xc(t) is the general solution of the homogeneous
ODE

ẍ+ 2ẋ+ x = 0,

which is
xc(t) = (A+Bt)e−t,

see Example 8.4.

To solve the inhomogeneous ODE we need to find a particular integral xp(t). The func-
tion on the right hand side, f(t) = 100 cos(2t) is clearly not a solution of the homogeneous
equation. We then try to find a particular integral in the form

xp(t) = a cos(2t) + b sin(2t).

Then
ẋp(t) = −2a sin(2t) + 2b cos(t), ẍp(t) = −4a cos(2t)− 4b sin(2t).

Substituting into the equation we get(
−4a cos(2t)−4b sin(2t)

)
+2
(
−2a sin(2t)+2b cos(t))+

(
a cos(2t)+b sin(2t)

)
= 100 cos(2t),

or
(4b− 3a) cos(2t)− (3b+ 4a) sin(2t) = 100 cos(2t).

This requires
4b− 3a = 100, 3b+ 4a = 0.

Therefore we get b = 16 and a = −12. So the particular integral is

xp(t) = −12 cos(2t) + 16 sin(2t).

Hence the general solution of the inhomogeneous equation is

x(t) = (A+Bt)e−t − 12 cos(2t) + 16 sin(2t).

Example 8.11. Find the general solution of the equation

ẍ+ x = 8 cos(t).

Solution. The complementary function xc(t) is the general solution of the homogeneous
ODE

ẍ+ x = 0,

which is
xc(t) = A sin(t) +B cos(t).
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To solve the inhomogeneous ODE we need to find a particular integral xp(t). The right
hand side, f(t) = 8 cos(t), is a solution of the homogeneous equation. We then try to find
a particular integral multiplying out the original guess by t, in the form

xp(t) = at cos(t) + bt sin(t).

Then
ẋp(t) = b sin(t) + bt cos(t) + a cos(t)− at sin(t),

ẍp(t) = 2b cos(t)− bt sin(t)− 2a sin(t)− at cos(t).

Substituting into the equation we get

2b cos(t)− 2a sin(t) = 8 cos(t).

This requires b = 4 and a = 0. So the particular integral is

xp(t) = 4t sin(t).

Hence the general solution of the inhomogeneous equation is

x(t) = A sin(t) +B cos(t) + 4t sin(t).

8.2.4 Rule of thumb and more general f(t).

As a rule of thumb for finding a particular integrals for 2nd order equations:

• The standard guess is a general version of the right hand side f(t), e.g. if f(t) is an
n–thy order polynomial then try a general n–th order polynomial as a ”prototype”
solution

• If the standard guess contains a term that satisfy the homogeneous equation then
multiply the standard guess by t and try again. Repeat until your guess no longer
contains any term that solve homogeneous equation.

More general f(t). Similar consideration could be used for other choices of right hand
sides, e.g. when f(t) is a trigonometric function. The following rule could be used to
construct a particular solution of inhomogeneous equations with ”composite” right hand
sides f(t).

Exercise 8.12. Let x1(t) be a particular solution of the equation

aẍ+ bẋ+ cx = f1(t),

and x2(t) be a particular solution of the equation

aẍ+ bẋ+ cx = f2(t).

Verify that then αx1(t) + βx2(t) is a particular solution of the equation

aẍ+ bẋ+ cx = αf1(t) + βf2(t).
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Example 8.13. Find the general solution of the equation

ẍ+ ẋ− 6x = 5e−3t − 2e−2t.

Solution. Using Examples 8.8 and 8.9, we conclude that the general solution is given by

x(t) = Ae−3t +Be2t − te−3t + 2e−2t.

8.3 Oscillations of the Millennium Bridge.

When first opened, the Millennium Bridge in London wobbled from side to side as people
crossed.5 Footfalls created small side-to-side movements of the bridge, which were then
enhanced by the tendency of people to adjust their steps to compensate for the wobbling.
With more then a critical number of pedestrians the bridge began to wobble violently.

Without any pedestrians, the displacement x of a representative point on the bridge
away from its normal position would satisfy

(8.4) Mẍ+ µẋ+ λx = 0,

where
M ≈ 4× 105 kg, µ ≈ 5× 104 kg/s, λ ≈ 107 kg/s2.

Since D = µ2 − 4Mλ ≈ −1.6× 1013 < 0, we find that the characteristic equation

Mk2 + µk + λ = 0

has two complex roots

k1,2 = − µ

2M
± i
√
−D

2M
≈ −0.006− 5.0i,

and hence the general solution of (8.4) is given by

x(t) = e−0.006t(A cos(5t) +B sin(5t)),

with exponentially decaying amplitude e−0.006t and frequency ω = 5.

The effective forcing from each pedestrian was found by experiment (which involved
varying numbers of people walking across the bridge). If there are N pedestrians on the
bridge then the displacement of the bridge satisfies

(8.5) Mẍ+
(
µ− 300N

)
ẋ+ λx = 0.

Now the characteristic equation has the form

Mk2 + (µ− 300N)k + λ = 0.

5See a video at www.arup.com/MillenniumBridge
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Figure 7: Plots of the decaying solution x(t) (blue color) and exponentially growing solution
x200(t) (red color).

We find that D = (µ − 300N)2 − 4Mλ < 0 provided that N < 13350. In this case the
characteristic equation has two complex roots

k1,2 = −µ− 300N

2M
± i
√
−D

2M
.

The general solution of (8.5) is given by

xN(t) = eρ(A cos(ωt) +B sin(ωt)),

where

ρ = −µ− 300N

2M
, ω =

√
−D

2M
.

It is easy to see that ρ > 0 for N > 167 and then the general solution of (8.5) will have
exponentially increasing amplitude of oscillations, which means in practice that the bridge
will wobble violently!

For example, if the number of pedestrians N = 200 then ρ ≈ 0.01, ω ≈ 5 and the
general solution of (8.4) is given by

x200(t) = e0.012t(A cos(5t) +B sin(5t)),

with exponentially increasing amplitude e0.01t and frequency ω = 5.
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8.4 Resonance phenomena.

Suppose that x(t) represents the distance of some system from its equilibrium position
at time t, and that without any external forcing the system would ascillate around this
equilibrium position satisfying

(8.6) ẍ+ ω2x = 0.

We know that this equation has the general solution

x(t) = A cos(ωt) +B sin(ωt),

where the quantity 2π/ω is often known as the natural frequency, this is how the system
oscillates with no external forces applied.

Now consider what happens if we apply to the system an external force that is also
oscillating,

(8.7) ẍ+ ω2x = cos(αt)︸ ︷︷ ︸
external force

.

We consider separately the cases α 6= ω and α = ω.

Beating phenomenon: case α is close to ω, but α 6= ω. First consider what
happens when the system is forced at a frequency that differs from the natural frequency,
i.e. when α 6= ω. We can try the particular integral in the form

xp(t) = C cos(αt),

where the sin–term can be omitted because the equation does not contain ẋ. Substituting
xp(t) into the equation we get

−Cα2 cos(αt) + ω2C cos(αt) = cos(αt),

and then
C =

a

ω2 − α2
.

Thus the general solution of (8.7) is

x(t) = A cos(ωt) +B sin(ωt) +
1

ω2 − α2
cos(αt),

and x(t) combines oscillations at two frequencies: the ’natural frequency’ ω and the external
force frequency α.

To understand this phenomenon better consider (8.7) with initial data:

(8.8) ẍ+ ω2x = cos(αt), x(t) = ẋ(t) = 0.

44 April 29, 2010



8.4 Resonance phenomena. 8 2ND ORDER LINEAR ODE

The solution of such initial value problem is

x(t) =
1

ω2 − α2

(
cos(αt)− cos(ωt)

)
.

Using the double angle formula

cos(θ ± φ) = cos(θ) cos(φ)∓ sin(θ) sin(φ),

x(t) could be rewritten in the ‘product’ form

x(t) =
2

ω2 − α2
sin
(1

2
(ω + α) t

)
sin
(1

2
(ω − α) t

)
.

If α is close to ω then |ω + α| is much larger then |ω − α|, which means that the graph
of such solutions combines two oscillations of very different frequencies, and the amplitude
of the oscillations growth proportionally to the inverse of ω2 − α2. This phenomenon is
known as beating, see Figure 8.
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Figure 8: Mathematica code which plots the graph of the ‘beating’ solution of (8.8) in the
interval t ∈ [0, 100π]: case ω = 1, α = 1.05.

Resonance phenomenon: case α = ω. Now consider the case when α = ω. Then the
standard ’guess’ C cos(ωt) +D sin(ωt) solves the homogeneous equation (8.6) and we have
to try

xp(t) = Ct sin(ωt) +Dt cos(ωt)
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as a ‘guess’ solution. We then get

ẋp(t) = C sin(ωt) + Ctω cos(ωt) +D cos(ωt)−Dωt sin(ωt),

ẍp(t) = 2Cω cos(ωt)− 2Dω sin(ωt)− ω2 [Ct sin(ωt) +Dt cos(ωt)]︸ ︷︷ ︸
x(t)

.

Therefore
ẍp + ω2xp = 2Cω cos(ωt)− 2Dω sin(ωt),

and since we require the right hand side to be equal to cos(ωt), we choose

C =
1

2ω
, D = 0,

so

xp(t) =
1

2ω
t sin(ωt)

is the particular solution, and the general solution of (8.7) when α = ω is

xp(t) = A cos(ωt) +B sin(ωt) +
a

2ω
t sin(ωt).

We can now see that the amplitude of the resulting oscillations growth linearly with t, and
after a time the amplitude of oscillations becomes arbitrary large. This phenomenon is
known as the resonance, see Figure 9.

ode = DSolve@8x''@tD + x@tD � Cos@tD, x@0D � 0, x'@0D � 0<, x@tD, tD

::x@tD ®
1

4
I-2 Cos@tD + 2 Cos@tD3

+ 2 t Sin@tD + Sin@tD Sin@2 tDM>>

Plot@x@tD �. ode, 8t, 0, 100 *Pi<D

50 100 150 200 250 300

-150

-100

-50

50

100

150

Figure 9: Mathematica code which plots the graph of the ‘resonance’ solution of (8.8) in
the interval t ∈ [0, 100π]: case ω = α = 1.
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9 Linear systems of ODEs

9.1 Reducing a 2nd order equation to a system.

Consider a 2nd order linear ODE with constant coefficients

(9.1) ẍ+ pẋ+ qx = f(t).

Introduce a new function y = y(t) defined by

y := ẋ, so that ẏ = ẍ.

Substituting into (9.1) we obtain

ẏ + py + qx = f(t).

Combining with the definition of y and rearranging we obtain a system of 1st order ODEs

(9.2)

{
ẋ = y,
ẏ = −py − qx+ f(t).

This system could be also written in the equivalent matrix form as

(9.3)

(
ẋ
ẏ

)
=

(
0 1
−p −q

)(
x
y

)
+

(
0
f(t)

)
.

In such a way 2nd order equation (9.1) is reduced to the 1st order system (9.3).

9.2 Reducing a system to a 2nd order equation.

Consider a system of 1st order ODEs

(9.4)

{
ẋ = ax+ by + f(t),
ẏ = cx+ dy + g(t).

This system could be also written in the equivalent matrix form as

(9.5)

(
ẋ
ẏ

)
=

(
a b
c d

)(
x
y

)
+

(
f(t)
g(t)

)
.

Assume that b 6= 0. Then from the 1st equation of (9.5) we represent

y =
1

b
(ẋ− x− f(t)) .

Substituting into the 2nd equation of (9.5) we obtain

1

b

(
ẍ− ẋ− ḟ(t)

)
= dx+

d

b
(ẋ− x− f(t)) + g(t).
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After rearrangement, we obtain a linear 2nd order ODE

(9.6) ẍ− (a+ d)ẋ+ (ad− bc)x = ḟ(t)− df(t) + bg(t).

In such a way system of 1st order ODEs (9.5) is reduced to the 2nd order equation (9.6),
which could be solved by methods described in the previous Section. In particular, note
that characteristic equation of (9.6) is given by

(9.7) k2 − (a+ d)k + (ad− bc) = 0.

Example 9.1. Consider an initial value problem for a system of 1st order ODEs

(9.8)

{
ẋ = x+ y, x(0) = 1,
ẏ = 4x− 2y, y(0) = 0.

This system could be also written in the equivalent matrix form as

(9.9)

(
ẋ
ẏ

)
=

(
1 1
4 −2

)(
x
y

)
,

(
x(0)
y(0)

)
=

(
1
0

)
.

From the 1st equation of (9.9) we represent

y = ẋ− x.

Substituting into the 2nd equation of (9.5) we obtain

ẍ− ẋ = 4x− 2 (ẋ− x) .

After rearrangement (or using (9.5)) we obtain a linear 2nd order ODE

(9.10) ẍ+ ẋ− 6x = 0.

The characteristic equation of (9.10) is given by

(9.11) k2 + k − 6 = 0,

with the roots k1 = 2, k2 = −3. Thus the general solution of (9.10) is

x(t) = Ae2t +Be−3t,

where A,B ∈ R are arbitrary constants. Substituting into y(t) we also obtain

y(t) = ẋ(t)− x(t) = Ae2t − 4Be−3t.

The general solution of the system (9.8) is therefore

(9.12)

{
x(t) = Ae2t +Be−3t,
y(t) = Ae2t − 4Be−3t.
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This could be also written in the equivalent matrix form as

(9.13)

(
x(t)
y(t)

)
= A

(
1
1

)
e2t +B

(
1
−4

)
e−3t.

Substituting the initial data

(9.14)

{
x(0) = 1,
y(0) = 0,

into (9.12) we obtain a scalar system

(9.15)

{
A+B = 1,
A− 4B = 0.

Solving this system we conclude that

(9.16)

{
A = 4/5,
B = 1/5,

so finally we find that the solution (in the vector form) of the initial value problem (9.8) is

(9.17)

(
x(t)
y(t)

)
=

4

5

(
1
1

)
e2t +

1

5

(
1
−4

)
e−3t.

9.3 Matrix approach to linear systems

We now reconsider the homogeneous linear system

(9.18)

{
ẋ1 = ax1 + bx2,
ẋ2 = cx1 + dx2.

Because of the important geometric properties of systems of type (9.18), we are going to
study such systems directly, without employing the reduction to 2nd order equation (9.1).

Our first observation that there is a compact way to write (9.18) by fully exploring
vector and matrix notations. If we denote

x(t) =

(
x1(t)
x2(t)

)
, ẋ(t) =

(
ẋ1(t)
ẋ2(t)

)
, A =

(
a b
c d

)
,

then we can rewrite (9.18) as

(9.19) ẋ = Ax.

Our first important observation about linear system (9.19) is the following important
principle.
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Superposition Principle. If x1(t) and x2(t) are solutions of the system (9.19) then for
any real numbers A and B the superposition

Ax1(t) +Bx2(t)

is also a solutions of the system (9.19).

In order to formulate explicit formulae for solutions of (9.19) we need several notion
from the theory of matrices.

Eigenvalues and eigenvectors of a matrix. In this course we adopt an approach
which is independent of your knowledge of Linear Algebra. Consider a matrix

A =

(
a b
c d

)
.

Definition 9.2. The quadratic equation

(9.20) λ2 − (a+ d)λ+ (ad− bc) = 0.

is called characteristic equation of matrix A.

Remark 9.3. It is clear that A has precisely two eigenvalues λ1 and λ2, if we allow λ1 = λ2

when (9.20) has a repeated root. In what follows we will distinguish 3 different cases,
according to the properties of λ1 and λ2:

• distinct real eigenvalues;

• complex eigenvalues;

• repeated real eigenvalue.

Remark 9.4. Characteristic equation of matrix A could be also written in the matrix form

(9.21) det(A− λI) = 0,

where det stands for the matrix determinant and

I =

(
1 0
0 1

)
.

denotes the identity matrix.

Definition 9.5. Roots of the characteristic equation of matrix A are called eigenvalues of
matrix A.

Definition 9.6. If λ is an eigenvalue of matrix A then solutions v of the matrix equation

(9.22) Av = λv.

are called eigenvectors of matrix A which correspond to λ.
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Remark 9.7. Eigenvectors which correspond to the eigenvalue λ are not uniquely defined.
Indeed, if vector v is a solution of

Av = λv,

then vector αv is also a solution of the same equation, for any scalar α, so eigenvectors are
defined up to a multiplication by a scalar. For practical purposes, it is sufficient to find
one particular eigenvector that correspond to the eigenvalue λ, all other eigenvectors will
be then scalar multiples of that given one.

Example 9.8. Find eigenvalues and eigenvectors of the matrix

A =

(
1 1
4 −2

)
.

Solution. The characteristic equation of matrix A is

λ2 + λ− 6 = 0.

Its roots
λ1 = 2, λ2 = −3.

are two eigenvalues of matrix A.

To find an eigenvector v1 that corresponds to λ1 = 2 we need to solve the matrix
equation

Av1 = λ1v1,

or equivalently,
(A− λ1I)v1 = 0,

which is

(9.23)

{
−v1 + v2 = 0,
4v1 − 4v2 = 0.

Using the first equation we conclude that any vector v with v1 = v2 satisfies this system.
(Note that the 2nd equation is a multiple of the first.) For instance,

v1 =

(
1
1

)
is an eigenvector of matrix A that corresponds to λ1 = 2.

Similarly, to find an eigenvector v2 that corresponds to λ2 = −3 we need to solve the
matrix equation

Av2 = λ2v2,

which is

(9.24)

{
4v1 + v2 = 0,
4v1 + v2 = 0.
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Using the first equation we conclude that any vector v with v2 = −4v1 satisfies this system.
(Note that in this case the 2nd equation is equal to the first.) For instance, we can take

v2 =

(
1
−4

)
is an eigenvector of matrix A that corresponds to λ2 = −3.

Example 9.9. Find eigenvalues and eigenvectors of the matrix

A =

(
2 5
−2 0

)
.

Solution. The characteristic equation of matrix A is

λ2 − 2λ+ 10 = 0.

The roots of this equation are the complex conjugate

λ1 = 1 + 3i, λ2 = 1− 3i.

so matrix A has two complex conjugate eigenvalues.

To find the eigenvector v1 that corresponds to λ1 we need to solve the matrix equation

Av1 = λ1v1,

that is

(9.25)

{
(1− 3i)v1 + 5v2 = 0,
−2v1 − (1 + 3i)v2 = 0.

From the first equation, we must have 5v2 = (3i − 1)v1. (As usual, the 2nd equation is a
multiple of the first, although its not so obvious in this case.) Thus we can take,

v1 =

(
5

−1 + 3i

)
as an eigenvector of matrix A that corresponds to λ1 = 1 + 3i. The eigenvector of the
conjugate eigenvalue λ2 = 1− 3i will be the complex conjugate of the eigenvector v1,

v2 =

(
5

−1− 3i

)
.

It is convenient to write eigenvalues and eigenvectors of A could in the conjugate form:

λ± = 1± 3i,

v± =

(
5
−1

)
± i
(

0
−3

)
.

Now we are in the position to formulate explicit formulae for solutions of the linear
system of differential equations

(9.26) ẋ = Ax.

We will distinguish several cases, according to the properties of eigenvalues of the matrix
A.
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Distinct real eigenvalues of A. Assume that matrix A has two distinct real eigenvalues
λ1, λ2 and v1, v2 are the corresponding eigenvectors. Then the general solution of (9.26)
is given by the formula

(9.27) x(t) = Aeλ1tv1 +Beλ2tv2,

where A,B ∈ R are arbitrary constants.

Example 9.10. We know already eigenvalues and eigenvectors of the matrix

A =

(
1 1
4 −2

)
from Example 9.8. Using formula (9.27) we conclude that the general solution of

ẋ = Ax

is given by

x(t) = Ae2t
(

1
1

)
+Be−3t

(
1
−4

)
.

Figure 10: Phase portrait of the system in Example 9.10.

Complex eigenvalues of A. Assume that matrix A has two complex conjugate eigen-
values

λ± = ρ± iω,

and
v± = u± iw
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denotes the corresponding conjugate eigenvectors. Then the general solution of (9.26) is
given by the formula

(9.28) x(t) = eρt
(
[A cos(ωt) +B sin(ωt)]u + [B cos(ωt)− A sin(ωt)]w

)
,

where A,B ∈ R are arbitrary constants.

Example 9.11. We know already eigenvalues and eigenvectors of the matrix

A =

(
2 5
−2 0

)
from Example 9.9. Using formula (9.28) we conclude that the general solution of

ẋ = Ax

is given by

x(t) = et[A cos(3t) +B sin(3t)]

(
5
−1

)
+ et[B cos(3t)− A sin(3t)]

(
0
−3

)
.

Figure 11: Phase portrait of the system in Example 9.11.

Repeated real eigenvalues of A. There are two possibilities in that case. The first
one is that A is a multiple of identity,

A =

(
λ 0
0 λ

)
.

In this case equation ẋ = Ax decouples into two simple independent equations

ẋ1 = λx1, ẋ2 = λx2,
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each of which could be solved individually.

The second case is when λ1 = λ2 but the matrix A is not a multiple of the identity. For
example, the matrix

A =

(
λ 1
0 λ

)
has repeated eigenvalue λ1 = λ2 = λ. In this case the situation is more difficult because
we will be able to find only one eigenvector of A. The construction of the 2nd eigenvector
would require some additional linear algebra consideration. We do not discuss this case
here.
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