Monotonicity methods for asymptotics of solutions to elliptic and parabolic equations near singularities of the potential

Veronica Felli

Dipartimento di Matematica ed Applicazioni University of Milano-Bicocca

veronica.felli@unimib.it

WIMCS - LMS Workshop on "Calculus of Variations and Nonlinear PDEs"

Problem:

describe the behavior at singularity of solutions to equations associated to Schrödinger operators with singular homogeneous potentials

$$
\mathcal{L}_{a}:=-\Delta-\frac{a(x /|x|)}{|x|^{2}}, \quad x \in \mathbb{R}^{N}, \quad a: \mathbb{S}^{N-1} \rightarrow \mathbb{R}, \quad N \geqslant 3
$$

Problem:

describe the behavior at singularity of solutions to equations associated to Schrödinger operators with singular homogeneous potentials

$$
\mathcal{L}_{a}:=-\Delta-\frac{a(x /|x|)}{|x|^{2}}, \quad x \in \mathbb{R}^{N}, \quad a: \mathbb{S}^{N-1} \rightarrow \mathbb{R}, \quad N \geqslant 3
$$

Examples: Dipole-potential

$$
-\frac{\hbar^{2}}{2 m} \Delta+e \frac{x \cdot \mathbf{D}}{|x|^{3}}
$$

$$
a(\theta)=\lambda \theta \cdot \mathbf{D}
$$

Problem:

describe the behavior at singularity of solutions to equations associated to Schrödinger operators with singular homogeneous potentials

$$
\mathcal{L}_{a}:=-\Delta-\frac{a(x /|x|)}{|x|^{2}}, \quad x \in \mathbb{R}^{N}, \quad a: \mathbb{S}^{N-1} \rightarrow \mathbb{R}, \quad N \geqslant 3
$$

Examples: Quantum many-body

$$
\sum_{j=1}^{M} \frac{-\Delta_{j}}{2 m_{j}}+\sum_{\substack{j, m=1 \\ j<m}}^{M} \frac{\lambda_{j} \lambda_{m}}{\left|x^{j}-x^{m}\right|^{2}}
$$

$$
a(\theta)=\sum \frac{\lambda_{j} \lambda_{m}}{\left|\theta^{j}-\theta^{m}\right|^{2}}
$$

$$
x^{j} \in \mathbb{R}^{d}, \quad N=M d, \quad \theta^{j}=x^{j} /|x|, \quad x=\left(x^{1}, \ldots, x^{M}\right) \in \mathbb{R}^{N}
$$

Problem:

describe the asymptotic behavior at the singularity of solutions to equations associated to Schrödinger operators with singular homogeneous electromagnetic potentials

$$
\mathcal{L}_{\mathbf{A}, a}:=\left(-i \nabla+\frac{\mathbf{A}\left(\frac{x}{|x|}\right)}{|x|}\right)^{2}-\frac{a\left(\frac{x}{|x|}\right)}{|x|^{2}}, \quad \mathbf{A} \in C^{1}\left(\mathbb{S}^{N-1}, \mathbb{R}^{N}\right)
$$

Problem:

describe the asymptotic behavior at the singularity of solutions to equations associated to Schrödinger operators with singular homogeneous electromagnetic potentials

$$
\mathcal{L}_{\mathbf{A}, a}:=\left(-i \nabla+\frac{\mathbf{A}\left(\frac{x}{|x|}\right)}{|x|}\right)^{2}-\frac{a\left(\frac{x}{|x|}\right)}{|x|^{2}}, \quad \mathbf{A} \in C^{1}\left(\mathbb{S}^{N-1}, \mathbb{R}^{N}\right)
$$

Example: Aharonov-Bohm magnetic potentials associated to thin solenoids; if the radius of the solenoid tends to zero while the flux through it remains constant, then the particle is subject to a δ-type magnetic field, which is called Aharonov-Bohm field.

$$
\begin{aligned}
& \frac{\mathbf{A}\left(\frac{x}{|x|}\right)}{|x|}=\boldsymbol{\alpha}\left(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}}\right), \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \\
& \mathbf{A}\left(\theta_{1}, \theta_{2}\right)=\boldsymbol{\alpha}\left(-\theta_{2}, \theta_{1}\right), \quad\left(\theta_{1}, \theta_{2}\right) \in \mathbb{S}^{1},
\end{aligned}
$$

with $\alpha=$ circulation around the solenoid.

Describe the behavior at singularities of solutions: Motivation

- regularity theory for elliptic operators with singularities of Fuchsian type
[Mazzeo, Comm. PDE's(1991)], [Pinchover, Ann. IHP(1994)]

Describe the behavior at singularities of solutions: Motivation

- regularity theory for elliptic operators with singularities of Fuchsian type
[Mazzeo, Comm. PDE's(1991)], [Pinchover, Ann. IHP(1994)]
- informations about the "critical dimension" for existence of solutions to problems with critical growth (Brezis-Nirenberg type) [Jannelli, J. Diff. Eq.(1999)] [Ferrero-Gazzola, J. Diff. Eq.(2001)]

Describe the behavior at singularities of solutions: Motivation

- regularity theory for elliptic operators with singularities of Fuchsian type [Mazzeo, Comm. PDE's(1991)], [Pinchover, Ann. IHP(1994)]
- informations about the "critical dimension" for existence of solutions to problems with critical growth (Brezis-Nirenberg type) [Jannelli, J. Diff. Eq.(1999)] [Ferrero-Gazzola, J. Diff. Eq.(2001)]
- construction of solutions to equations with singular potentials [Felli-Terracini, Comm. PDE's(2006)]
[Felli, J. Anal. Math.(2009)]
[Abdellaoui-Felli-Peral, Calc. Var. PDE's(2009)]

Describe the behavior at singularities of solutions: Motivation

- regularity theory for elliptic operators with singularities of Fuchsian type
[Mazzeo, Comm. PDE's(1991)], [Pinchover, Ann. IHP(1994)]
- informations about the "critical dimension" for existence of solutions to problems with critical growth (Brezis-Nirenberg type) [Jannelli, J. Diff. Eq.(1999)] [Ferrero-Gazzola, J. Diff. Eq.(2001)]
- construction of solutions to equations with singular potentials [Felli-Terracini, Comm. PDE's(2006)]
[Felli, J. Anal. Math.(2009)]
[Abdellaoui-Felli-Peral, Calc. Var. PDE's(2009)]
- study of spectral properties (essential self-adjointness) [Felli-Marchini-Terracini, J. Funct. Anal.(2007)] [Felli-Marchini-Terracini, Indiana Univ. Math. J.(2009)]

Describe the behavior at singularities of solutions: References

[Felli-Schneider, Adv. Nonl. Studies (2003)]: Hölder continuity results for degenerate elliptic equations with singular weights; asymptotics of solutions for potentials $\lambda|x|^{-2}$ ($a(\theta)$ constant).
[Felli-Marchini-Terracini, DCDS-A (2008)]: asymptotics of solutions near the pole for $a(x /|x|)|x|^{-2}(a(\theta)$ bounded), through separation of variables and comparison methods.

Describe the behavior at singularities of solutions: References

[Felli-Schneider, Adv. Nonl. Studies (2003)]: Hölder continuity results for degenerate elliptic equations with singular weights; asymptotics of solutions for potentials $\lambda|x|^{-2}$ ($a(\theta)$ constant).
[Felli-Marchini-Terracini, DCDS-A (2008)]: asymptotics of solutions near the pole for $a(x /|x|)|x|^{-2}(a(\theta)$ bounded), through separation of variables and comparison methods.

Difficulties:

- in the presence of a singular magnetic potential, comparison methods are no more available!
- in the many-particle/cylindrical case separation of variables (radial and angular) does not "eliminate" the singularity; the angular part of the operator is also singular!

To overcome these difficulties

Almgren type monotonicity formula blow-up methods

To overcome these difficulties

Almgren type monotonicity formula blow-up methods

[Felli-Ferrero-Terracini, J. Europ. Math. Soc. (2011)]: singular homogeneous electromagnetic potentials of Aharonov-Bohm type, by an Almgren type monotonicity formula and blow-up methods.
[Felli-Ferrero-Terracini, Preprint 2010]: behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials by a nonlinear Almgren type formula and blow-up.
[Felli-Primo, DCDS-A, to appear]: local asymptotics for solutions to heat equations with inverse-square potentials.

Outline of the talk

1. Elliptic monotonicity formula
2. Asymptotics at singularities (elliptic case)
3. Parabolic monotonicity formula
4. Asymptotics at singularities (parabolic case)

Outline of the talk

1. Elliptic monotonicity formula
2. Asymptotics at singularities (elliptic case)
3. Parabolic monotonicity formula
4. Asymptotics at singularities (parabolic case)

Outline of the talk

1. Elliptic monotonicity formula
2. Asymptotics at singularities (elliptic case)
3. Parabolic monotonicity formula
4. Asymptotics at singularities (parabolic case)

Outline of the talk

1. Elliptic monotonicity formula
2. Asymptotics at singularities (elliptic case)
3. Parabolic monotonicity formula
4. Asymptotics at singularities (parabolic case)

1. Elliptic monotonicity formula

Studying regularity of area-minimizing surfaces of codimension $\geqslant 1$, in 1979 F. Almgren introduced the frequency function

$$
\mathcal{N}(r)=\frac{r^{2-N} \int_{B_{r}}|\nabla u|^{2} d x}{r^{1-N} \int_{\partial B_{r}} u^{2}}
$$

and observed that, if u is harmonic, then $\mathcal{N} \nearrow$ in r.

1. Elliptic monotonicity formula

Studying regularity of area-minimizing surfaces of codimension $\geqslant 1$, in 1979 F. Almgren introduced the frequency function

$$
\mathcal{N}(r)=\frac{r^{2-N} \int_{B_{r}}|\nabla u|^{2} d x}{r^{1-N} \int_{\partial B_{r}} u^{2}}
$$

and observed that, if u is harmonic, then $\mathcal{N} \nearrow$ in r.
Proof:
$\mathcal{N}^{\prime}(r)=\frac{2 r\left[\left(\int_{\partial B_{r}}\left|\frac{\partial u}{\partial \nu}\right|^{2} d S\right)\left(\int_{\partial B_{r}}|u|^{2} d S\right)-\left(\int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S\right)^{2}\right]}{\left.\left(\int_{\partial B_{r}}|u|^{2} d S\right)^{2}\right]} \underset{\substack{\text { inequality }}}{\substack{\text { Schwarz's }}} 0$

Why frequency?

If $\mathcal{N} \equiv \gamma$ is constant, then $\mathcal{N}^{\prime}(r)=0$, i.e.

$$
\left(\int_{\partial B_{r}}\left|\frac{\partial u}{\partial \nu}\right|^{2} d S\right) \cdot\left(\int_{\partial B_{r}} u^{2} d S\right)-\left(\int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S\right)^{2}=0
$$

$\Longrightarrow u$ and $\frac{\partial u}{\partial \nu}$ are parallel as vectors in $L^{2}\left(\partial B_{r}\right)$, i.e. $\exists \eta(r)$ s.t.

$$
\frac{\partial u}{\partial \nu}(r, \theta)=\eta(r) u(r, \theta), \quad \text { i.e. } \quad \frac{d}{d r} \log |u(r, \theta)|=\eta(r) .
$$

Why frequency?

If $\mathcal{N} \equiv \gamma$ is constant, then $\mathcal{N}^{\prime}(r)=0$, i.e.

$$
\left(\int_{\partial B_{r}}\left|\frac{\partial u}{\partial \nu}\right|^{2} d S\right) \cdot\left(\int_{\partial B_{r}} u^{2} d S\right)-\left(\int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S\right)^{2}=0
$$

$\Longrightarrow u$ and $\frac{\partial u}{\partial \nu}$ are parallel as vectors in $L^{2}\left(\partial B_{r}\right)$, i.e. $\exists \eta(r)$ s.t.

$$
\frac{\partial u}{\partial \nu}(r, \theta)=\eta(r) u(r, \theta), \quad \text { i.e. } \quad \frac{d}{d r} \log |u(r, \theta)|=\eta(r) .
$$

After integration we obtain

$$
u(r, \theta)=e^{\int_{1}^{r} \eta(s) d s} u(1, \theta)=\varphi(r) \psi(\theta)
$$

Why frequency?

$$
\begin{aligned}
& u(r, \theta)=\varphi(r) \psi(\theta) \quad \text { and } \quad \Delta u=0 \\
& \Downarrow \\
& \quad\left(\varphi^{\prime \prime}(r)+\frac{N-1}{r} \varphi^{\prime}(r)\right) \psi(\theta)+r^{-2} \varphi(r) \Delta_{\mathbb{S}^{N-1}} \psi(\theta)=0 .
\end{aligned}
$$

Why frequency?

$u(r, \theta)=\varphi(r) \psi(\theta) \quad$ and $\quad \Delta u=0$
\Downarrow

$$
\left(\varphi^{\prime \prime}(r)+\frac{N-1}{r} \varphi^{\prime}(r)\right) \psi(\theta)+r^{-2} \varphi(r) \Delta_{\mathbb{S}^{N-1}} \psi(\theta)=0 .
$$

ψ is a spherical harmonic $\Rightarrow \exists k \in \mathbb{N}:-\Delta_{\mathbb{S}^{N-1}} \psi=k(N-2+k) \psi$

$$
-\varphi^{\prime \prime}(r)-\frac{N-1}{r} \varphi(r)+r^{-2} k(N-2+k) \varphi(r)=0 .
$$

Why frequency?

$u(r, \theta)=\varphi(r) \psi(\theta) \quad$ and $\quad \Delta u=0$
\Downarrow

$$
\left(\varphi^{\prime \prime}(r)+\frac{N-1}{r} \varphi^{\prime}(r)\right) \psi(\theta)+r^{-2} \varphi(r) \Delta_{\mathbb{S}^{N-1}} \psi(\theta)=0 .
$$

ψ is a spherical harmonic $\Rightarrow \exists k \in \mathbb{N}:-\Delta_{\mathbb{S}^{N-1}} \psi=k(N-2+k) \psi$

$$
\begin{gathered}
-\varphi^{\prime \prime}(r)-\frac{N-1}{r} \varphi(r)+r^{-2} k(N-2+k) \varphi(r)=0 . \\
\varphi(r)=c_{1} r^{\sigma^{+}}+c_{2} r^{\sigma^{-}} \text {with } \sigma^{ \pm}=-\frac{N-2}{2} \pm \frac{1}{2}(2 k+N-2) \\
\sigma^{+}=k, \quad \sigma^{-}=-(N-2)-k \\
\left.|x|\right|^{\sigma^{-}} \psi\left(\frac{x}{|x|}\right) \notin H^{1}\left(B_{1}\right) \leadsto c_{2}=0, \quad \varphi(1)=1 \leadsto c_{1}=1 \\
\Downarrow \\
u(r, \theta)=r^{k} \psi(\theta)
\end{gathered}
$$

From $\mathcal{N}(r) \equiv \gamma$, we deduce that $\gamma=k$.

Applications to elliptic PDE's

The Almgren monotonicity formula was used in

- [Garofalo-Lin, Indiana Univ. Math. J. (1986)]: generalization to variable coefficient elliptic operators in divergence form (unique continuation)

Applications to elliptic PDE's

The Almgren monotonicity formula was used in

- [Garofalo-Lin, Indiana Univ. Math. J. (1986)]: generalization to variable coefficient elliptic operators in divergence form (unique continuation)
- [Athanasopoulos-Caffarelli-Salsa, Amer. J. Math. (2008)]: regularity of the free boundary in obstacle problems.

Applications to elliptic PDE's

The Almgren monotonicity formula was used in

- [Garofalo-Lin, Indiana Univ. Math. J. (1986)]: generalization to variable coefficient elliptic operators in divergence form (unique continuation)
- [Athanasopoulos-Caffarelli-Salsa, Amer. J. Math. (2008)]: regularity of the free boundary in obstacle problems.
- [Caffarelli-Lin, J. AMS (2008)] regularity of free boundary of the limit components of singularly perturbed elliptic systems.

Perturbed monotonicity

Example (Garofalo-Lin). Let $u \in H_{\mathrm{loc}}^{1}\left(B_{1}\right)$ be a weak solution to

$$
-\Delta u(x)+V(x) u=0 \quad \text { in } B_{1},
$$

with $V \in L_{\text {loc }}^{\infty}\left(B_{1}\right)$. Define
$D(r)=\frac{1}{r^{N-2}} \int_{B_{r}}\left[|\nabla u|^{2}+V|u|^{2}\right] d x$
$H(r)=\frac{1}{r^{N-1}} \int_{\partial B_{r}}|u|^{2} d S$

Almgren type function

$$
\mathcal{N}(r)=\frac{D(r)}{H(r)}
$$

Perturbed monotonicity

Example (Garofalo-Lin). Let $u \in H_{\mathrm{loc}}^{1}\left(B_{1}\right)$ be a weak solution to

$$
-\Delta u(x)+V(x) u=0 \quad \text { in } B_{1},
$$

with $V \in L_{\text {loc }}^{\infty}\left(B_{1}\right)$. Define

$$
\begin{array}{cc}
D(r) & =\frac{1}{r^{N-2}} \int_{B_{r}}\left[|\nabla u|^{2}+V|u|^{2}\right] d x \\
H(r) & =\frac{1}{r^{N-1}} \int_{\partial B_{r}}|u|^{2} d S \\
\mathcal{N}(r)=\frac{D(r)}{H(r)} \\
\mathcal{N}^{\prime}(r) & =\frac{2 r\left[\left(\int_{\partial B_{r}}\left|\frac{\partial u}{\partial \nu}\right|^{2} d S\right)\left(\int_{\partial B_{r}}|u|^{2} d S\right)-\left(\int_{\partial B_{r}} u \frac{\partial \bar{u}}{\partial \nu} d S\right)^{2}\right]}{\left(\int_{\partial B_{r}}|u|^{2} d S\right)^{2}}+\mathcal{R}(r) \\
V
\end{array}
$$

Perturbed monotonicity

$$
\mathcal{R}(r)=-\frac{2\left[\int_{B_{r}} V u(x \cdot \nabla u) d x+\frac{N-2}{2} \int_{B_{r}} V u^{2} d x-\frac{r}{2} \int_{\partial B_{r}} V u^{2} d S\right]}{\int_{\partial B_{r}}|u|^{2} d S}
$$

Perturbed monotonicity

$$
\mathcal{R}(r)=-\frac{2\left[\int_{B_{r}} V u(x \cdot \nabla u) d x+\frac{N-2}{2} \int_{B_{r}} V u^{2} d x-\frac{r}{2} \int_{\partial B_{r}} V u^{2} d S\right]}{\int_{\partial B_{r} r}|u|^{2} d S}
$$

$$
|\mathcal{R}(r)| \leqslant C_{1} r\left(\mathcal{N}(r)+C_{2}\right)
$$

Perturbed monotonicity

$$
\begin{aligned}
& \mathcal{R}(r)=-\frac{2\left[\int_{B_{r}} V u(x \cdot \nabla u) d x+\frac{N-2}{2} \int_{B_{r}} V u^{2} d x-\frac{r}{2} \int_{\partial B_{r}} V u^{2} d S\right]}{\int_{\partial B_{r}}|u|^{2} d S} \\
& |\mathcal{R}(r)| \leqslant C_{1} r\left(\mathcal{N}(r)+C_{2}\right) \\
& \mathcal{N}^{\prime}(r) \geqslant-C_{1} r\left(\mathcal{N}(r)+C_{2}\right) \quad \text { i.e. } \quad \frac{d}{d r} \log \left(\mathcal{N}(r)+C_{2}\right) \geqslant-C_{1} r
\end{aligned}
$$

Perturbed monotonicity

$$
\begin{aligned}
& \mathcal{R}(r)=-\frac{2\left[\int_{B_{r}} V u(x \cdot \nabla u) d x+\frac{N-2}{2} \int_{B_{r}} V u^{2} d x-\frac{r}{2} \int_{\partial B_{r}} V u^{2} d S\right]}{\int_{\partial B_{r}}|u|^{2} d S} \\
& |\mathcal{R}(r)| \leqslant C_{1} r\left(\mathcal{N}(r)+C_{2}\right) \\
& \mathcal{N}^{\prime}(r) \geqslant-C_{1} r\left(\mathcal{N}(r)+C_{2}\right) \quad \text { i.e. } \frac{d}{d r} \log \left(\mathcal{N}(r)+C_{2}\right) \geqslant-C_{1} r
\end{aligned}
$$

integrate between r and $\bar{r} \quad \mathcal{N}(r)+C_{2} \leqslant\left(\mathcal{N}(\bar{r})+C_{2}\right) e^{\frac{C_{1}}{2} \bar{r}^{2}} \leqslant$ const
In particular, \mathcal{N} is bounded.

Perturbed monotonicity

$$
H(r)=\frac{1}{r^{N-1}} \int_{\partial B_{r}}|u|^{2} d S \quad \Longrightarrow \quad H^{\prime}(r)=\frac{2}{r^{N-1}} \int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S
$$

Perturbed monotonicity

$$
H(r)=\frac{1}{r^{N-1}} \int_{\partial B_{r}}|u|^{2} d S \quad \Longrightarrow \quad H^{\prime}(r)=\frac{2}{r^{N-1}} \int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S
$$

Test $-\Delta u(x)+V(x) u=0$ with $u \quad \Longrightarrow$

$$
\int_{B_{r}}\left[|\nabla u|^{2}+V|u|^{2}\right] d x=\int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S
$$

Perturbed monotonicity

$$
H(r)=\frac{1}{r^{N-1}} \int_{\partial B_{r}}|u|^{2} d S \quad \Longrightarrow \quad H^{\prime}(r)=\frac{2}{r^{N-1}} \int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S
$$

Test $-\Delta u(x)+V(x) u=0$ with u

$$
r^{N-2} D(r)=\int_{B_{r}}\left[|\nabla u|^{2}+V|u|^{2}\right] d x=\int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S=\frac{r^{N-1}}{2} H^{\prime}(r)
$$

Perturbed monotonicity

$$
H(r)=\frac{1}{r^{N-1}} \int_{\partial B_{r}}|u|^{2} d S \quad \Longrightarrow \quad H^{\prime}(r)=\frac{2}{r^{N-1}} \int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S
$$

Test $-\Delta u(x)+V(x) u=0$ with u

$$
r^{N-2} D(r)=\int_{B_{r}}\left[|\nabla u|^{2}+V|u|^{2}\right] d x=\int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S=\frac{r^{N-1}}{2} H^{\prime}(r)
$$

Hence $\frac{H^{\prime}(r)}{H(r)}=\frac{2}{r} \mathcal{N}(r) \leqslant \frac{\text { const }}{r}$, i.e. $\frac{d}{d r} \log H(r) \leqslant \frac{C}{r}$.
Integrating between R and $2 R$

$$
\log \frac{H(2 R)}{H(R)} \leqslant C \log 2 \text { i.e. } \int_{\partial B_{2 R}} u^{2} d S \leqslant \text { const } \int_{\partial B_{R}} u^{2} d S
$$

Doubling and unique continuation

$$
\begin{aligned}
& \text { Doubling condition } \\
& \int_{B_{2 R}} u^{2} d x \leqslant C_{\text {doub }} \int_{B_{R}} u^{2} d x \\
& \text { with } C_{\text {doub }} \text { independent of } R
\end{aligned}
$$

Doubling and unique continuation

$$
\begin{aligned}
& \text { Doubling condition } \\
& \int_{B_{2 R}} u^{2} d x \leqslant C_{\text {doub }} \int_{B_{R}} u^{2} d x \\
& \text { with } C_{\text {doub }} \text { independent of } R
\end{aligned}
$$

\Downarrow

Strong unique continuation property

If u vanishes of infinite order at 0 , i.e.

$$
\int_{B_{R}} u^{2} d x=O\left(R^{m}\right) \quad \text { as } R \rightarrow 0 \quad \forall m \in \mathbb{N}
$$

then $u \equiv 0$ in B_{1}.

2. Asymptotics at singularities (elliptic case)

describe the behavior at the singularity of solutions to equations associated to Schrödinger operators with singular homogeneous potentials (with the same order of homogeneity of the operator)

$$
\mathcal{L}_{a}:=-\Delta-\frac{a(x /|x|)}{|x|^{2}}, \quad x \in \mathbb{R}^{N}, \quad a: \mathbb{S}^{N-1} \rightarrow \mathbb{R}, \quad N \geqslant 3
$$

Hardy type inequalities

$$
\Lambda(a):=\sup _{u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}|x|^{-2} a(x /|x|) u^{2}(x) d x}{\int_{\mathbb{R}^{N}}|\nabla u(x)|^{2} d x}
$$

- Classical Hardy's inequality: $\Lambda(1)=\left(\frac{2}{N-2}\right)^{2}$.

Hardy type inequalities

$$
\Lambda(a):=\sup _{u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}|x|^{-2} a(x /|x|) u^{2}(x) d x}{\int_{\mathbb{R}^{N}}|\nabla u(x)|^{2} d x}
$$

- Classical Hardy's inequality: $\Lambda(1)=\left(\frac{2}{N-2}\right)^{2}$.
- If $a \in L^{\infty}\left(\mathbb{S}^{N-1}\right)$, classical Hardy's inequality $\Rightarrow \Lambda(a)<+\infty$.

Hardy type inequalities

$$
\Lambda(a):=\sup _{u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}|x|^{-2} a(x /|x|) u^{2}(x) d x}{\int_{\mathbb{R}^{N}}|\nabla u(x)|^{2} d x}
$$

- Classical Hardy's inequality: $\Lambda(1)=\left(\frac{2}{N-2}\right)^{2}$.
- If $a \in L^{\infty}\left(\mathbb{S}^{N-1}\right)$, classical Hardy's inequality $\Rightarrow \Lambda(a)<+\infty$.
- For many body potentials

$$
\frac{a(x /|x|)}{|x|^{2}}=\sum_{j<m}^{M} \frac{\lambda_{j} \lambda_{m}}{\left|x^{j}-x^{m}\right|^{2}}
$$

Maz'ja and Badiale-Tarantello

$$
\Lambda(a)<+\infty
$$

Hardy type inequalities

$$
\Lambda(a):=\sup _{u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}|x|^{-2} a(x /|x|) u^{2}(x) d x}{\int_{\mathbb{R}^{N}}|\nabla u(x)|^{2} d x}
$$

- Classical Hardy's inequality: $\Lambda(1)=\left(\frac{2}{N-2}\right)^{2}$.
- If $a \in L^{\infty}\left(\mathbb{S}^{N-1}\right)$, classical Hardy's inequality $\Rightarrow \Lambda(a)<+\infty$.
- For many body potentials

$$
\frac{a(x /|x|)}{|x|^{2}}=\sum_{j<m}^{M} \frac{\lambda_{j} \lambda_{m}}{\left|x^{j}-x^{m}\right|^{2}}
$$

Maz'ja and Badiale-Tarantello

$$
\Lambda(a)<+\infty
$$

The quadratic form associated to

$$
\mathcal{L}_{a}=-\Delta-\frac{a(x /|x|)}{|x|^{2}}
$$

$$
\Longleftrightarrow \quad \Lambda(a)<1
$$

is positive definite in $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$

Perturbations of \mathcal{L}_{a}

linear/semilinear perturbations of $\mathcal{L}_{a}: \quad \mathcal{L}_{a} u=\boldsymbol{h}(x) u(x)+\boldsymbol{f}(\boldsymbol{x}, u(x))$

Perturbations of \mathcal{L}_{a}

linear/semilinear perturbations of \mathcal{L}_{a}
$\mathcal{L}_{a} u=\boldsymbol{h}(\boldsymbol{x}) u(x)+\boldsymbol{f}(\boldsymbol{x}, u(x))$
(H) h "negligible" with respect to $\frac{a(x||x|)}{|x|^{2}}$ at singularity:

$$
\lim _{r \rightarrow 0^{+}} \eta_{0}(r)=0, \quad \frac{\eta_{0}(r)}{r} \in L^{1}, \quad \frac{1}{r} \int_{0}^{r} \frac{\eta_{0}(s)}{s} d s \in L^{1}, \quad \frac{\eta_{1}(r)}{r} \in L^{1}, \quad \frac{1}{r} \int_{0}^{r} \frac{\eta_{1}(s)}{s} d s \in L^{1}
$$

$$
\text { where } \quad \begin{aligned}
\eta_{0}(r) & =\sup _{\substack{u \in H^{1}\left(B_{r}\right) \\
u \neq 0}} \frac{\int_{B_{r}}|h(x)| u^{2} d x}{\int_{B_{r}}\left(|\nabla u|^{2}-\frac{a(x /|x|)}{|x|^{2}} u^{2}\right) d x+\frac{N-2}{2 r} \int_{\partial B_{r}} u^{2} d S} \\
\eta_{1}(r) & =\sup _{\substack{u \in H^{1}\left(B_{r}\right) \\
u \neq 0}} \frac{\int_{B_{r}}|\nabla h \cdot x| u^{2} d x}{\int_{B_{r}}\left(|\nabla u|^{2}-\frac{a(x /|x|)}{|x|^{2}} u^{2}\right) d x+\frac{N-2}{2 r} \int_{\partial B_{r}} u^{2} d S}
\end{aligned}
$$

Perturbations of \mathcal{L}_{a}

linear/semilinear perturbations of \mathcal{L}_{a}
$\mathcal{L}_{a} u=\boldsymbol{h}(\boldsymbol{x}) u(x)+\boldsymbol{f}(\boldsymbol{x}, u(x))$
(H) h "negligible" with respect to $\frac{a(x /|x|)}{|x|^{2}}$ at singularity:
$\lim _{r \rightarrow 0^{+}} \eta_{0}(r)=0, \quad \frac{\eta_{0}(r)}{r} \in L^{1}, \quad \frac{1}{r} \int_{0}^{r} \frac{\eta_{0}(s)}{s} d s \in L^{1}, \quad \frac{\eta_{1}(r)}{r} \in L^{1}, \quad \frac{1}{r} \int_{0}^{r} \frac{\eta_{1}(s)}{s} d s \in L^{1}$,
Examples: - $h,(x \cdot \nabla h) \in L^{s}$ for some $s>N / 2$

- $a \in L^{\infty}\left(\mathbb{S}^{N-1}\right) \leadsto h(x)=O\left(|x|^{-2+\varepsilon}\right)$
- $\frac{a(x /|x|)}{|x|^{2}}=\sum_{j, m} \frac{\lambda_{j} \lambda_{m}}{\left|x^{j}-x^{m}\right|^{2}} \leadsto|h(x)|+|\nabla h \cdot x|=O\left(\sum\left|x^{j}-x^{m}\right|^{-2+\varepsilon}\right)$

Perturbations of \mathcal{L}_{a}

linear/semilinear perturbations of \mathcal{L}_{a} : $\mathcal{L}_{a} u=\boldsymbol{h}(\boldsymbol{x}) u(x)+\boldsymbol{f}(\boldsymbol{x}, u(x))$
(H) h "negligible" with respect to $\frac{a(x /|x|)}{|x|^{2}}$ at singularity:
$\lim _{r \rightarrow 0^{+}} \eta_{0}(r)=0, \quad \frac{\eta_{0}(r)}{r} \in L^{1}, \quad \frac{1}{r} \int_{0}^{r} \frac{\eta_{0}(s)}{s} d s \in L^{1}, \quad \frac{\eta_{1}(r)}{r} \in L^{1}, \quad \frac{1}{r} \int_{0}^{r} \frac{\eta_{1}(s)}{s} d s \in L^{1}$,

Examples: • $h,(x \cdot \nabla h) \in L^{s}$ for some $s>N / 2$

- $a \in L^{\infty}\left(\mathbb{S}^{N-1}\right) \leadsto h(x)=O\left(|x|^{-2+\varepsilon}\right)$
- $\frac{a(x||x|)}{|x|^{2}}=\sum_{j, m} \frac{\lambda_{j} \lambda_{m}}{\left|x^{j}-x^{m}\right|^{2}} \leadsto|h(x)|+|\nabla h \cdot x|=O\left(\sum\left|x^{j}-x^{m}\right|^{-2+\varepsilon}\right)$
(F) \boldsymbol{f} at most critical: $|f(x, s) s|+\left|f_{s}^{\prime}(x, s) s^{2}\right|+\left|\nabla_{x} F(x, s) \cdot x\right| \leqslant C_{f}\left(|s|^{2}+|s|^{*}\right)$

$$
\text { where } F(x, s)=\int_{0}^{s} f(x, t) d t, \quad 2^{*}=\frac{2 N}{N-2} .
$$

The angular operator

We aim to describe the rate and the shape of the singularity of solutions, by relating them to the eigenvalues and the eigenfunctions of a Schrödinger operator on \mathbb{S}^{N-1} corresponding to the angular part of \mathcal{L}_{a} :

$$
L_{a}:=-\Delta_{\mathbb{S}^{N-1}}-a
$$

The angular operator

We aim to describe the rate and the shape of the singularity of solutions, by relating them to the eigenvalues and the eigenfunctions of a Schrödinger operator on \mathbb{S}^{N-1} corresponding to the angular part of \mathcal{L}_{a} :

$$
L_{a}:=-\Delta_{\mathbb{S}^{N-1}}-a
$$

If $\Lambda(a)<1, L_{a}$ admits a diverging sequence of real eigenvalues

$$
\mu_{1}(a)<\mu_{2}(a) \leqslant \cdots \leqslant \mu_{k}(a) \leqslant \cdots
$$

The angular operator

We aim to describe the rate and the shape of the singularity of solutions, by relating them to the eigenvalues and the eigenfunctions of a Schrödinger operator on \mathbb{S}^{N-1} corresponding to the angular part of \mathcal{L}_{a} :

$$
L_{a}:=-\Delta_{\mathbb{S}^{N-1}}-a
$$

If $\Lambda(a)<1, L_{a}$ admits a diverging sequence of real eigenvalues

$$
\mu_{1}(a)<\mu_{2}(a) \leqslant \cdots \leqslant \mu_{k}(a) \leqslant \cdots
$$

$$
\begin{equation*}
\mu_{1}(a)>-\left(\frac{N-2}{2}\right)^{2} \tag{PD}
\end{equation*}
$$

The Almgren type frequency function

In an open bounded $\Omega \ni 0$, let u be a $H^{1}(\Omega)$-weak solution to

$$
\mathcal{L}_{a} u=h(x) u(x)+f(x, u(x))
$$

For small $r>0$ define

$$
\begin{aligned}
& D(r)=\frac{1}{r^{N-2}} \int_{B_{r}}\left(|\nabla u(x)|^{2}-\frac{a\left(\frac{x}{|x|}\right)}{|x|^{2}} u^{2}(x)-h(x) u^{2}(x)-f(x, u(x)) u(x)\right) d x, \\
& H(r)=\frac{1}{r^{N-1}} \int_{\partial B_{r}}|u|^{2} d S .
\end{aligned}
$$

The Almgren type frequency function

In an open bounded $\Omega \ni 0$, let u be a $H^{1}(\Omega)$-weak solution to

$$
\mathcal{L}_{a} u=h(x) u(x)+f(x, u(x))
$$

For small $r>0$ define
$D(r)=\frac{1}{r^{N-2}} \int_{B_{r}}\left(|\nabla u(x)|^{2}-\frac{a\left(\frac{x}{|x|}\right)}{|x|^{2}} u^{2}(x)-h(x) u^{2}(x)-f(x, u(x)) u(x)\right) d x$,
$H(r)=\frac{1}{r^{N-1}} \int_{\partial B_{r}}|u|^{2} d S$.

If (PD) holds and $u \not \equiv 0$,
$\Rightarrow H(r)>0$ for small $r>0$
Almgren type frequency function

$$
\mathcal{N}(r)=\mathcal{N}_{u, h, f}(r)=\frac{D(r)}{H(r)}
$$

is well defined in a suitably small interval $\left(0, r_{0}\right)$.

"Perturbed monotonicity"

\mathcal{N}^{\prime} is an integrable perturbation of a nonnegative function: enough to prove the existence of $\lim _{r \rightarrow 0^{+}} \mathcal{N}(r)$

"Perturbed monotonicity"

\mathcal{N}^{\prime} is an integrable perturbation of a nonnegative function: enough to prove the existence of $\lim _{r \rightarrow 0^{+}} \mathcal{N}(r)$
$\mathcal{N} \in W_{\text {loc }}^{1,1}\left(0, r_{0}\right)$ and, in a distributional sense and for a.e. $r \in\left(0, r_{0}\right)$,

$$
\mathcal{N}^{\prime}(r)=\frac{2 r\left[\left(\int_{\partial B_{r}}\left|\frac{\partial u}{\partial \nu}\right|^{2} d S\right)\left(\int_{\partial B_{r}}|u|^{2} d S\right)-\left(\int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S\right)^{2}\right]}{\left(\int_{\partial B_{r}}|u|^{2} d S\right)^{2}}+\left(\mathcal{R}_{h}+\mathcal{R}_{f}^{1}+\mathcal{R}_{f}^{2}\right)(r)
$$

$$
\begin{gathered}
\mathcal{R}_{h}(r)=-\frac{\int_{B_{r}}(2 h(x)+\nabla h(x) \cdot x)|u|^{2} d x}{\int_{\partial B_{r}}|u|^{2} d S}, \quad \mathcal{R}_{f}^{1}(r)=\frac{r \int_{\partial B_{r}}(2 F(x, u)-f(x, u) u) d S}{\int_{\partial B_{r}}|u|^{2} d S} \\
\mathcal{R}_{f}^{2}(r)=\frac{\int_{B_{r}}\left((N-2) f(x, u) u-2 N F(x, u)-2 \nabla_{x} F(x, u) \cdot x\right) d x}{\int_{\partial B_{r}}|u|^{2} d S} .
\end{gathered}
$$

"Perturbed monotonicity"

\mathcal{N}^{\prime} is an integrable perturbation of a nonnegative function: enough to prove the existence of $\lim _{r \rightarrow 0^{+}} \mathcal{N}(r)$
$\mathcal{N} \in W_{\text {loc }}^{1,1}\left(0, r_{0}\right)$ and, in a distributional sense and for a.e. $r \in\left(0, r_{0}\right)$,

$$
\mathcal{N}^{\prime}(r)=\underbrace{\frac{2 r\left[\left(\int_{\partial B_{r}}\left|\frac{\partial u}{\partial \nu}\right|^{2} d S\right)\left(\int_{\partial B_{r}}|u|^{2} d S\right)-\left(\int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S\right)^{2}\right]}{\left(\int_{\partial B_{r}}|u|^{2} d S\right)^{2}}}_{\text {Schwarz's inequality }}+\left(\mathcal{R}_{h}+\mathcal{R}_{f}^{1}+\mathcal{R}_{f}^{2}\right)(r)
$$

$$
\begin{gathered}
\mathcal{R}_{h}(r)=-\frac{\int_{B_{r}}(2 h(x)+\nabla h(x) \cdot x)|u|^{2} d x}{\int_{\partial B_{r}}|u|^{2} d S}, \quad \mathcal{R}_{f}^{1}(r)=\frac{r \int_{\partial B_{r}}(2 F(x, u)-f(x, u) u) d S}{\int_{\partial B_{r}}|u|^{2} d S} \\
\mathcal{R}_{f}^{2}(r)=\frac{\int_{B_{r}}\left((N-2) f(x, u) u-2 N F(x, u)-2 \nabla_{x} F(x, u) \cdot x\right) d x}{\int_{\partial B_{r}}|u|^{2} d S} .
\end{gathered}
$$

"Perturbed monotonicity"

\mathcal{N}^{\prime} is an integrable perturbation of a nonnegative function: enough to prove the existence of $\lim _{r \rightarrow 0^{+}} \mathcal{N}(r)$
$\mathcal{N} \in W_{\text {loc }}^{1,1}\left(0, r_{0}\right)$ and, in a distributional sense and for a.e. $r \in\left(0, r_{0}\right)$,

$$
\mathcal{N}^{\prime}(r)=\underbrace{\frac{2 r\left[\left(\left.\int_{\partial B_{r} \mid} \frac{\partial u}{\partial \nu}\right|^{2} d S\right)\left(\int_{\partial B_{r}}|u|^{2} d S\right)-\left(\int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S\right)^{2}\right]}{\left(\int_{\partial B_{r}}|u|^{2} d S\right)^{2}}}_{\begin{array}{c}
\text { Schwarz's inequality } \\
\mathrm{V}
\end{array}}+\underbrace{\left(\mathcal{R}_{h}+\mathcal{R}_{f}^{1}+\mathcal{R}_{f}^{2}\right)(r)}_{\text {integrable }}
$$

$$
\begin{gathered}
\mathcal{R}_{h}(r)=-\frac{\int_{B_{r}}(2 h(x)+\nabla h(x) \cdot x)|u|^{2} d x}{\int_{\partial B_{r}}|u|^{2} d S}, \quad \mathcal{R}_{f}^{1}(r)=\frac{r \int_{\partial B_{r}}(2 F(x, u)-f(x, u) u) d S}{\int_{\partial B_{r}}|u|^{2} d S} \\
\mathcal{R}_{f}^{2}(r)=\frac{\int_{B_{r}}\left((N-2) f(x, u) u-2 N F(x, u)-2 \nabla_{x} F(x, u) \cdot x\right) d x}{\int_{\partial B_{r}}|u|^{2} d S} .
\end{gathered}
$$

"Perturbed monotonicity"

\mathcal{N}^{\prime} is an integrable perturbation of a nonnegative function: enough to prove the existence of $\lim _{r \rightarrow 0^{+}} \mathcal{N}(r)$
$\mathcal{N} \in W_{\text {loc }}^{1,1}\left(0, r_{0}\right)$ and, in a distributional sense and for a.e. $r \in\left(0, r_{0}\right)$,
$\mathcal{N}^{\prime}(r)=\underbrace{\frac{2 r\left[\left(\int_{\partial B_{r} \mid}\left|\frac{\partial u}{\partial \nu}\right|^{2} d S\right)\left(\int_{\partial B_{r}}|u|^{2} d S\right)-\left(\int_{\partial B_{r}} u \frac{\partial u}{\partial \nu} d S\right)^{2}\right]}{\left(\int_{\partial B_{r}}|u|^{2} d S\right)^{2}}}_{\begin{array}{c}\text { Schwarz'S inequality } \\ V\end{array}}+\underbrace{\left(\mathcal{R}_{h}+\mathcal{R}_{f}^{1}+\mathcal{R}_{f}^{2}\right)(r)}_{\text {integrable }}$
$\mathcal{N}^{\prime}=$ nonnegative function $+L^{1}$-function on $(0, \tilde{r}) \Longrightarrow$

$$
\mathcal{N}(r)=\mathcal{N}(\tilde{r})-\int_{r}^{\tilde{r}} \mathcal{N}^{\prime}(s) d s \quad \begin{aligned}
& \text { admits a limit } \gamma \text { as } r \rightarrow 0^{+} \\
& \text {which is necessarily finite }
\end{aligned}
$$

Blow-up:

Set

$$
w^{\lambda}(x)=\frac{u(\lambda x)}{\sqrt{H(\lambda)}}, \quad \text { so that } \int_{\partial B_{1}}\left|w^{\lambda}\right|^{2} d S=1
$$

$\left\{w^{\lambda}\right\}_{\lambda \in(0, \bar{\lambda})}$ is bounded in $H^{1}\left(B_{1}\right) \Longrightarrow$ for any $\lambda_{n} \rightarrow 0^{+}, w^{\lambda_{n_{k}}} \rightharpoonup w$ in $H^{1}\left(B_{1}\right)$ along a subsequence $\lambda_{n_{k}} \rightarrow 0^{+}$, and $\int_{\partial B_{1}}|w|^{2} d S=1$.

Blow－up：

Set

$$
w^{\lambda}(x)=\frac{u(\lambda x)}{\sqrt{H(\lambda)}}, \quad \text { so that } \int_{\partial B_{1}}\left|w^{\lambda}\right|^{2} d S=1 .
$$

$\left\{w^{\lambda}\right\}_{\lambda \in(0, \bar{\lambda})}$ is bounded in $H^{1}\left(B_{1}\right) \Longrightarrow$ for any $\lambda_{n} \rightarrow 0^{+}, w^{\lambda_{n_{k}}} \rightharpoonup w$ in $H^{1}\left(B_{1}\right)$ along a subsequence $\lambda_{n_{k}} \rightarrow 0^{+}$，and $\int_{\partial B_{1}}|w|^{2} d S=1$ ．

$$
\begin{aligned}
& \left(E_{k}\right)-\mathcal{L}_{a} w^{\lambda_{n_{k}}}=\lambda_{n_{k}}^{2} h\left(\lambda_{n_{k}} x\right) w^{\lambda_{n_{k}}}+\frac{\lambda_{n_{k}}^{2}}{\sqrt{H\left(\lambda_{n_{k}}\right)}} f\left(\lambda_{n_{k}} x, \sqrt{H\left(\lambda_{n_{k}}\right)} w^{\lambda_{n_{k}}}\right) \\
& \text { 新列 } \\
& \text { (E) } \mathcal{L}_{a} w(x)=0
\end{aligned}
$$

$\left(E_{k}\right)-(E)$ tested with $w^{\lambda_{n_{k}}}-w \Rightarrow w^{\lambda_{n_{k}}} \rightarrow w$ in $H^{1}\left(B_{1}\right)$

Blow-up:

Set

$$
w^{\lambda}(x)=\frac{u(\lambda x)}{\sqrt{H(\lambda)}}, \quad \text { so that } \int_{\partial B_{1}}\left|w^{\lambda}\right|^{2} d S=1 .
$$

$\left\{w^{\lambda}\right\}_{\lambda \in(0, \bar{\lambda})}$ is bounded in $H^{1}\left(B_{1}\right) \Longrightarrow$ for any $\lambda_{n} \rightarrow 0^{+}, w^{\lambda_{n_{k}}} \rightharpoonup w$ in $H^{1}\left(B_{1}\right)$ along a subsequence $\lambda_{n_{k}} \rightarrow 0^{+}$, and $\int_{\partial B_{1}}|w|^{2} d S=1$.

$$
\begin{aligned}
&\left(E_{k}\right)-\mathcal{L}_{a} w^{\lambda_{n_{k}}}=\lambda_{n_{k}}^{2} h\left(\lambda_{n_{k}} x\right) w^{\lambda_{n_{k}}}+\frac{\lambda_{n_{k}}^{2}}{\left.\sqrt{H\left(\lambda_{n_{k}}\right.}\right)} f\left(\lambda_{n_{k}} x, \sqrt{H\left(\lambda_{n_{k}}\right)} w^{\lambda_{n_{k}}}\right) \\
& \\
&\text { (E) }) \\
& \mathcal{L}_{a} w(x)=0
\end{aligned}
$$

$\left(E_{k}\right)-(E)$ tested with $w^{\lambda_{n_{k}}}-w \Rightarrow w^{\lambda_{n_{k}}} \rightarrow w$ in $H^{1}\left(B_{1}\right)$
If $\mathcal{N}_{k}(r)$ the Almgren frequency function associated to $\left(E_{k}\right)$ and $\mathcal{N}_{w}(r)$ is the Almgren frequency function associated to (E), then

$$
\lim _{k \rightarrow \infty} \mathcal{N}_{k}(r)=\mathcal{N}_{w}(r) \quad \text { for all } r \in(0,1)
$$

Blow-up:

By scaling

$$
\begin{gathered}
\mathcal{N}_{k}(r)=\mathcal{N}\left(\lambda_{n_{k}} r\right) \\
\Downarrow \\
\mathcal{N}_{w}(r)=\lim _{k \rightarrow \infty} \mathcal{N}\left(\lambda_{n_{k}} r\right)=\gamma \quad \forall r \in(0,1)
\end{gathered}
$$

Blow-up:

By scaling

$$
\begin{gathered}
\mathcal{N}_{k}(r)=\mathcal{N}\left(\lambda_{n_{k}} r\right) \\
\Downarrow \\
\mathcal{N}_{w}(r)=\lim _{k \rightarrow \infty} \mathcal{N}\left(\lambda_{n_{k}} r\right)=\gamma \quad \forall r \in(0,1)
\end{gathered}
$$

Then \mathcal{N}_{w} is constant in $(0,1)$ and hence $\mathcal{N}_{w}^{\prime}(r)=0$ for any $r \in(0,1)$

$$
\left(\int_{\partial B_{r}}\left|\frac{\partial w}{\partial \nu}\right|^{2} d S\right) \cdot\left(\int_{\partial B_{r}}|w|^{2} d S\right)-\left(\int_{\partial B_{r}} w \frac{\partial w}{\partial \nu} d S\right)^{2}=0
$$

Therefore w and $\frac{\partial w}{\partial \nu}$ are parallel as vectors in $L^{2}\left(\partial B_{r}\right)$, i.e. \exists a real valued function $\eta=\eta(r)$ such that $\frac{\partial w}{\partial \nu}(r, \theta)=\eta(r) w(r, \theta)$ for $r \in(0,1)$.

Blow-up:

By scaling

$$
\begin{gathered}
\mathcal{N}_{k}(r)=\mathcal{N}\left(\lambda_{n_{k}} r\right) \\
\Downarrow \\
\mathcal{N}_{w}(r)=\lim _{k \rightarrow \infty} \mathcal{N}\left(\lambda_{n_{k}} r\right)=\gamma \quad \forall r \in(0,1)
\end{gathered}
$$

Then \mathcal{N}_{w} is constant in $(0,1)$ and hence $\mathcal{N}_{w}^{\prime}(r)=0$ for any $r \in(0,1)$

$$
\left(\int_{\partial B_{r}}\left|\frac{\partial w}{\partial \nu}\right|^{2} d S\right) \cdot\left(\int_{\partial B_{r}}|w|^{2} d S\right)-\left(\int_{\partial B_{r}} w \frac{\partial w}{\partial \nu} d S\right)^{2}=0
$$

Therefore w and $\frac{\partial w}{\partial \nu}$ are parallel as vectors in $L^{2}\left(\partial B_{r}\right)$, i.e. \exists a real valued function $\eta=\eta(r)$ such that $\frac{\partial w}{\partial \nu}(r, \theta)=\eta(r) w(r, \theta)$ for $r \in(0,1)$. After integration we obtain

$$
w(r, \theta)=e^{\int_{1}^{r} \eta(s) d s} w(1, \theta)=\varphi(r) \psi(\theta)
$$

Blow-up:

$$
w(r, \theta)=\varphi(r) \psi(\theta)
$$

Rewriting equation $(E) \mathcal{L}_{a} w(x)=0$ in polar coordinates we obtain

$$
\left(-\varphi^{\prime \prime}(r)-\frac{N-1}{r} \varphi^{\prime}(r)\right) \psi(\theta)+r^{-2} \varphi(r) L_{a} \psi(\theta)=0 .
$$

Blow-up:

$$
w(r, \theta)=\varphi(r) \psi(\theta)
$$

Rewriting equation $(E) \mathcal{L}_{a} w(x)=0$ in polar coordinates we obtain

$$
\left(-\varphi^{\prime \prime}(r)-\frac{N-1}{r} \varphi^{\prime}(r)\right) \psi(\theta)+r^{-2} \varphi(r) L_{a} \psi(\theta)=0 .
$$

Then ψ is an eigenfunction of the operator L_{a}. Let $\mu_{k_{0}}(a)$ be the corresponding eigenvalue $\Longrightarrow \varphi(r)$ solves

$$
-\varphi^{\prime \prime}(r)-\frac{N-1}{r} \varphi(r)+r^{-2} \mu_{k_{0}}(a) \varphi(r)=0
$$

Blow-up:

$$
w(r, \theta)=\varphi(r) \psi(\theta)
$$

Rewriting equation $(E) \mathcal{L}_{a} w(x)=0$ in polar coordinates we obtain

$$
\left(-\varphi^{\prime \prime}(r)-\frac{N-1}{r} \varphi^{\prime}(r)\right) \psi(\theta)+r^{-2} \varphi(r) L_{a} \psi(\theta)=0
$$

Then ψ is an eigenfunction of the operator L_{a}. Let $\mu_{k_{0}}(a)$ be the corresponding eigenvalue $\Longrightarrow \varphi(r)$ solves

$$
-\varphi^{\prime \prime}(r)-\frac{N-1}{r} \varphi(r)+r^{-2} \mu_{k_{0}}(a) \varphi(r)=0
$$

Then $\varphi(r)=r^{\sigma^{+}}$with $\sigma^{+}=-\frac{N-2}{2}+\sqrt{\left(\frac{N-2}{2}\right)^{2}+\mu_{k_{0}}(a)}$.

$$
w(r, \theta)=r^{\sigma^{+}} \psi(\theta)
$$

From $\mathcal{N}_{w}(r) \equiv \gamma$, we deduce that $\gamma=\sigma^{+}$.

Asymptotics at the singularity

Step 1: any $\lambda_{n} \rightarrow 0^{+}$admits a subsequence $\left\{\lambda_{n_{k}}\right\}_{k \in \mathbb{N}}$ s.t.

$$
\frac{u\left(\lambda_{n_{k}} x\right)}{\sqrt{H\left(\lambda_{n_{k}}\right)}} \rightarrow|x|^{\gamma} \psi\left(\frac{x}{|x|}\right) \quad \text { strongly in } H^{1}\left(B_{1}\right)
$$

$\gamma=-\frac{N-2}{2}+\sqrt{\left(\frac{N-2}{2}\right)^{2}+\mu_{k_{0}}(a)}, \psi$ eigenfunction associated to $\mu_{k_{0}}$.

Asymptotics at the singularity

Step 1: any $\lambda_{n} \rightarrow 0^{+}$admits a subsequence $\left\{\lambda_{n_{k}}\right\}_{k \in \mathbb{N}}$ s.t.

$$
\frac{u\left(\lambda_{n_{k}} x\right)}{\sqrt{H\left(\lambda_{n_{k}}\right)}} \rightarrow|x|^{\gamma} \psi\left(\frac{x}{|x|}\right) \quad \text { strongly in } H^{1}\left(B_{1}\right)
$$

$\gamma=-\frac{N-2}{2}+\sqrt{\left(\frac{N-2}{2}\right)^{2}+\mu_{k_{0}}(a)}, \psi$ eigenfunction associated to $\mu_{k_{0}}$.
Step 2: $\quad \lim _{r \rightarrow 0^{+}} \frac{H(r)}{r^{2} \gamma}$ is finite and >0 (Step $1+$ separation of variables)

Asymptotics at the singularity

Step 1: any $\lambda_{n} \rightarrow 0^{+}$admits a subsequence $\left\{\lambda_{n_{k}}\right\}_{k \in \mathbb{N}}$ s.t.

$$
\frac{u\left(\lambda_{n_{k} x} x\right)}{\sqrt{H\left(\lambda_{n_{k}}\right)}} \rightarrow|x|^{\gamma} \psi\left(\frac{x}{|x|}\right) \quad \text { strongly in } H^{1}\left(B_{1}\right)
$$

$\gamma=-\frac{N-2}{2}+\sqrt{\left(\frac{N-2}{2}\right)^{2}+\mu_{k_{0}}(a)}, \psi$ eigenfunction associated to $\mu_{k_{0}}$.
Step 2: $\quad \lim _{r \rightarrow 0^{+}} \frac{H(r)}{r^{2} \gamma}$ is finite and >0 (Step $1+$ separation of variables)
Step 3: So $\lambda_{n_{k}}^{-\gamma} u\left(\lambda_{n_{k}} \theta\right) \rightarrow \sum_{i=j_{0}}^{j_{0}+m-1} \beta_{i} \psi_{i}(\theta)$ in $L^{2}\left(\mathbb{S}^{N-1}\right)$ where $\left\{\psi_{i}\right\}_{i=j_{0}}^{j_{0}+m-1}$ is an $L^{2}\left(\mathbb{S}^{N-1}\right)$-orthonormal basis for the eigenspace associated to $\mu_{k_{0}}$.
Expanding $u(\lambda \theta)=\sum_{k=1}^{\infty} \varphi_{k}(\lambda) \psi_{k}(\theta)$, we compute the β_{i} 's.

Asymptotics at the singularity
$\beta_{i}=\lim _{k \rightarrow \infty} \lambda_{n_{k}}^{-\gamma} \varphi_{i}\left(\lambda_{n_{k}}\right)$
$=\int_{\mathbb{S}^{N-1}}\left[R^{-\gamma} u(R \theta)+\int_{0}^{R} \frac{h(s \theta) u(s \theta)+f(s \theta, u(s \theta))}{2 \gamma+N-2}\left(s^{1-\gamma}-\frac{s^{\gamma+N-1}}{R^{2 \gamma+N-2}}\right) d s\right] \psi_{i}(\theta) d S(\theta)$
depends neither on the sequence $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}$ nor on its subsequence $\left\{\lambda_{n_{k}}\right\}_{k \in \mathbb{N}}$
\Longrightarrow the convergences actually hold as $\lambda \rightarrow \mathbf{0}^{+}$.

Asymptotics at the singularity

$$
\begin{aligned}
\beta_{i} & =\lim _{k \rightarrow \infty} \lambda_{n_{k}}^{-\gamma} \varphi_{i}\left(\lambda_{n_{k}}\right) \\
& =\int_{\mathbb{S}^{N-1}}\left[R^{-\gamma} u(R \theta)+\int_{0}^{R} \frac{h(s \theta) u(s \theta)+f(s \theta, u(s \theta))}{2 \gamma+N-2}\left(s^{1-\gamma}-\frac{s^{\gamma+N-1}}{R^{2 \gamma+N-2}}\right) d s\right] \psi_{i}(\theta) d S(\theta)
\end{aligned}
$$

Theorem [F.-Ferrero-Terracini (2010)] Let $\Omega \ni 0$ be a bounded open set in $\mathbb{R}^{N}, N \geqslant 3$, (PD), (H), (F) hold. If $u \not \equiv 0$ weakly solves $\mathcal{L}_{a} u=h u+f(x, u)$ in Ω, then $\exists k_{0} \in \mathbb{N}, k_{0} \geqslant 1$, s. t.

$$
\gamma=\lim _{r \rightarrow 0^{+}} \mathcal{N}_{u, h_{f} f}(r)=-\frac{N-2}{2}+\sqrt{\left(\frac{N-2}{2}\right)^{2}+\mu_{k_{0}}(a)} .
$$

Furthermore, as $\lambda \rightarrow 0^{+}$,

$$
\lambda^{-\gamma} u(\lambda x) \rightarrow|x|^{\gamma} \sum_{i=j_{0}}^{j_{0}+m-1} \beta_{i} \psi_{i}\left(\frac{x}{|x|}\right) \quad \text { in } H^{1}\left(B_{1}\right)
$$

3. Parabolic monotonicity formula

[Poon, Comm. PDE's(1996)]
For u solving $u_{t}+\Delta u=0$ in $\mathbb{R}^{N} \times(0, T)$, define
$D(t)=t \int_{\mathbb{R}^{\mathbb{N}}}|\nabla u(x, t)|^{2} G(x, t) d x$
$H(t)=\int_{\mathbb{R}^{N}} u^{2}(x, t) G(x, t) d x$

Parabolic Almgren frequency

$$
\mathcal{N}(t)=\frac{D(t)}{H(t)}
$$

where

$$
G(x, t)=t^{-N / 2} \exp \left(-\frac{|x|^{2}}{4 t}\right)
$$

is the heat kernel satisfying

$$
G_{t}-\Delta G=0 \quad \text { and } \quad \nabla G(x, t)=-\frac{x}{2 t} G(x, t)
$$

3. Parabolic monotonicity formula

$$
\mathcal{N} \nearrow \text { in } t
$$

3. Parabolic monotonicity formula

$$
\mathcal{N} \nearrow \text { in } t
$$

Proof.

$$
\mathcal{N}^{\prime}(t)=\underbrace{\frac{2 t\left[\left(\int_{\mathbb{R}^{N}}\left|u_{t}+\frac{\nabla u \cdot x}{2 t}\right|^{2} G d x\right)\left(\int_{\mathbb{R}^{N}} u^{2} G d x\right)-\left(\int_{\mathbb{R}^{N}}\left(u_{t}+\frac{\nabla u \cdot x}{2 t}\right) u G d x\right)^{2}\right]}{H^{2}(t)}}_{\text {Schwarz's inequality }}
$$

3. Parabolic monotonicity formula

$\mathcal{N} \nearrow$ in t

Proof.

$$
\mathcal{N}^{\prime}(t)=\underbrace{\frac{2 t\left[\left(\int_{\mathbb{R}^{N}}\left|u_{t}+\frac{\nabla u \cdot x}{2 t}\right|^{2} G d x\right)\left(\int_{\mathbb{R}^{N}} u^{2} G d x\right)-\left(\int_{\mathbb{R}^{N}}\left(u_{t}+\frac{\nabla u \cdot x}{2 t}\right) u G d x\right)^{2}\right]}{H^{2}(t)}}_{\text {Schwarz's inequality }}
$$

Doubling properties and unique continuation:
[Escauriaza-Fernández, Ark. Mat. (2003)]
[Fernández, Comm. PDEs (2003)]
[Escauriaza-Fernández-Vessella, Appl. Analysis (2006)]
[Escauriaza-Kenig-Ponce-Vega, Math. Res. Lett. (2006)]
See also [Caffarelli-Karakhanyan-Lin, J. Fixed Point Theory Appl. (2009)]

4. Asymptotics at singularities (parabolic case)

$$
u_{t}+\Delta u+\frac{a(x /|x|)}{|x|^{2}} u+h(x, t) u=0, \quad \text { in } \mathbb{R}^{N} \times(0, T)
$$

where $T>0, N \geqslant 3, a \in L^{\infty}\left(\mathbb{S}^{N-1}\right)$, and
(H) $\left\{\begin{array}{l}|h(x, t)| \leqslant C_{h}\left(1+|x|^{-2+\varepsilon}\right) \quad \text { for all } t \in(0, T), \text { a.e. } x \in \mathbb{R}^{N} \\ h, h_{t} \in L^{r}\left((0, T), L^{N / 2}\right), r>1, \quad h_{t} \in L_{\text {loc }}^{\infty}\left((0, T), L^{N / 2}\right) .\end{array}\right.$

4. Asymptotics at singularities (parabolic case)

$$
u_{t}+\Delta u+\frac{a(x /|x|)}{|x|^{2}} u+h(x, t) u=0, \quad \text { in } \mathbb{R}^{N} \times(0, T)
$$

where $T>0, N \geqslant 3, a \in L^{\infty}\left(\mathbb{S}^{N-1}\right)$, and
(H) $\left\{\begin{array}{l}|h(x, t)| \leqslant C_{h}\left(1+|x|^{-2+\varepsilon}\right) \quad \text { for all } t \in(0, T), \text { a.e. } x \in \mathbb{R}^{N} \\ h, h_{t} \in L^{r}\left((0, T), L^{N / 2}\right), r>1, \quad h_{t} \in L_{\text {loc }}^{\infty}\left((0, T), L^{N / 2}\right) .\end{array}\right.$

Remark: also subcritical semilinear perturbations $f(x, t, s)$ can be treated

4. Asymptotics at singularities (parabolic case)

$$
u_{t}+\Delta u+\frac{a(x /|x|)}{|x|^{2}} u+h(x, t) u=0, \quad \text { in } \mathbb{R}^{N} \times(0, T)
$$

where $T>0, N \geqslant 3, a \in L^{\infty}\left(\mathbb{S}^{N-1}\right)$, and
(H) $\left\{\begin{array}{l}|h(x, t)| \leqslant C_{h}\left(1+|x|^{-2+\varepsilon}\right) \quad \text { for all } t \in(0, T), \text { a.e. } x \in \mathbb{R}^{N} \\ h, h_{t} \in L^{r}\left((0, T), L^{N / 2}\right), r>1, \quad h_{t} \in L_{\text {loc }}^{\infty}\left((0, T), L^{N / 2}\right) .\end{array}\right.$

Parabolic Almgren type frequency function

$\mathcal{N}(t)=\frac{t \int_{\mathbb{R}^{N}}\left(|\nabla u(x, t)|^{2}-\frac{a(x /|x|)}{|x|^{2}} u^{2}(x, t)-h(x, t) u^{2}(x, t)\right) G(x, t) d x}{\int_{\mathbb{R}^{N}} u^{2}(x, t) G(x, t) d x}$
where $G(x, t)=t^{-N / 2} \exp \left(-\frac{|x|^{2}}{4 t}\right)$

"Perturbed monotonicity"

\mathcal{N}^{\prime} is an L^{1}-perturbation of a nonnegative function as $t \rightarrow 0^{+}$

$$
\exists \lim _{t \rightarrow 0^{+}} \stackrel{\mathcal{N}}{ }(t)=\gamma .
$$

"Perturbed monotonicity"

\mathcal{N}^{\prime} is an L^{1}-perturbation of a nonnegative function as $t \rightarrow 0^{+}$

$$
\exists \lim _{t \rightarrow 0^{+}} \stackrel{\Downarrow}{\mathcal{N}}(t)=\gamma .
$$

Blow-up for scaling $u_{\lambda}(x, t)=u\left(\lambda x, \lambda^{2} t\right)$

Ornstein-Uhlenbeck type operator

γ is an eigenvalue of

$$
\mathfrak{L}_{a}=-\Delta+\frac{x}{2} \cdot \nabla-\frac{a(x /|x|)}{|x|^{2}}
$$

i.e.

$$
\gamma=\gamma_{m, k}=m-\frac{\alpha_{k}}{2}, \quad \alpha_{k}=\frac{N-2}{2}-\sqrt{\left(\frac{N-2}{2}\right)^{2}+\mu_{k}(a)},
$$

for some $k, m \in \mathbb{N}, k \geqslant 1$.

Asymptotics at the singularity

Theorem [F.-Primo, to appear in DCDS-A]

Let $u \not \equiv 0$ be a weak solution to $u_{t}+\Delta u+\frac{a(x /|x|)}{|x|^{2}} u+h(x, t) u=0$, with h satisfying (H) and $a \in L^{\infty}\left(\mathbb{S}^{N-1}\right)$ satisfying (PD). Then $\exists m_{0}, k_{0} \in \mathbb{N}$, $k_{0} \geqslant 1$, such that $\lim _{t \rightarrow 0^{+}} \mathcal{N}(t)=\gamma_{m_{0}, k_{0}}$. Furthermore $\forall \tau \in(0,1)$

$$
\begin{aligned}
& \lim _{\lambda \rightarrow 0^{+}} \int_{\tau}^{1}\left\|\lambda^{-2 \gamma_{m_{0}, k_{0}}} u\left(\lambda x, \lambda^{2} t\right)-t^{\gamma_{m_{0}}, k_{0}} V(x / \sqrt{t})\right\|_{\mathcal{H}_{t}}^{2} d t=0 \\
& \lim _{\lambda \rightarrow 0^{+}} \sup _{t \in[\tau, 1]}\left\|\lambda^{-2 \gamma_{m_{0}}, k_{0}} u\left(\lambda x, \lambda^{2} t\right)-t^{\gamma_{m_{0}}, k_{0}} V(x / \sqrt{t})\right\|_{\mathcal{L}_{t}}=0
\end{aligned}
$$

where V is an eigenfunction of \mathfrak{L}_{a} associated to the eigenvalue $\gamma_{m_{0}, k_{0}}$.

$$
\|u\|_{\mathcal{H}_{t}}=\left(\int_{\mathbb{R}^{N}}\left(t|\nabla u(x)|^{2}+|u(x)|^{2}\right) G(x, t) d x\right)^{1 / 2}, \quad\|u\|_{\mathcal{L}_{t}}=\left(\int_{\mathbb{R}^{N}}|u(x)|^{2} G(x, t) d x\right)^{1 / 2}
$$

Eigenfunctions of \mathfrak{L}_{a}

A basis of the eigenspace corresponding to $\gamma_{m, k}=m-\frac{\alpha_{k}}{2}$ is

$$
\left\{V_{n, j}: j, n \in \mathbb{N}, j \geqslant 1, \gamma_{m, k}=n-\frac{\alpha_{j}}{2}\right\},
$$

where

$$
V_{n, j}(x)=|x|^{-\alpha_{j}} P_{j, n}\left(\frac{|x|^{2}}{4}\right) \psi_{j}\left(\frac{x}{|x|}\right),
$$

ψ_{j} is an eigenfunction of the operator $L_{a}=-\Delta_{\mathbb{S}^{N-1}}-a(\theta)$ associated to the j-th eigenvalue $\mu_{j}(a)$, and

$$
P_{j, n}(t)=\sum_{i=0}^{n} \frac{(-n)_{i}}{\left(\frac{N}{2}-\alpha_{j}\right)_{i}} \frac{t^{i}}{i!},
$$

$(s)_{i}=\prod_{j=0}^{i-1}(s+j),(s)_{0}=1$.

