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The triangulated category of K-motives DKeff
� .k/

by

GRIGORY GARKUSHA AND IVAN PANIN�

Abstract

For any perfect field k a triangulated category of K-motives DKeff
� .k/ is con-

structed in the style of Voevodsky’s construction of the categoryDM eff
� .k/. To

each smooth k-variety X the K-motive MK.X/ is associated in the category
DKeff
� .k/ and

Kn.X/D HomDKeff
� .k/

.MK.X/Œn�;MK.pt//; n 2 Z;

where pt D Spec.k/ and K.X/ is Quillen’s K-theory of X .
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1. Introduction

The Voevodsky triangulated category of motives DM eff
� .k/ [16] provides a natural

framework to study motivic cohomology. In [2] the authors constructed a triangu-
lated category of K-motives providing a natural framework for Grayson’s motivic
spectral sequence [5]

E
pq
2 DH

p�q;�q
M .X;Z/H)K�p�q.X/

that relates the motivic cohomology groups of a smooth variety X to its algebraic
K-groups. The main idea was to use a kind of motivic algebra of spectral categories
and modules over them.

In this paper an alternative approach to constructing a triangulated category of
K-motives is presented. We work in the framework of strict V -spectral categories
introduced in the paper (Definition 2.5). The main feature of such a spectral
category O is that it is connective and Nisnevich excisive in the sense of [2], and
�0O-(pre)sheaves, where �0O is a ringoid associated to O, share lots of common
properties with (pre)sheaves with transfers (or Cor-(pre)sheaves) in the sense of
Voevodsky [15].
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To any strict V -spectral category over k-smooth varieties we associate a
triangulated categoryDOeff

� .k/, which in spirit is constructed similarly toDM eff
� .k/

(Section 3). For instance, the ringoid of correspondences Cor gives rise to a
strict V -spectral category O D Ocor whenever the base field k is perfect. In
this case the Voevodsky category DM eff

� .k/ is recovered as the category DOeff
� .k/

(Corollary 3.6).
The main V -spectral category K is constructed in Section 4 (see Theorem 4.16).

It is strict over perfect fields. The associated triangulated category DOeff
� .k/ is

denoted by DKeff
� .k/. The spectral category K is a priori different from spectral

categories constructed by the authors in [2]. But we expect that associated motivic
model categories of modules over the spectral categories are equivalent.

To each smooth k-variety X we associate its K-motive MK.X/. By definition,
it is an object of the category DKeff

� .k/. We prove in Theorem 5.11 that

Kn.X/D HomDKeff
� .k/

.MK.X/Œn�;MK.pt//; n 2 Z;

where pt D Spec.k/ and K.X/ is Quillen’s K-theory of X . Thus Quillen’s K-
theory is represented by the K-motive of the point.

The spectral category K is of great utility in authors’ paper [3], in which they
solve some problems related to the motivic spectral sequence. In fact, the problems
were the main motivation for constructing the spectral category K and developing
the machinery of K-motives.

Throughout the paper we denote by Sm=k the category of smooth separated
schemes of finite type over the base field k.

2. Preliminaries

We work in the framework of spectral categories and modules over them in the sense
of Schwede–Shipley [12]. We start with preparations.

Recall that symmetric spectra have two sorts of homotopy groups which we
shall refer to as naive and true homotopy groups respectively following terminology
of [11]. Precisely, the kth naive homotopy group of a symmetric spectrum X is
defined as the colimit

O�k.X/D colimn�kCnXn:

Denote by �X a stably fibrant model of X in Sp†. The k-th true homotopy group
of X is given by

�kX D O�k.�X/;

the naive homotopy groups of the symmetric spectrum �X .
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Naive and true homotopy groups of X can be considerably different in general
(see, e.g., [6, 11]). The true homotopy groups detect stable equivalences, and are
thus more important than the naive homotopy groups. There is an important class
of semistable symmetric spectra within which O��-isomorphisms coincide with ��-
isomorphisms. Recall that a symmetric spectrum is semistable if some (hence any)
stably fibrant replacement is a ��-isomorphism. Suspension spectra, Eilenberg–
Mac Lane spectra, �-spectra or �-spectra from some point Xn on are examples
of semistable symmetric spectra (see [11]). So Waldhausen’s algebraic K-theory
symmetric spectrum, which we shall use later, is semistable. Semistability is
preserved under suspension, loop, wedges and shift.

A symmetric spectrum X is n-connected if the true homotopy groups of X are
trivial for k 6 n. The spectrum X is connective if it is .�1/-connected, i.e., its true
homotopy groups vanish in negative dimensions. X is bounded below if �i .X/D 0
for i � 0.

Definition 2.1 (1) Following [12] a spectral category is a category O which
is enriched over the category Sp† of symmetric spectra (with respect to smash
product, i.e., the monoidal closed structure of [6, 2.2.10]). In other words, for
every pair of objects o;o0 2 O there is a morphism symmetric spectrum O.o;o0/,
for every object o of O there is a map from the sphere spectrum S to O.o;o/ (the
“identity element" of o), and for each triple of objects there is an associative and
unital composition map of symmetric spectra O.o0;o00/^O.o;o0/! O.o;o00/. An
O-module M is a contravariant spectral functor to the category Sp† of symmetric
spectra, i.e., a symmetric spectrum M.o/ for each object of O together with
coherently associative and unital maps of symmetric spectra M.o/ ^ O.o0;o/ !
M.o0/ for pairs of objects o;o0 2 O. A morphism of O-modules M ! N consists
of maps of symmetric spectra M.o/! N.o/ strictly compatible with the action of
O. The category of O-modules will be denoted by ModO.

(2) A spectral functor or a spectral homomorphism F from a spectral category
O to a spectral category O0 is an assignment from ObO to ObO0 together with
morphisms O.a;b/ ! O0.F.a/;F.b// in Sp† which preserve composition and
identities.

(3) The monoidal product O ^O0 of two spectral categories O and O0 is the
spectral category where Ob.O^O0/ WD ObO �ObO0 and O^O0..a;x/;.b;y// WD
O.a;b/^O0.x;y/.

(4) A spectral category O is said to be connective if for any objects a;b of O the
spectrum O.a;b/ is connective.

(5) By a ringoid over Sm=k we mean a preadditive category R (i.e., a category
enriched over abelian groups) whose objects are those of Sm=k together with a
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functor
� W Sm=k!R;

which is identity on objects. Every such ringoid gives rise to a spectral category OR
whose objects are those of Sm=k and the morphisms spectrum OR.X;Y /, X;Y 2
Sm=k, is the Eilenberg–Mac Lane spectrum HR.X;Y / associated with the abelian
group R.X;Y /. Given a map of schemes ˛, its image �.˛/ will also be denoted by
˛, dropping � from notation.

(6) Let Onaive be the spectral category whose objects are those of Sm=k and
morphism spectra are defined as

Onaive.X;Y /p D HomSm=k.X;Y /C ^S
p

for all p > 0 and X;Y 2 Sm=k. By a spectral category over Sm=k we mean a pair
.O;�/, where O is a spectral category whose objects are those of Sm=k and

� WOnaive!O
is a spectral functor which is identity on objects. If there is no likelihood of
confusion, we shall drop � from notation.

Remark 2.2 It is straightforward to verify that the category of Onaive-modules can
be regarded as the category of presheaves P re†.Sm=k/ of symmetric spectra on
Sm=k. This is used in the sequel without further comment.

Let O be a spectral category and let ModO be the category of O-modules.
Recall that the projective stable model structure on ModO is defined as follows
(see [12]). The weak equivalences are the objectwise stable weak equivalences
and fibrations are the objectwise stable projective fibrations. The stable projective
cofibrations are defined by the left lifting property with respect to all stable
projective acyclic fibrations.

Let Q denote the set of elementary distinguished squares in Sm=k (see [10,
3.1.3])

U 0

Q

X 0

'

U
 

X

and let O be a spectral category over Sm=k in the sense of Definition 2.1(6). By
QO denote the set of squares

O.�;U 0/
OQ

O.�;X 0/
'

O.�;U /
 

O.�;X/
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which are obtained from the squares in Q by taking X 2 Sm=k to O.�;X/. The
arrow O.�;U 0/ ! O.�;X 0/ can be factored as a cofibration O.�;U 0/ � Cyl

followed by a simplicial homotopy equivalence Cyl ! O.�;X 0/. There is a
canonical morphism AOQ WDO.�;U /

F
O.�;U 0/Cyl !O.�;X/.

Definition 2.3 (see [2]) I. The Nisnevich local model structure on ModO is the
Bousfield localization of the stable projective model structure with respect to the
family of projective cofibrations

NO D fcyl.AOQ!O.�;X//gQO :

The homotopy category for the Nisnevich local model structure will be denoted
by SH nis

S1
O. In particular, if O D Onaive then we have the Nisnevich local model

structure on P re†.Sm=k/ D ModOnaive and we shall write SH nis
S1
.k/ to denote

SH nis
S1
Onaive.

II. The motivic model structure on ModO is the Bousfield localization of the
Nisnevich local model structure with respect to the family of projective cofibrations

AO D fcyl.O.�;X �A1/!O.�;X//gX2Sm=k :

The homotopy category for the motivic model structure will be denoted by
SHmot

S1
O. In particular, if O D Onaive then we have the motivic model structure

on P re†.Sm=k/ D ModOnaive and we shall write write SHmot
S1
.k/ to denote

SHmot
S1

Onaive.
We refer the reader to [2, Definition 5.7] for the notions of Nisnevich excisive

and motivically excisive spectral categories. These basically mean that O converts
elementary distinguished squares to homotopy pushouts with respect to the appro-
priate model structure.

Let AffSm=k be the full subcategory of Sm=k whose objects are the smooth
affine varieties. AffSm=k gives rise to a spectral category OAff whose objects are
those of AffSm=k and morphisms spectra are defined as

OAff.X;Y / WD HomAffSm=k.X;Y /C ^S;

where S is the sphere spectrum and X;Y 2 AffSm=k.
Recall that a sheaf F of abelian groups in the Nisnevich topology on Sm=k is

strictly A1-invariant if for any X 2 Sm=k, the canonical morphism

H�nis.X;F/!H�nis.X �A1;F/

is an isomorphism.
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Definition 2.4 Let R be a ringoid over Sm=k together with the structure functor
� W Sm=k!R. We say that R is a V -ringoid (“V " for Voevodsky) if

1. for any elementary distinguished squareQ the sequence of Nisnevich sheaves
associated to representable presheaves

0!Rnis.�;U
0/!Rnis.�;U /˚Rnis.�;X

0/!Rnis.�;X/! 0

is exact;

2. there is a functor
� WR�AffSm=k!R

sending .X;U / 2 Sm=k�AffSm=k toX�U 2 Sm=k and such that 1X�˛ D
�.1X � ˛/, .uC v/� ˛ D u� ˛ C v � ˛ for all ˛ 2 Mor.AffSm=k/ and
u;v 2Mor.R/.

3. for any R-presheaf of abelian groups F , i.e. F is a contravariant functor
from R to abelian groups, the associated Nisnevich sheaf Fnis has a unique
structure of a R-presheaf for which the canonical homomorphism F ! Fnis

is a homomorphism of R-presheaves. Moreover, if F is homotopy invariant
then so is Fnis;

We refer to R as a strict A1-invariant V -ringoid if every A1-invariant Nisnevich
R-sheaf is strictly A1-invariant.

We want to make several remarks regarding the definition. Condition (1)
implies the spectral category OR associated to the ringoid R is Nisnevich excisive.
Condition (2) implies that for any R-presheaf F and any affine scheme U 2
AffSm=k the presheaf

Hom.U;F/ WD F.��U /
is an R-presheaf. Moreover, it is functorial in U .

Definition 2.5 Let .O;�/ be a spectral category over Sm=k in the sense of
Definition 2.1(6). We say that O is a V -spectral category if

1. O is connective and Nisnevich excisive;

2. there is a spectral functor

� WO^OAff!O

sending .X;U / 2 Sm=k�AffSm=k toX�U 2 Sm=k and such that 1X�˛ D
�.1X �˛/ for all ˛ 2Mor.AffSm=k/;
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3. �0O is a V -ringoid such that the structure map � W Sm=k! �0O equals the
composite map

Sm=k! �0Onaive
�0.�/
���! �0O:

We also require the structure pairing � W �0O �AffSm=k ! �0O to be the
composite functor

�0O�AffSm=k �! �0O��0OAff! �0.O^OAff/
�0.�/
����! �0O:

We refer to O as a strict V -spectral category if �0O is a strict A1-invariant V -
ringoid.

Since the main categoryDOeff
� .k/we shall work with consists of bounded below

O-modules (see section 3 for precise definitions), we assume O to be connective in
Definition 2.5.

We note that if O is a V -spectral category, then for every O-module M and any
affine smooth scheme U , the presheaf of symmetric spectra

Hom.U;M/ WDM.��U /

is an O-module. Moreover, M.��U / is functorial in U .

Lemma 2.6 Every V -spectral category O is motivically excisive.

Proof: Every V -spectral category is, by definition, Nisnevich excisive. Since there
is an action of affine smooth schemes on O, the fact that O is motivically excisive
is proved similar to [2, 5.8].

Let O be a V -spectral category. Since it is both Nisnevich and motivically
excisive, it follows from [2, 5.13] that the pair of natural adjoint fuctors

‰� W P re
†.Sm=k/ ModO W‰�

induces a Quillen pair for the Nisnevich local projective (respectively motivic)
model structures on P re†.Sm=k/ and ModO. In particular, one has adjoint
functors between triangulated categories

‰� W SH
nis
S1
.k/� SH nis

S1
O W‰� and ‰� W SH

mot
S1
.k/� SHmot

S1
O W‰�: (1)

3. The triangulated category DOeff
� .k/

Throughout this section we work with a strict V -spectral category O. We shall often
work with simplicial O-modules MŒ��. The realization of MŒ�� is the O-module
jM j defined as the coend

jM j D�Œ��C ^�MŒ��
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of the functor�Œ��C^MŒ�� W���op!ModO. Here�Œn� is the standard simplicial
n-simplex.

Recall that the simplicial ring kŒ�� is defined as

kŒ��n D kŒx0;:::;xn�=.x0C ���C xn� 1/:

By �� we denote the cosimplicial affine scheme Spec.kŒ��/. Let

M 2ModO 7!Mf 2ModO

be a fibrant replacement functor in the Nisnevich local model structure on ModO.
Given an O-module M , we set

C�.M/ WD jHom.��;Mf /j:

Note that C�.M/ is an O-module and is functorial in M . If we regard Mf as a
constant simplicial O-module, the map of cosimplicial schemes ��! pt induces a
map of O-modules

M ! C�.M/:

Lemma 3.1 The functor C� respects Nisnevich local weak equivalences. In
particular, it induces a triangulated endofunctor

C� W SH
nis
S1
O! SH nis

S1
O:

Proof: Let ˛ W L ! M be a Nisnevich local weak equivalence of O-modules.
By [2, 5.12] the forgetful functor ‰� WModO! P re†.Sm=k/ respects Nisnevich
local weak equivalences and Nisnevich local fibrant objects. It follows that the
fibrant replacement

˛f W Lf !Mf

of ˛ is a level equivalence of presheaves of ordinary symmetric spectra, and hence
so is each map

Hom.�n;˛f / W Hom.�n;Lf /! Hom.�n;Mf /; n> 0:

Since the realization functor respects level equivalences, our assertion follows.

One of advantages of strict V -spectral categories is that we can construct an A1-
local replacement of an O-module M in two steps. We first take C�.M/ and then
its Nisnevich local replacement C�.M/f .

Theorem 3.2 The natural map M ! C�.M/f is an A1-local replacement of M in
the motivic model structure of O-modules.
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Proof: The presheaves �i .C�.M//, i 2 Z, are homotopy invariant and have
�0O-transfers. Since O is a strict V -spectral category then each Nisnevich sheaf
�nis
i .C�.M/f / is strictly homotopy invariant and has �0O-transfers. By [9, 6.2.7]
C�.M/f is A1-local in the motivic model category structure on P re†.Sm=k/.
By Lemma 2.6 O is motivically excisive, hence [2, 5.12] implies C�.M/f is A1-
local in the motivic model category structure on ModO.

The map M ! C�.M/f is the composite

M !Mf ! C�.M/! C�.M/f :

The left and right arrows are Nisnevich local trivial cofibrations. The middle arrow
is a level A1-weak equivalence in P re†.Sm=k/ by [10, 3.8]. By Lemma 2.6 O
is motivically excisive, hence [2, 5.12] implies the middle arrow is an A1-weak
equivalence in ModO.

Definition 3.3 The O-motive MO.X/ of a smooth algebraic variety X 2 Sm=k is
the O-module C�.O.�;X//. We say that an O-module M is bounded below if for
i � 0 the Nisnevich sheaf �nis

i .M/ is zero. M is n-connected if �nis
i .M/ are trivial

for i 6 n. M is connective is it is .�1/-connected, i.e., �nis
i .M/ vanish in negative

dimensions.

Corollary 3.4 If an O-moduleM is bounded below (respectively n-connected) then
so is C�.M/. In particular, the O-motive MO.X/ of any smooth algebraic variety
X 2 Sm=k is connective.

Proof: This follows from the preceding theorem and Morel’s Connectivity Theo-
rem [9].

Denote by DO�.k/ the full triangulated subcategory of SH nis
S1
O of bounded

below O-modules. We also denote by DOeff
� .k/ the full triangulated subcategory

of DO�.k/ of those O-modules M such that each Nisnevich sheaf �nis
i .M/ is

homotopy invariant. Note that for any smooth algebraic variety X 2 Sm=k its
O-motive MO.X/ belongs to DOeff

� .k/. To see this, just apply Corollary 3.4 and
Theorem 3.5(2) below.

The category DOeff
� .k/ is an analog of Voevodsky’s triangulated category

DM eff
� .k/ [16]. Let Ocor be the Eilenberg–Mac Lane spectral category associated

with the ringoid Cor . We shall show below thatDM eff
� .k/ is equivalent toDOeff

� .k/

if O DOcor .
Theorem 3.5 Let O be a strict V -spectral category. Then the following statements
are true:

.1/ The kernel of C� is the full triangulated subcategory T of SH nis
S1
O generated

by the compact objects

cone.O.�;X �A1/!O.�;X//; X 2 Sm=k:
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Moreover, the triangulated functor C� induces an equivalence of triangulated
categories

SH nis
S1
O=T �

�! SHmot
S1

O:
.2/ The functor

C� WDO�.k/!DO�.k/
lands in DOeff

� .k/. The kernel of C� is T� WD T \DO�.k/. Moreover, C� is left
adjoint to the inclusion functor

i WDOeff
� .k/!DO�.k/

and DOeff
� .k/ is equivalent to the quotient category DO�.k/=T�.

Proof: (1). The localization theory of compactly generated triangulated categories
implies the quotient category SH nis

S1
O=T is equivalent to the full triangulated

subcategory

T ? D fM 2 SH nis
S1
O j HomSH nis

S1
O.T;M/D 0 for all T 2 T g:

Moreover,

T D ?.T ?/D fX 2 SH nis
S1
O j HomSH nis

S1
O.X;M/D 0 for all M 2 T ?g:

By construction, T ? can be identified up to natural equivalence of triangulated
categories with the full triangulated subcategory of A1-local O-modules. The latter
subcategory is naturally equivalent to SHmot

S1
O, because the motivic model structure

on O-modules is obtained from the Nisnevich local model structure by Bousfield
localization with respect to the maps

O.�;X �A1/!O.�;X/; X 2 Sm=k:

Recall that a map M !N of O-modules is a motivic equivalence if and only if
for any A1-local O-module L the induced map

HomSH nis
S1

O.N;L/! HomSH nis
S1

O.M;L/

is an isomorphism. Given an O-module M , the map M ! C�.M/ is a motivic
equivalence by Theorem 3.2. If we fit the arrow into a triangle in SH nis

S1
O

XM !M ! C�.M/!XM Œ1�; (2)

it will follow that HomSH nis
S1

O.XM ;L/ D 0 for all L 2 T ?. We see that for any

O-module M one has XM 2 ?.T ?/D T .
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IfC�.M/Š 0 in SH nis
S1
O, thenM ŠXM 2 T . Thus,M 2 T in this case. On the

other hand, if M 2 T then C�.M/ 2 T , since XM 2 T and T is a thick triangulated
subcategory in SH nis

S1
O. On the other hand, Theorem 3.2 implies C�.M/ 2 T ?, and

therefore C�.M/ 2 T \T ? D 0. We conclude that T D KerC�.
(2). For any M 2 ModO the presheaves �i .C�.M//, i 2 Z, are homotopy

invariant and have �0O-transfers. Since O is a strict V -spectral category then each
Nisnevich sheaf �nis

i .C�.M// is homotopy invariant. Therefore the functor

C� WDO�.k/!DO�.k/

lands in DOeff
� .k/. It follows from the first part of the theorem that the kernel of C�

is T� WD T \DO�.k/.
Let us prove that DOeff

� .k/ D T ? \ DO�.k/. Clearly, T ? \ DO�.k/ �
DOeff

� .k/. Suppose M 2 DOeff
� .k/. Then Mf 2 DOeff

� .k/. We have that Mf is
a fibrant O-module in the Nisnevich local model structure and each �nis

i .Mf / is a
strictly homotopy invariant sheaf, because O is a strict V -spectral category. By [9,
6.2.7] Mf is A1-local in the motivic model category structure on P re†.Sm=k/.
By Lemma 2.6 O is motivically excisive, hence [2, 5.12] implies Mf is A1-local in
the motivic model category structure on ModO. We see that M 2 T ?\DO�.k/.

Let E 2 DOeff
� .k/ and M 2 DO�.k/. Applying the functor HomDO�.k/.�;E/

to triangle (2), one gets

HomDO�.k/.M;E/Š HomDO�.k/.C�.M/;E/D HomDOeff
� .k/

.C�.M/;E/:

Thus C� is left adjoint to the inclusion functor i WDOeff
� .k/!DO�.k/.

It remains to show that DOeff
� .k/ is equivalent to the quotient category

DO�.k/=T�. By the first part of the theorem it is enough to prove that the natural
functor

DO�.k/=T�! SH nis
S1
O=T

is fully faithful. Consider an arrow M
s
�!N in SH nis

S1
O, where M 2DO�.k/ and s

is such that cone.s/ 2 T . There is a commutative diagram in SH nis
S1
O

M

uM

s
N

uN

C�.M/
C�.s/

C�.N /

in which cones of the vertical arrows are in T . Since cone.C�.s//Š C�.cone.s//D
0 in SH nis

S1
O, we see that C�.s/ is an isomorphism in SH nis

S1
O. Therefore C�.N / 2

DO�.k/ and cone.uN ı s/ 2 T�. By [7, 9.1] DO�.k/=T� is a full subcategory of
SH nis

S1
O=T .
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Suppose the field k is perfect. Then [15] implies Ocor is a strict V -spectral
category. Recall that the Voevodsky triangulated category of motives DM eff

� .k/ is
the full triangulated subcategory of (cohomologically) bounded above complexes of
the derived category D.ShT r/ of Nisnevich sheaves with transfers (see [13, 16]).
The next result says that DM eff

� .k/ can be recovered from DOeff
� .k/ if O DOcor .

Corollary 3.6 Let k be a perfect field and O D Ocor , then there is a natural
equivalence of triangulated categories

DOeff
� .k/

�
�!DM eff

� .k/:

Proof: By [2, section 6] there is a natural equivalence of triangulated categories
SH nis

S1
O and D.ShT r/. Moreover, this equivalence takes bounded below O-

modules to (cohomologically) bounded above complexes. Restriction of the
equivalence to DOeff

� .k/ yields the desired equivalence between DOeff
� .k/ and

DM eff
� .k/.
To conclude the section, it is also worth to mention another way of constructing

a motivic fibrant replacement on O-modules. Namely, for any M 2ModO we set

eC �.M/ WD jd 7! .Hom.�d ;M//f j:

Clearly, eC �.M/ is functorial in M . Observe that if M is Nisnevich local
then C�.M/ is zigzag level equivalent to eC �.M/, because Hom.�d ;M/ and
.Hom.�d ;M//f are Nisnevich local and the arrows

Hom.�d ;Mf / Hom.�d ;M/! .Hom.�d ;M//f

are level weak equivalences.

Proposition 3.7 The natural mapM ! eC �.M/f is an A1-local replacement ofM
in the motivic model structure of O-modules.

Proof: The map M ! eC �.M/f is the composite

M ! jd 7! Hom.�d ;M/j ! jd 7! .Hom.�d ;M//f j ! eC �.M/f :

The left arrow is a level A1-weak equivalence in P re†.Sm=k/ by [10, 3.8]. The
middle arrow is a Nisnevich local weak equivalence, because it is the realization of a
simplicial Nisnevich local weak equivalence. The right arrow is plainly a Nisnevich
local weak equivalence as well.

The presheaves �i .jd 7! Hom.�d ;M/j/, i 2 Z, are homotopy invariant
and have �0O-transfers. Since O is a strict V -spectral category then each Nis-
nevich sheaf �nis

i .
eC �.M/f / is strictly homotopy invariant and has �0O-transfers.

By [9, 6.2.7] eC �.M/f is A1-local in the motivic model category structure on
P re†.Sm=k/. By Lemma 2.6 O is motivically excisive, hence [2, 5.12] implies
the arrow of the proposition is an A1-weak equivalence in ModO.
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4. The spectral category K

In this section the definition of the V -spectral category K is given. It is obtained
by taking K-theory symmetric spectra K.A.U;X// of certain additive categories
A.U;X/, U;X 2 Sm=k. To define these categories we need some preliminaries.

Notation 4.1 Let U;X 2 Sm=k. Define Supp.U � X=X/ as the set of all closed
subsets in U �X of the form AD[j2JBj , where J is a finite set and each Bj is a
closed irreducible subset in U �X which is finite and surjective over U . The empty
subset in U �X is also regarded as an element of Supp.U �X=X/.

Notation 4.2 Given U;X 2 Sm=k and A 2 Supp.U � X=X/, let IA � OU�X be
the ideal sheaf of the closed set A � U �X . Denote by Am the closed subscheme
in U �X of the form .A;OU�X=ImA /. If m D 0, then Am is the empty subscheme.
Define SubSch.U �X=X/ as the set of all closed subschemes in U �X of the form
Am.

For any Z 2 SubSch.U �X=X/ we write pZU W Z ! U to denote p ı i , where
i W Z ,! U � X is the closed embedding and p W U � X ! U is the projection.
If there is no likelihood of confusion we shall write pU instead of pZU , dropping Z
from notation.

Clearly, for any Z 2 SubSch.U �X=X/ the reduced scheme Zred , regarded as
a closed subset of U �X , belongs to Supp.U �X=X/.

Notation 4.3 Let V;U;X 2 Sm=k. Let A 2 Supp.V �U=U /, B 2 Supp.U �X=X/.
Set

B ıAD pVX .V �B \A�X/� V �X;

where pVX W V �U �X ! V �X is the projection. One can check that

B ıA 2 Supp.V �X=X/:

Notation 4.4 Let V;U;X 2 Sm=k. Let S 2 SubSch.V �U=U /, Z 2 Subsch.U �
X=X/. By 4.2 one has S red 2 Supp.V �U=U /, Zred 2 Supp.U �X=X/. By 4.3
one has Zred ıS red 2 Supp.V �X=X/. One can show that for some integer k	 0

there exists a scheme morphism

�k W T D S �X \V �Z! .Zred ıS red /k

such that ik ı �k D pVX ı iT W T ! V �X . Here ik W .Zred ı S red /k ,! V �X ,
iT W T ,! V �U �X are closed embeddings and pVX W V �U �X ! V �X is the
projection.

If there exists �k satisfying the condition above then it is unique. Moreover, for
any m> k one has im

k
ı�k D �m, where im

k
W .Zred ıS red /k ,! .Zred ıS red /m is

the closed embedding.
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We shall often write Z ıS to denote .Zred ıS red /k , provided that there exists
the required �k . In this case we shall also write � to denote �k W T ! .Z ıS/.

Definition 4.5 (of additive categories A.U;X/) For any U;X 2 Sm=k we define
objects of A.U;X/ as equivalence classes of the triples

.n;Z;' W pU;�.OZ/!Mn.OU //;

where n is a nonnegative integer, Z 2 SubSch.U � X=X/ and ' is a non-unital
homomorphism of sheaves of OU -algebras. Let p.'/ be the idempotent '.1/ 2
Mn.	.U;OU //, then P.'/ D Im.p.'// can be regarded as a pU;�.OZ/-module by
means of '.

By definition, two triples .n;Z;'/, .n0;Z0;'0/ are equivalent if nD n0 and there
is a triple .n00;Z00;'00/ such that nD n0 D n00, Z;Z0 � Z00 are closed subschemes in
Z00, and the diagrams

pU;�.OZ/
'

Mn.OU / pU;�.OZ0/
'0

Mn.OU /

pU;�.OZ00/
can '00

pU;�.OZ00/
can '00

are commutative. We shall often denote an equivalence class for the triples by ˆ.
Though Z is not uniquely defined by ˆ, nevertheless we shall also refer to Z �
U �X as the support of ˆ.

Given ˆ;ˆ0 2A.U;X/ we first equalize supports Z;Z0 of the objects ˆ;ˆ0 and
then set

HomA.U;X/.ˆ;ˆ
0/D HompU;�.OZ/.P.'/;P.'

0//;

where the right hand side is an Abelian group in the usual way. Given any three
objects ˆ;ˆ0;ˆ00 2A.U;X/ a composition law

HomA.U;X/.ˆ;ˆ
0/ ıHomA.U;X/.ˆ

0;ˆ00/! HomA.U;X/.ˆ;ˆ
00/

is defined in the obvious way. This makes therefore A.U;X/ an additive category.
The zero object is the equivalence class of the triple .0;;;0/. By definition,

ˆ1˚ˆ2 D .n1Cn2;Z1[Z2;pU;�.OZ1[Z2/! pU;�.OZ1/�pU;�.OZ2/
!Mn1.OU //�Mn2.OU // ,!Mn1Cn2.OU //:

Clearly, P.'1˚'2/Š P.'1/˚P.'2/. Definition of the additive category A.U;X/
is finished.
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We now want to construct a bilinear pairing

A.V;U /�A.U;X/ ı
�!A.V;X/; U;V;X 2 Sm=k: (3)

First, define it on objects. Namely,

..n1;Z1;'1/;.n2;Z2;'2// 7�! .n1n2;Z2 ıZ1;'2 ı'1/;

where Z2 ı Z1 2 SubSch.V � X=X/ is a closed subscheme of V � X defined
in Notation 4.4. The nonunital homomorphism '2 ı '1 W p

.Z2ıZ1/
V;� .OZ2ıZ1/ !

Mn2n1.OV / is given by the composition

Mn2.Mn1.OV //
L

Š
Mn2n1.OV /

qV;�.OZ1�UZ2/D pV;�.pZ1;�.OZ1�UZ2//
pV;�.'2;Z1 /

Mn2.pV;�.OZ1//

Mn2
.'1/

p
.Z2ıZ1/
V;� .��.OZ1�UZ2//

p
.Z2ıZ1/
V;� .OZ2ıZ1/

p
Z2ıZ1
V;� .��/Dcan0

(4)
where L is a canonical isomorphism obtained by inserting .n1;n1/-matrices into
entries of a .n2;n2/-matrix, the diagrams

Z1 �U Z2

qV

pZ1

Z2

pU

X Z1 �U Z2

qV

�

Z1

pV

r
U V �X Z2 ıZ1

p
Z2ıZ1
V

V V

are commutative, and �� W OZ2ıZ1 ! ��.OZ1�UZ2/ is induced by the scheme
morphism � W Z1 �U Z2 ! Z2 ı Z1 from Notation 4.4. Finally, '2;Z1 W
pZ1;�.OZ1�UZ2/ ! Mn2.OZ1/ is defined as a unique non-unital homomorphism
of sheaves of OZ1-algebras such that for any open affine U 0 � U and any open
affine Z01 � Z1 with r.Z01/ � U 0 and Z02 D p�1U .U 0/ the value of '2;Z1 on Z01
coincides with the non-unital homomorphism of kŒZ01�-algebras

kŒZ01�˝kŒU 0� kŒZ
0
2�

id˝'2
����! kŒZ01�˝kŒU 0�Mn2.kŒU

0�/
a˝ˇ 7!a�r�.ˇ/
���������!Mn2.kŒZ

0
1�/:
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For a future use set p.'2;Z1/ D '2;Z1.1/ 2 Mn2.	.Z1;OZ1// and P.'2;Z1/ D
ImŒp.'2;Z1/ WOn2

Z1
!On2

Z1
�.

In order to define pairing (3) on morphisms, we need some preparations. Let
ˆ1 2A.V;U / and ˆ2 2A.U;X/. Consider the diagram

pV;�.On2
Z1
/˝pV;�.OZ1 / P.'1/

can

Š
P.'1/

n2
i1
.On1

V /
n2 `

Š
On2n1
V

p.'2ı'1/

pV;�.P.'2;Z1//˝pV;�.OZ1 / P.'1/

pV;�.i2;Z1 /˝id

�12
P.'2 ı'1/;

i.'2ı'1/

where �12 D p.'2 ı '1/ ı ` ı i1 ı can ı .i2;Z1 ˝ id/ (here `.ei;j / D eiC.j�1/n1).
It is worth to note that the isomorphism ` induces an OV -algebra isomorphism
Mn2.Mn1.OV // Š Mn2n1.OV / which coincides with the canonical isomorphism
L obtained by inserting .n1;n1/-matrices into entries of a .n2;n2/-matrix.

Definition 4.6 An p.Z2ıZ1/V;� .OZ2ıZ1/-module structure on pV;�.P.'2;Z1//˝pV;�.OZ1 /
P.'1/ is defined as follows. For any open V 0 � V , f 2 	.V 0;p.Z2ıZ1/V;� .OZ2ıZ1//,
m1 2 	.V

0;P.'1//, and m2 2 	.V 0;pV;�.P.'2;Z1/// set

f .m2˝m1/D ..pV;�.'2;Z1/ ı can
0/.f //.m2/˝m1:

An p.Z2ıZ1/V;� .OZ2ıZ1/-module structure on P.'2 ı '1/ is defined as follows. For

any open V 0 � V , f 2 	.V 0;p.Z2ıZ1/V;� .OZ2ıZ1//, and m 2 	.V 0;P.'2 ı'1// set

f mD ..'2 ı'1/.f //.m/:

In particular,

1 �mD ..'2 ı'1/.1//.m/D p.'2 ı'1/.m/Dm;

because m 2 Im.p.'2 ı'1//.

Lemma 4.7 The map �12 is an isomorphism of OV -modules and, moreover, an
isomorphism of the p.Z2ıZ1/V;� .OZ2ıZ1/-modules.

Let ˛1 W ˆ1 ! ˆ01 and ˛2 W ˆ2 ! ˆ02 be morphism in A.V;U / and A.U;X/
respectively. We set

˛2ˇ˛1 D �
0
12 ı .˛2˝˛1/ ı �

�1
12 W P.'2 ı'1/! P.'02 ı'

0
1/: (5)

The definition of pairing (3) is finished. It is defined on objects above and on
morphisms by formula (5).
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Lemma 4.8 The functor A.V;U / � A.U;X/ ı
�! A.V;X/ is bilinear for all

U;V;X 2 Sm=k.

For any X 2 Sm=k we define an object idX 2 ObA.X;X/ by

idX D .1;�X ;id WOX !OX /:

Lemma 4.9 For any U;X 2 Sm=k the functors fidU g �A.U;X/
ı
�! A.U;X/ and

A.U;X/� fidXg
ı
�!A.U;X/ are identities on A.U;X/.

Lemma 4.10 For anyU;V;W;X 2 Sm=k and anyˆ1 2A.W;V /;ˆ2 2A.V;U /;ˆ3 2
A.U;X/ the following statements are true:

1. ˆ3 ı .ˆ2 ıˆ1/D .ˆ3 ıˆ2/ ıˆ1 2 ObA.W;X/;

2. p.'3ı.'2ı'1//D p..'3ı'2/ı'1/ and P.'3ı.'2ı'1//D P..'3ı'2/ı'1/;

3. suppose ˛i W ˆi ! ˆ0i are morphisms .i D 1;2;3/, then ˛3 ˇ .˛2 ˇ ˛1/ D
.˛3ˇ˛2/ˇ˛1 2 HomA.W;X/.P.'3 ı .'2 ı'1//;P..'

0
3 ı'

0
2/ ı'

0
1//.

Proposition 4.11 For any U;V;W;X 2 Sm=k the diagram of functors

.A.W;V /�A.V;U //�A.U;X/ı�id A.W;U /�A.U;X/

ıA.W;V /� .A.V;U /�A.U;X//

Š

id�ı

A.W;V /�A.V;X/ ı A.W;X/

is strictly commutative.

Lemma 4.12 Pairings (3) together with fidXgX2Sm=k determine a category A on
Sm=k which is also enriched over additive categories. Moreover, the rules X 7! X

and f 7!ˆf D .1;	f ;id WOU !OU / give a functor � W Sm=k!A.

The following notation will be useful later.

Notation 4.13 Let X;X 0;Y 2 Sm=k and f W X 0 ! X be a morphism in Sm=k.
Define a functor f � WA.X;Y /!A.X 0;Y / as the additive functor

A.X;Y / �ı�.f /�����!A.X 0;Y /:

More precisely, f �.ˆ/Dˆ ı �.f / and f �.˛/D ˛ˇ id�.f /.
Let X;Y;Y 0 2 Sm=k and g W Y ! Y 0 be a morphism in Sm=k. Define a functor

g� WA.X;Y /!A.X;Y 0/ as the additive functor

A.X;Y / �.g/ı������!A.X;Y 0/:
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Namely, g�.ˆ/D �.g/ ıˆ and g�.˛/D id�.g/ˇ˛.

Using this notation and Proposition 4.11, one has the following

Corollary 4.14 Let f W X 0 ! X and g W Y ! Y 0 be morphisms in Sm=k. Then
f � ı g� D g� ı f

� WA.X;Y /!A.X 0;Y 0/. If f 0 W X 00! X 0 is a map in Sm=k then
.f ı f 0/� D .f 0/� ı f � WA.X;Y /!A.X 00;Y /. Also, for any map g0 W Y 0! Y 00 in
Sm=k one has .g0 ıg/� D .g0/� ıg� WA.X;Y /!A.X;Y 00/.

By [4, §6.1] for an additive category C, one can define the structure of a
symmetric spectrum on the Waldhausen K-theory spectrum K.C/. By definition,

K.C/n D jObS:QCj; QD f1;:::;ng:

Moreover, strictly associative bilinear pairings of additive categories induce strictly
associative pairings of their K-theory symmetric spectra (see [4, §6.1]). The
spectrum K.C/ is connective as any Waldhausen K-theory spectrum.

Notation 4.15 For any U;X 2 Sm=k, we denote by K.U;X/ the Waldhausen K-
theory symmetric spectrum K.A.U;X//, where A.U;X/ is the additive category in
the sense of Definition 4.5.

Pairing (3) yields a pairing of symmetric spectra

K.V;U /^K.U;X/!K.V;X/: (6)

Proposition 4.11 implies that (6) is a strictly associative pairing. Moreover, for any
X 2 Sm=k there is a map 1 W S ! K.X;X/ which is subject to the unit coherence
law (see [4, section 6.1]). Note that 10 W S0!K.X;X/0 is the map which sends the
basepoint to the null object and the non-basepoint to the unit object idX .

Thus we get the following

Theorem 4.16 The triple .K;^;1/ determines a spectral category. Moreover, the
functor � W Sm=k!A of Lemma 4.12 gives a spectral functor

� WOnaive!K

between spectral categories such that the pair .K;�/ is a spectral category over
Sm=k in the sense of Definition 2.1(6).

We now want to define a spectral functor

� WK^Onaive!K:

It is in fact determined by additive functors

f ? WA.X;X 0/!A.X �U;X 0 �U 0/; f W U ! U 0 2Mor.Sm=k/;
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satisfying certain reasonable properties mentioned below. If

.n;Z;' W pZX;�.OZ/!Mn.OX //

is a representative for ˆ 2A.X;X 0/, then f ?.ˆ/ is represented by the triple

.n;Z �	f ;'� idU W .pZX � id/�.OZ��f /!Mn.OX�U //:

Here '� idU is a unique non-unital homomorphism of sheaves of OX�U -algebras
such that for any affine open subsets X0 �X , U0 � U and for Z0 D .pZX /

�1.X0/�

Z the value of ' � idU on X0 �U0 is the following non-unital homomorphism of
kŒZ0 �U0�-algebras:

.'� idU /.a� b/ WD .qX;0/�.'.a// � .qU;0/�.b/ 2Mn.kŒX0 �U0�/;

where qX;0 WX0 �U 0!X0 and qU;0 WX0 �U 0! U 0 are the projections.
To define f ? on morphisms, we note that the canonical morphism

adj W q�X .P.'//
q�X .iP.'//
������! q�X .On

X /
can
��!On

X�U

p.f ?.ˆ//
������! P.f ?.ˆ//

is an isomorphism. Given a morphism ˛ Wˆ!ˆ0 in A.X;X 0/, we set

f ?.˛/D adj 0 ı q�X .˛/ ı adj
�1 W P.f ?.ˆ//! P.f ?.ˆ0//:

Clearly, f ? is an additive functor.

Proposition 4.17 Let f1 W U ! U 0, f2 W U 0! U 00 be two maps in Sm=k, ˆ1;ˆ01 2
ObA.X;X 0/, ˆ2;ˆ02 2 ObA.X 0;X 00/, let ˛1 Wˆ1!ˆ01 be a morphism in A.X;X 0/
and let ˛2 Wˆ2!ˆ02 be a morphism in A.X 0;X 00/. Then

1. .f2 ıf1/?.ˆ2 ıˆ1/D f ?2 .ˆ2/ ıf
?
1 .ˆ1/;

2. .f2 ıf1/?.˛2ˇ˛1/D f ?2 .˛2/ˇf
?
1 .˛1/.

Corollary 4.18 Under the assumptions of Proposition 4.17 the diagram of functors

A.X;X 0/�A.X 0;X 00/
f ?1 �f

?
2

ı A.X;X 00/
.f2ıf1/

?

A.X �U;X 0 �U 0/�A.X 0 �U 0;X 00 �U 00/ ı A.X �U;X 00 �U 00/

is commutative.
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Corollary 4.19 We have a spectral functor

� WK^Onaive!K

such that .X;U / 2 Sm=k � Sm=k is mapped to X �U 2 Sm=k. Moreover, for any
morphism h WX !X 0 in Sm=k, regarded as the object �.h/ of A.X;X 0/, one has

f ?.�.h//D �.f �h/ 2 ObA.X �U;X 0 �U 0/

for every morphism of k-smooth schemes f W U ! U 0.

In what follows we shall denote by K0 the ringoid �0.K/.

Theorem 4.20 (Knizel [8]) For any K0-presheaf of abelian groups F , i.e. F is
a contravariant functor from K0 to abelian groups, the associated Nisnevich sheaf
Fnis has a unique structure of a K0-presheaf for which the canonical homomorphism
F ! Fnis is a homomorphism of K0-presheaves. If F is homotopy invariant then
so is Fnis. Moreover, if the field k is perfect then every A1-invariant Nisnevich
K0-sheaf is strictly A1-invariant.

Remark 4.21 Although the category A.X;Y / is different from the category of
bimodules P.X;Y / (see Appendix for the definition of P.X;Y /), the proof of the
preceding theorem is in spirit similar to the proof of the same fact forK0-presheaves
obtained by Walker [18].

Proposition 4.22 K0 is a V -ringoid. If the field k is perfect then it is also a strict
A1-invariant V -ringoid.

Proof: The proof of [2, 5.9] shows that for any elementary distinguished square
the sequence of Nisnevich sheaves associated to representable presheaves

0!K0;nis.�;U
0/!K0;nis.�;U /˚K0;nis.�;X

0/!K0;nis.�;X/! 0

is exact.
Let � W Sm=k!K0 be the composite functor

Sm=k! �0Onaive
�0.�/
���! �0.K/DK0; (7)

where � W Onaive ! K is the spectral functor constructed in Theorem 4.16. Also,
let a functor � WK0 �Sm=k!K0 be the composite functor

K0 �Sm=k �!K0 ��0Onaive! �0.K^Onaive/
�0.�/
����!K0; (8)

where � W K ^Onaive ! K is the spectral functor constructed in Corollary 4.19.
Then we have that idX�f D �.idX�f /, .uC v/� f D u� f C v � f for all
u;v 2Mor.K0/ and f 2Mor.Sm=k/.
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Theorem 4.20 now implies K0 is a V -ringoid. It also follows from Theorem 4.20
that it is a strict A1-invariant V -ringoid over perfect fields.

We are now in a position to prove the main result of the section.

Theorem 4.23 The spectral category K together with the spectral functor � W
Onaive!K of Theorem 4.16 is a V -spectral category in the sense of Definition 2.5.
If the field k is perfect then it is also a strict V -spectral category.

Proof: K is connective by construction. It is proved similar to [2, 5.9] that K is
Nisnevich excisive. The structure spectral functor

� WOnaive!K

is constructed in Theorem 4.16.
It follows from Corollary 4.19 that there is a spectral functor

� WK^Onaive!K

sending .X;U / 2 Sm=k � Sm=k to X � U 2 Sm=k and such that idX�f D
�.idX�f / for all f 2 Mor.Sm=k/. Proposition 4.22 implies the ringoid K0

together with structure functors (7) and (8) is a V -ringoid which is strict A1-
invariant whenever the base field k is perfect.

We are now able to introduce the triangulated category of K-motives.

Definition 4.24 Suppose k is a perfect field. The triangulated category of K-
motives DKeff

� .k/ is the triangulated category DOeff
� .k/ constructed in Section 3

associated to the strict V -spectral category ODK of Theorem 4.23.

To conclude the section, we discuss further useful properties of categories
A.U;X/-s.

Proposition 4.25 Under Notation 4.13 and the notation of Lemma 4.12 and the
notation which are just above Proposition 4.17 for any X;Y 2 Sm=k and any
morphism f W U ! V in Sm=k the following square of additive functors is strictly
commutative

A.X �V;Y �V / .1X�f /
�

A.X �U;Y �V /

A.X;Y /

id?V
id?U A.X �U;Y �U /:

.1Y�f /�

Notation 4.26 For everyX 2 Sm=k;Y 2 Sm=k and n > 0, denote by A.X;Y /.G�nm /

the category whose objects are the tuples .ˆ;
1;:::;
n/, where ˆ 2 A.X;Y / and
.
1;:::;
n/ are commuting automorphisms of ˆ. Morphisms from .ˆ;
1;:::;
n/
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to .ˆ0;
 01;:::;

0
n/ are given by morphisms ˛ W ˆ ! ˆ0 in A.X;Y / such that

˛ ı 
i D 

0
i ı˛ for every i D 1;:::;n.

Using Notation 4.13 for a morphism f W X 0 ! X in Sm=k, define an additive
functor

f �n WA.X;Y /.G�nm /!A.X 0;Y /.G�nm /

as follows: f �n .ˆ;
1;:::;
n/D .f
�.ˆ/;f �.
1/;:::;f

�.
n// on objects and f �n .˛/D
f �.˛/ on morphisms.

Using Notation 4.13 for a morphism g W Y ! Y 0 in Sm=k, define an additive
functor

g�;n WA.X;Y /.G�nm /!A.X;Y 0/.G�nm /

as follows: g�;n.ˆ;
1;:::;
n/D .g�.ˆ/;g�.
1/:::;g�.
n// on objects and gn;�.˛/D
g�.˛/ on morphisms.

Definition 4.27 Given X 2 Sm=k;Y 2 Sm=k and n > 0, we define an additive
functor

�X;Y;n WA.X;Y �G�nm /!A.X;Y /.G�nm /

by using the functor .prY /� W A.X;Y �G�nm / ! A.X;Y / from Notation 4.13 as
follows. Given an object ˆ 2A.X;Y �G�nm / and its representative

.n;Z;' W pX;�.OZ/!Mn.OX //;

we have n automorphisms Œti �’s of ˆ of the form m 7! '.ti jZ/m, where each ti D
p�i .t/ 2 	.X �Y �G�nm / and pi WX �Y �G�nm !Gm is the projection. One sets

�X;Y;n.ˆ/D ..prY /�.ˆ/;.prY /�.Œt1�/;:::;.prY /�.Œtn�//

on objects and �X;Y;n.ˆ/.˛/D .prY /�.˛/ on morphisms.

The following lemma is a straightforward consequence of Corollary 4.14.

Lemma 4.28 The bivariant additive category

A W .Sm=k/op � Sm=k! AddCats; .X;Y / 7!A.X;Y /;

satisfies the following property:

.Aut/ for every X 2 Sm=k;Y 2 Sm=k and n > 0, the functors �X;Y;n meet the
following two conditions:
(a) for any f WX 0!X in Sm=k and n > 0 one has f �n ı�X;Y;n D �X 0;Y;nıf

�,
where f � WA.X;Y �G�nm /!A.X 0;Y �G�nm / is defined in Notation 4.13;
(b) using Notation 4.13, for any g W Y ! Y 0 in Sm=k and n > 0 one has

g�;n ı �X;Y;n D �X;Y 0;n ı .g� idn/�;

where idn is the identity morphism of G�nm .
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The following proposition is true as well.

Proposition 4.29 For every X 2 Sm=k;Y 2 Sm=k and n > 0 the additive functor

�X;Y;n WA.X;Y �G�nm /!A.X;Y /.G�nm /

is a category isomorphism (it is not just an equivalence of categories).

5. Comparing A.X;Y / with QP.X;Y /

Let X;Y be two k-schemes of finite type over the base field k. We denote by
P.X;Y / the category of coherent OX�Y -modules PX;Y such that Supp.PX;Y /
is finite over X and the coherent OX -module .pX /�.PX;Y / is locally free. A
disadvantage of the category P.X;Y / is that whenever we have two maps f W X !
X 0 and g W X 0 ! X 00 then the functor .g ı f /� agrees with f � ı g� only up to a
canonical isomorphism. To fix the problem, we replace P.X;Y / by the equivalent
additive category of big bimodules QP.X;Y / which is functorial in both arguments.
This is done in Appendix.

In this section for any X 2 Sm=k and Y 2 AffSm=k a canonical functor

FX;Y WA.X;Y /! QP.X;Y /

is constructed. Logically, one should now read Appendix about big bimodules, and
then return to this section.

As an application, we obtain canonical isomorphisms over a perfect field k

Ki .X/ŠDK
eff
� .k/.MK.X/Œi �;MK.pt//; X 2 Sm=k;i 2 Z;pt D Speck;

where K.X/ is an algebraic K-theory spectrum defined as the Waldhausen sym-
metric K-theory spectrum K. QP.X;pt// and DKeff

� .k/ is the triangulated category
of K-motives (see Definition 4.24).

Let X;Y 2 Sm=k and assume that Y is affine. Let A.X;Y / be the additive
category in the sense of Definition 4.5 and let QP.X;Y / be the additive category of
big bimodules defined in Appendix. If f W X 0 ! X is a morphism in Sm=k, then
there is an additive functor f � W A.X;Y / ! A.X 0;Y / defined in Notation 4.13.
By Corollary 4.14 the assignments X 7! A.X;Y / and f 7! f � yield a presheaf of
small additive categories on Sm=k. By Lemma A.1 the assignments X 7! QP.X;Y /
and f 7! .f � W QP.X;Y / ! QP.X 0;Y // yield another presheaf of small additive
categories on Sm=k.

The main goal of this section is to prove the following
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Theorem 5.1 Let Y be an affine k-smooth variety. Then there is a morphism

F WA.�;Y /! QP.�;Y /

of presheaves of additive categories on Sm=k such that for any k-smooth affine X
the functor FX;Y WA.X;Y /! QP.X;Y / is an equivalence of categories.

We postpone the proof but first construct a functor

FX;Y WA.X;Y /! QP.X;Y /

which is an equivalence of categories whenever X is affine. We shall do this in
several steps. Let ˆ 2A.X;Y / be an object. It is represented by a triple

.n;Z;' W pX;�.OZ/!Mn.OX //;

where n is a nonnegative integer, Z 2 SubSch.X � Y=Y / (see Notation 4.2) and '
is a non-unital homomorphism of sheaves of OX -algebras. Thus one can consider
the composite of non-unital k-algebra homomorphisms

ˆX W kŒY �! kŒX �Y �! kŒZ�
'
�!Mn.kŒX�/:

Clearly, it does not depend on the choice of a triple representing the object ˆ.
Let Sch=X be the category of X-schemes of finite type. For an X-scheme

f W U !X in Sch=X set

ˆU WDMn.f
�/ ıˆX W kŒY �!Mn.kŒU �/:

Note that ˆU depends not only on U itself but rather on the X-scheme U . The
assignment U=X 7!ˆU defines a morphism of presheaves of non-unital k-algebras
.U=X 7! kŒY �/! .U=X 7!Mn.kŒU �//.

One has a compatible family of projectors given by U=X 7! pˆU D ˆU .1/ 2

Mn.kŒU �/. Set PˆU D Im.pˆU /� kŒU �
n. Then the assignment

U 7! PˆU (9)

is a presheaf of .U=X 7! kŒU �/-modules. Given U=X 2 Sch=X and a point u 2 U ,
we set

pˆU;u WD colimu2V�U p
ˆ
V 2Mn.OU;u/; PˆU;u WD Im.pˆU;u/�On

U;u:

The stalk of the presheaf .U 7! PˆU / of .U=X 7! kŒU �/-modules at the point u 2 U
is the OU;u-module PˆU;u.
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The presheaf of .U=X 7! kŒU �/-modules U=X 7! PˆU has, moreover, a kŒY �-
module structure. Namely, for each U=X 2 Sch=X the k-algebra kŒY � acts on
the kŒU �-module PˆU by means of the non-unital k-algebra homomorphism ˆU W

kŒY �!Mn.kŒU �/. Therefore the k-algebra kŒY � acts on the OU;u-module PˆU;u by
means of a non-unital k-algebra homomorphism

ˆU;u W kŒY �
ˆU
��!Mn.kŒU �/

Mn.can/
������!Mn.OU;u/;

where can is the localization homomorphism kŒU � ! OU;u. In what follows we
will regard the OU;u-module PˆU;u as an OU;u ˝k kŒY �-module via the non-unital
k-algebra homomorphism ˆU;u.

Definition 5.2 Let U=X 2 Sch=X and q 2 U �Y be a point. Let uD prU .q/ 2 U
be its image in U . Set

PˆU;q WD
�
m

g
jm 2 PˆU;u;g 2OU;u˝k kŒY � such that g.q/¤ 0

�
=
;

where "
" is the standard equivalence relation for fractions. Clearly, PˆU;q is an
OU�Y;q-module.

Now define a Zariski sheaf PˆU of OU�Y -modules on U � Y as follows. Its
sections on an open set W � U � Y are a compatible family of elements fnq 2
PˆU;qgq2W . More precisely, we give the following

Definition 5.3 Set PˆU .W / to consist of the tuples .nq/ 2
Q
q2W PˆU;q such that

there is an affine cover U D [Ui and for any i there is an affine cover of the form
.W \Ui �Y / D [.Ui � Y /gij with gij 2 kŒUi � Y � and there are elements nij 2
.PˆUi /gij such that for any i and any ij and any point q 2 .Ui � Y /gij one has
nij D nq 2 PˆU;q . Here .Ui �Y /gij stands for the principal open set associated with
gij .

Clearly, the assignment W 7! PˆU .W / is a Zariski sheaf of OU�Y -modules on
U �Y . The OU�Y -module structure on this sheaf is given as follows: for f 2 kŒW �
and .nq/ 2 PˆU .W / set f � .nq/D .f �nq/.

Next, for any morphism f W V ! U of objects in Sch=X construct a sheaf
morphism

�f W PˆU ! F�.PˆV /;

where F D f � id W V �Y ! U �Y . Given a point v 2 V and its image u 2 U , set
F �v D p

ˆ
V;v ıf

� ı iˆU;u W P
ˆ
U;u! PˆV;v, where iˆU;u W P

ˆ
U;u ,!On

U;u is the inclusion.
For any point r 2 V � Y and its image s D F.r/ 2 U � Y set v D prV .r/ and

uD prU .s/. Clearly, f .v/D u. The k-algebra homomorphism OU�Y;s !OV�Y;r
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makes PˆV;r an OU�Y;s-module. There is a unique homomorphism F �r W PˆU;s !
PˆV;r of OU�Y;s-modules making the diagram commutative

PˆU;u

F �v

PˆU;s
F �r

PˆV;v PˆV;r

Let W � U �Y be an open subset. By definition,

PˆU .W /D f.ns/ 2
Y
s2W

PˆU;s j ns are locally compatibleg

and

F�.PˆV /.W /D PˆV .F �1.W //D f.nr/ 2
Y

r2F�1.W /

PˆV;r j nr are locally compatibleg:

Define F �W W PˆU .W /! F�.PˆV /.W / as follows. Given a section .ns 2 PˆU;s/s2W of
PˆU over W , set

F �W ..ns 2 PˆU;s/s2W / WD ..F �r .ns/f .r/Ds//s2W :

It is straightforward to check that the assignment W 7! F �W defines an OU�Y -sheaf
morphism

�f W PˆU ! F�.PˆV /:
Moreover, for a pair of morphisms g W U3 ! U2 and f W U2 ! U1 in Sch=X one
has

�f ıg D .f � idY /�.�g/ ı �f W PˆU1 ! .F ıG/�.PˆU3/D F�.G�.P
ˆ
U3
//:

Lemma 5.4 The data U=X 7! PˆU and .f W V ! U / 7! .�f W PˆU ! F�.PˆV //
defined above determine an object of the category QP.X;Y /. We shall denote this
object by FX;Y .ˆ/.

Now define the functor FX;Y WA.X;Y /! QP.X;Y / on morphisms. Let ˛ Wˆ!
‰ be a morphism in A.X;Y /. The morphism ˛ is a Zariski sheaf morphism

.U=X 7! PˆU /! .U=X 7! P‰U /

on small Zariski site XZar respecting the kŒY �-module structure on both sides. We
write ˛U W PˆU ! P‰U for the value of ˛ at U . For any point x 2X the Zariski sheaf
morphism ˛ induces a morphism of stalks

˛x W P
ˆ
X;x! P‰X;x:
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Finally, for any point q 2 X � Y and its image x D pX .q/ 2 X one has a
homomorphism

˛q W PˆX;q! P‰X;q
given by ˛q

�
m
g

�
D ˛x.m/

g
for anym 2 PˆX;x and any g 2OX;x˝kkŒY �with g.q/¤ 0.

Definition 5.5 Define a morphism FX;Y .˛/ W FX;Y .ˆ/ ! FX;Y .‰/ as follows.
Given a Zariski open subset W � X � Y and a section s D .nq/ 2 PˆX .W /,
set ˛W .s/ D .˛q.nq//. Clearly, the family .˛q.nq// is an element of P‰X .W /.
Moreover, ˛W is a homomorphism and the assignment W 7! ˛W is a morphism
in QP.X;Y /. We shall write FX;Y .˛/ for this morphism in QP.X;Y /.
Lemma 5.6 The assignments ˆ 7! FX;Y .ˆ/ and ˛ 7! FX;Y .˛/ determine an
additive functor FX;Y W A.X;Y / ! QP.X;Y /. Moreover, for a given affine k-
smooth variety Y the assignment X 7! FX;Y determines a morphism of presheaves
of additive categories.

Lemma 5.6 implies that in order to prove Theorem 5.1, it remains to check that
for affine X;Y 2 AffSm=k the functor FX;Y is an equivalence of categories. Firstly
describe a plan of the proof. Given X;Y 2 AffSm=k we shall construct a square of
additive categories and additive functors

A.X;Y / FX;Y

�

QP.X;Y /

R

A.X;Y /
aX;Y

P.X;Y /

(10)

which commutes up to an isomorphism of additive functors. We shall prove that
the functors 	 , aX;Y and R are equivalences of categories. As a consequence, the
functor FX;Y will be an equivalence of categories.

Definition 5.7 For affine schemes X;Y 2 AffSm=k define a category A.X;Y / as
follows. Objects of A.X;Y / are the pairs .n;'/, where n > 0 and ' W kŒY � !
Mn.kŒX�/ is a non-unital k-algebra homomorphism. The homomorphism ' defines
a projector '.1/ 2Mn.kŒX�/. The projector '.1/ defines a projective kŒX�-module
Im
�
'.1/ W kŒX�n ! kŒX�n

�
. This kŒX�-module has also a kŒY �-module structure

which is given by the non-unital homomorphism '. Namely, mf WD '.f /.m/.
Thus Im.'.1// is a kŒX �Y �-module. Set

MorA.X;Y /..n1;'1/;.n1;'1//D HomkŒX�Y �.Im.'1.1//;Im.'2.1///:

Definition 5.8 Given affine schemes X;Y 2 AffSm=k, define a functor

	 WA.X;Y /! A.X;Y /
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as follows. Given an object ‰ 2 A.X;Y /, choose its representative .n;Z; W
pX;�.OZ/!Mn.OX //. This representative gives rise to a pair

	.‰/ WD .n;' W kŒY �! kŒX �Y �! 	.Z;OZ/
 
�!Mn.kŒX�//;

which is an object of A.X;Y /. Clearly, this pair does not depend on the choice of
a representative. One has an equality 	.X;P. //D P‰X , where P. / is defined in
Definition 4.5 and P‰X is given by (9). If ˛ W ‰1 ! ‰2 is a morphism in A.X;Y /,
then equalizing the supports of ‰1 and ‰2 and taking the global sections on X , we
get an isomorphism

MorA.X;Y /.‰1;‰2/D HompX;�.OZ/.P. 1/;P. 2//
�.˛/
���!

�.˛/
���! HomkŒX�Y �.P

‰1
X ;P

‰1
X /D HomA.X;Y /.	.‰1/;	.‰2//:

This completes the definition of the functor 	 .

Lemma 5.9 The functor 	 W A.X;Y / ! A.X;Y / is an equivalence of additive
categories.

Proof: Define a functor a W A.X;Y /! A.X;Y / on objects as follows. An object
.n;'/ in A.X;Y / defines a projector '.1/ 2 Mn.kŒX�/. The image Im.'.1// in
kŒX�n has a kŒY �-module structure given by the non-unital homomorphism '. In
this way Im.'.1// is a kŒX�Y �-module. Let A�X�Y be the support of Im.'.1//.
Using Notation 4.1, it is easy to see that A 2 Supp.X � Y=Y /. Thus there exists an
integer m > 0 such that ImA � Im.'.1// D .0/. The latter means that Im.'.1// is a
kŒX�Y �=ImA -module, and therefore the non-unital k-algebra homomorphism ' can
be presented in the form

kŒX �Y �
canA;m
�����! kŒX �Y �=ImA

N'A;m
���!Mn.kŒX�/

for a unique N'A;m. Let Z D Spec.kŒX � Y �=ImA / and let . N'A;m/� W pX;�.OZ/ !
Mn.OX / be the sheaf homomorphism associated to N'A;m. Set

a.n;'/ WD the equivalence class of the triple .n;Z;. N'A;m/�/:

This equivalence class remains unchanged when enlarging A in Supp.X � Y=Y /
and the integer m. In fact, if A0 2 Supp.X � Y=Y / is such that A � A0 and
m0 > m, then Im

0

A0 � ImA . Thus ' D N'A0;m0 ı canA0;m0 for a unique N'A0;m0 . Let
Z0 D Spec.kŒX � Y �=Im

0

A0 / and let . N'A0;m0/� W pX;�.OZ0/!Mn.OX / be the sheaf
homomorphism associated to N'A0;m0 . Clearly, the equivalence class of the triple
.n;Z;. N'A;m/

�/ coincides with the equivalence class of the triple .n;Z0;. N'A0;m0/�/.
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Define the functor a W A.X;Y / ! A.X;Y / on morphisms as follows. Let ˛ W
.n1;'1/! .n2;'2/ be a morphism inA.X;Y /. LetAi be the support of the kŒX�Y �-
module Im.'i .1// and letmi be an integer such that ImiA �Im.'i .1//D .0/. Enlarging
A1 and A2 in Supp.X � Y=Y / if necessary, we may assume that A1 D A D A2.
Enlarging m1 and m2, we may as well assume that m1 D m D m2. Therefore we
may assume that Z1 D Z D Z2. Now applying the functor from kŒX�-modules to
OX -modules, we get a homomorphism

HomA.X;Y /..n1;'1/;.n1;'1//D HomkŒX�Y �.Im.'1.1//;Im.'2.1///D

D HomkŒX�Y �=ImA
.Im. N'1;A;m.1//;Im. N'2;A;m//

! HompX;�.OZ/.Im. N'1.1//
�;Im. N'2.1//�/:

Set a.˛/ to be the image of ˛ under this homomorphism. The definition of the
functor a is completed.

It is straightforward to check that the functors 	 and a are mutually inverse
equivalences of additive categories. For instance, the composite a ı	 is the identity
functor from A.X;Y / to itself.

Definition 5.10 Define a functor aX;Y W A.X;Y /! P.X;Y / as follows. It takes an
object .n;'/ to the OX�Y -module sheaf Im.'.1//� associated with the kŒX � Y �-
module Im.'.1// described in Definition 5.7. On morphisms it is defined by the
isomorphism

HomA.X;Y /..n1;'1/;.n2;'2//D HomkŒX�Y �.Im.'1.1//;Im.'2.1///Š

Š HomOX�Y .Im.'1.1//
�;Im.'2.1//�/D HomP.X;Y /.aX;Y .n1;'1/;aX;Y .n2;'2//:

Proof of Theorem 5.1: Consider the following square of functors

A.X;Y / FX;Y

�

QP.X;Y /

R

A.X;Y /
aX;Y

P.X;Y /

where R takes a big bimodule P 2 QP .X;Y / to the OX�Y -module PX;Y 2 P.X;Y /
and a morphism ˛ W P !Q of big bimodules to the morphism ˛X;Y W PX;Y !QX;Y
of OX�Y -modules. We claim that this diagram commutes up to an isomorphism of
functors. Since the functors 	 , aX;Y , R are equivalences of categories, the functor
FX;Y is a category equivalence, too. To complete the proof, it remains to construct
a functor isomorphism aX;Y ı	!R ıFX;Y .

Let ‰ 2 A.X;Y / be an object and let .n;Z; W pX;�.OZ/ ! Mn.OX // be a
triple representing ‰ (see Definition 4.5). Then 	.‰/D .n;' W kŒY �! kŒX �Y �!
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	.Z;OZ/
 
�!Mn.kŒX�// as described in Definition 5.8. Let Im.'.1// be the kŒX �

Y �-module described in Definition 5.7. Then aX;Y .	.‰// is the OX�Y -module
sheaf Im.'.1//� associated with the kŒX�Y �-module Im.'.1//. On the other hand,
following Definition 5.3 and the description of R, one has R.FX;Y .‰// D P‰X .

We need to construct an isomorphism 
‰ W Im.'.1//�
Š
�! P‰X , natural in ‰, of

OX�Y -modules. Giving such a morphism 
‰ is the same as giving a kŒX � Y �-
homomorphism

‚‰ W Im.'.1//! 	.X �Y;P‰X /:

Moreover, 
‰ is an isomorphism whenever so is‚‰. A section of P‰X on X�Y is a
compatible family of elements .nq 2 PˆX;q/q2X�Y (see Definitions 5.3 and 5.2). For
s 2 Im.'.1//, set

‚‰.s/D

�
sx.q/

1

�
2

Y
q2X�Y

P‰X;q;

where x.q/ D pX .q/ 2 X and sx.q/ 2 P‰X;x.q/ is the image of s in P‰
X;x.q/

under
the canonical map P‰X D Im.p‰X / ! Im.p‰

X;x.q/
/ D P‰

X;x.q/
(see the discussion

above Definition 5.2). Clearly, ‚‰.s/ belongs to 	.X � Y;P‰X /. We claim that
‚‰ is an isomorphism. In fact, if sx.q/

1
D 0 for all q 2 X � Y then s D 0. It

follows that ‚‰ is injective. If .nq/ 2 	.X �Y;P‰X /, then .nq/ 2
Q
q2X�Y P‰X;q is a

compatible family of elements. It follows from Definition 5.3 that there is a global
section s of the sheaf Im.'.1//� such that for each q 2 X � Y one has sq D nq .
Since 	.X � Y;Im.'.1//�/D Im.'.1// the map ‚‰ is surjective. The fact that the
assignment ‰ 7! ‚‰ is a functor transformation aX;Y ı 	 ! R ıFX;Y is obvious.
Our theorem now follows.

Let DKeff
� .k/ be the triangulated category of K-motives in the sense of

Definition 4.24. Recall that the K-motiveMK.X/ of a k-smooth schemeX is the K-
module C�.K.�;X// (see Definition 3.3 and Notation 4.15). The K-motiveMK.X/

belongs to the category DKeff
� .k/ as observed just below the proof of Corollary 3.4.

To conclude the section, we give the following application of Theorem 5.1.

Theorem 5.11 Let k be a perfect field and let X be any scheme in Sm=k. Then for
every integer i 2 Z there is a natural isomorphism of abelian groups

Ki .X/ŠDK
eff
� .k/.MK.X/Œi �;MK.pt//;

where K.X/ is Quillen’s K-theory of X .

A priori, there is no reason for the right hand side to be zero for i < 0. However,
Theorem 5.1 and the fact that K-theory of X is connective imply this is the case.
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Proof: By Theorem 4.23 K is a strict V -spectral category. By (1) one has a
canonical isomorphism for every integer i

SH nis
S1
.k/.XŒi �;K.�;pt//Š SH nis

S1
K.K.�;X/Œi �;K.�;pt//:

Let
K W Sm=k! Sp†; X 7!K.X/DK. QP.X;pt//

be the algebraic K-theory presheaf of symmetric spectra. It follows from Theo-
rem 5.1 that the natural map in P re†.Sm=k/

F WK.�;pt/!K;

induced by the additive functors FX;pt W A.X;pt/ ! QP.X;pt/, X 2 Sm=k, is a
Nisnevich local weak equivalence.

Using Thomason’s theorem [14] stating that algebraic K-theory satisfies Nis-
nevich descent, we obtain isomorphisms

Ki .X/Š SH
nis
S1
.k/.XŒi �;K/Š SH nis

S1
K.K.�;X/Œi �;K.�;pt//; i 2 Z:

Consider a commutative diagram in P re†.Sm=k/

K.A.�;pt//
F

K.A.�;pt//f
ı

jHom.�:;K.A.�;pt//f /j
�

K
˛

Kf
ˇ

jHom.�:;Kf /j:

Here the lower f -symbol refers to a fibrant replacement functor in the Nisnevich
local model structure on P re†.Sm=k/. Theorem 5.1 implies F is a Nisnevich local
weak equivalence. By [14]K.�/ is Nisnevich excisive, and hence ˛ is a stable weak
equivalence. SinceK.�/ is homotopy invariant, then ˇ is a stable weak equivalence.
It follows that ı;� are stable weak equivalences. Therefore the composition of the
upper horizontal maps is a Nisnevich local weak equivalence. Thus the canonical
map

K.�;pt/!MK.pt/

is a Nisnevich local weak equivalence. One has an isomorphism

Ki .X/Š SH
nis
S1

K.K.�;X/Œi �;MK.pt//; i 2 Z:

Since K.�;X/Œi �;MK.pt/ are bounded below K-modules, then our theorem follows
from Theorem 3.5(2).
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A. The category of big bimodules QP.X;Y /

Let X;Y be two schemes of finite type over the base field k. We denote by P.X;Y /
the category of coherent OX�Y -modules PX;Y such that Supp.PX;Y / is finite over
X and the coherent OX -module .pX /�.PX;Y / is locally free. A disadvantage of the
category P.X;Y / is that whenever we have two maps f WX !X 0 and g WX 0!X 00

then the functor .g ı f /� agrees with f � ı g� only up to a canonical isomorphism.
We want to replace P.X;Y / by an equivalent additive category QP.X;Y / which is
functorial in both arguments.

To this end, we use the construction which is in spirit like that of Grayson
for finitely generated projective modules [5] and Friedlander–Suslin for big vector
bundles [1]. Let X be a Noetherian scheme. Consider the big Zariski site Sch=X of
all schemes of finite type over X . We define the category of big bimodules QP.X;Y /
as follows.

An object of QP.X;Y / consists of the following data:

1. For any U 2 Sch=X one has a bimodule PU;Y 2 P.U;Y /.

2. For any morphism f W U 0! U in Sch=X one has a morphism �f W PU;Y !

.f � 1Y /�.PU 0;Y / in P.U;Y / satisfying:

(a) �1 D 1.

(b) The morphism �f W .f � 1Y /
�.PU;Y /! PU 0;Y which is adjoint to �f

must be an isomorphism in P.U 0;Y /.

(c) Given a chain of maps U 00
f1
�! U 0

f
�! U in Sch=X , the following

relation is satisfied

�f ıf1 D .f � 1Y /�.�f1/ ı �f :

A morphism of two big bimodules ˛ W P !Q is a morphism ˛X;Y W PX;Y !QX;Y
in P.X;Y /. Clearly, QP.X;Y / is an additive category.

Given a map g W X 0 ! X of two Noetherian schemes, we define an additive
functor

g� W QP.X;Y /! QP.X 0;Y /

as follows. For any U 2 Sch=X 0 and P 2 P.X;Y / one sets g�.P /U;Y D PU;Y ,
where U is regarded as an object of Sch=X by means of composition with g. In a
similar way, if h W U 0 ! U is a map in Sch=X 0 then �h W g�.P /U;Y ! g�.P /U 0;Y
equals �h. So we have defined g� on objects. Let ˛ W P ! Q be a morphism in
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QP.X;Y /. By definition, it is a morphism ˛X;Y W PX;Y !QX;Y in P.X;Y /. There is
a commutative diagram

.g� 1Y /
�.PX;Y /

.g�1Y /
�.˛X;Y /

�g
PX 0;Y

˛X0;Y

.g� 1Y /
�.QX;Y /

�g
QX 0;Y

where the horizontal maps are isomorphisms. Then g�.˛/ WD ˛X 0;Y . The functor
g� is constructed.

Lemma A.1 Let g1 W X 00 ! X 0 and g W X 0 ! X be two maps of schemes. Then
.g ıg1/

� D g�1 ıg
�.

Proof: This is straightforward.
Now let us discuss functoriality in Y . For this consider a map h W Y ! Y 0. We

construct an additive functor

h� W QP.X;Y /! QP.X;Y 0/

in the following way. We set h�.P /U;Y 0 D .1U � h/�.PU;Y / for any P 2 QP.X;Y /.
If f W U 0! U is a map in Sch=X then

.1U �h/�.f � 1Y /� D .f � 1Y 0/�.1U 0 �h/�:

We define �f for h�.P / as

.1U �h/�.�f / W .1U �h/�.PU;Y /! .1U �h/�.f � 1Y /�.PU 0;Y /

D .f � 1Y 0/�.1U 0 �h/�.PU 0;Y /:

By definition, h� takes a morphism ˛X;Y in P.X;Y / to .1X � h/�.˛X;Y /. The
construction of the functor h� is completed.

Lemma A.2 Let h1 W Y 0 ! Y 00 and h W Y ! Y 0 be two maps of schemes. Then
.h1 ıh/� D .h1/� ıh�.

Proof: This is straightforward.
We leave the reader to verify the following

Proposition A.3 The natural functor

R W QP.X;Y /! P.X;Y /; P 7! PX;Y ;

is an equivalence of additive categories.

By Lemmas A.1-A.2 QP.X;Y / has the desired functoriality properties in both
arguments.
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