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1. Introduction

The main objective of the present paper is to suggest a new approach to the
classical stable motivic homotopy theory of Morel–Voevodsky [18]. Let us give
more details.

In [24] Voevodsky develops the theory of (pre-)sheaves with framed correspon-
dences. One of its aims was to give another framework for SH(k) more amenable
to explicit calculations (see his Nordfjordeid Lectures [5, Remark 2.15] or his un-
published notes [24]).

Let Sm/k be the category of smooth separated schemes of finite type over a
field k. Recall that the category of framed correspondences Fr∗(k), invented by
Voevodsky [24, Section 2], is defined as follows. Its objects are those of Sm/k
and morphisms sets Fr∗(X,Y ) = �n�0Frn(X,Y ) are defined by means of certain
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geometric data (see Section 2 below). The category Fr∗(k) contains a subcategory
Fr0(k) whose objects are those of Sm/k and the morphisms set between schemes
X and Y is the pointed set Fr0(X,Y ). The latter set coincides with the pointed
set Mor•(X+, Y+) of pointed morphisms between pointed schemes X+ and Y+.
Following Voevodsky [24], we put for every Y ∈ Sm/k (see Section 2 below):

Fr(X,Y ) := colim(Fr0(X,Y )
σY−−→ Fr1(X,Y )

σY−−→ . . .
σY−−→ Frn(X,Y )

σY−−→ . . . )

and refer to it as the set of stable framed correspondences. The set Fr(X,Y ) is
pointed, contravariantly functorial with respect to X ∈ Fr∗(k) and covariantly
functorial with respect to Y ∈ Fr0(k).

Replacing Y by a simplicial object Y • in Fr0(k), we get a pointed simplicial
set Fr(X,Y •). Replacing X by the standard cosimplicial object Δ•

k in Sm/k and
taking the diagonal, we get a pointed simplicial set Fr(Δ•

k, Y
•). We put

πfr
r (Y

•) := πr(Fr(Δ•
k, Y

•))

and call πfr
r (Y

•) the rth singular algebraic stable homotopy group of Y •.
If we replace Y • by the simplicial circle S1 (canonically regarded as an object of

ΔopFr0(k)) and take the base field to be the field of complex numbers C, we can
state our first result:

Theorem 1.1. The geometric realization of the simplicial set Fr(Δ•
C
, S1) has the

homotopy type of the topological space Ω∞Σ∞(S1
top), where S

1
top stands for the usual

topological circle.

The key point of the statement is this: the classical topological space of the
theorem is recovered as the simplicial set Fr(Δ•

C
, S1), which is described in terms

of algebraic varieties only. This is one of the computational miracles of framed
correspondences.

Our next result is in the spirit of the preceding theorem. It extends the celebrated
theorem of Suslin and Voevodsky [21] on singular algebraic homology to the singular
algebraic stable homotopy defined above.

Theorem 1.2. The assignment X �→ πfr
∗ (X⊗S1) is a generalized homology theory

on Sm/C. Moreover, passing to homotopy groups with finite coefficients, we get
equalities

πfr
s (X ⊗ S1;Z/m) = πst

s (X+ ∧ S1
top;Z/m)

for all integers s,m with m �= 0.
Also, the first part of this theorem is true over any infinite perfect field k.

Namely, the assignment X �→ πfr
∗ (X ⊗ S1) is a generalized homology theory on

the category Sm/k.

The reader will find the proofs of Theorems 1.1 and 1.2 in Section 11.
From now on we deal with the category Sm/k of smooth algebraic varieties

over an infinite perfect field k unless otherwise specified. Following [18], recall that
a pointed motivic space is a pointed simplicial Nisnevich sheaf on Sm/k. The
category of pointed motivic spaces will be denoted by sShv•(Sm/k). Voevodsky
conjectured that if the motivic space Fr(Δ•

k × −, Y •) is locally connected in the
Nisnevich topology, then it is weakly equivalent, locally in the Nisnevich topology,
to the motivic space Ω∞

P1Σ∞
P1(Y •

+).
The proof of Theorem 6.4 shows that the motivic space Fr(Δ•

k × −, Y •) is a
commutative monoid in Hnis

• (k). In particular, the Nisnevich sheaf π0(Fr(Δ• ×
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−, Y •)) is a sheaf of commutative monoids. If this sheaf is a sheaf of Abelian
groups, then the space Fr(Δ• × −, Y •) is called a (locally) group-like motivic
space. The following result (see Theorem 10.7) answers Voevodsky’s conjecture in
the affirmative.

Theorem 1.3. Let k be an infinite perfect field. Then for any simplicial object Y •

in Fr0(k) the canonical morphism

Fr(Δ•
k ×−, Y •) → Ω∞

P1Σ∞
P1(Y •

+)

is locally a group completion. Furthermore, if Fr(Δ•
k×−, Y •) is locally a group-like

motivic space, then the canonical morphism

Fr(Δ•
k ×−, Y •) → Ω∞

P1Σ∞
P1(Y •

+)

is a local weak equivalence. In particular, the latter is true whenever Fr(Δ•×−, Y •)
is locally connected.

The preceding theorem shows that the theory of framed correspondences pro-
duces a machinery for computing motivic infinite loop spaces.

To prove Voevodsky’s conjecture, we introduce and study framed motives as well
as big framed motives in the present paper. The main goal of the machinery of
framed motives is to find an explicit A1-local replacement of the functor

Ω∞
G Σ∞

G Σ∞
S1 : HA1(k) → SHS1(k).

To this end, we firstly regard SHS1(k) as the full subcategory of the ordinary stable
homotopy category SHnis

S1 (k) consisting of A1-local spectra. Then in Theorem 11.7
we construct an explicit functor Mfr : HA1(k) → SHS1(k) together with a functor
isomorphism

α : Ω∞
G Σ∞

G Σ∞
S1 → Mfr.

In order to formulate the main results of the theory of big framed motives, consider

the full subcategory SHfr
nis(k) of SH(k) consisting of framed bispectra E such that

for any i, j � 0 the simplicial framed sheaf Ei,j is A1-local regarded as an ordinary

motivic space and {Ef
i,j} regarded as an ordinary bispectrum is stably motivically

fibrant in the stable motivic model structure. Here “f” refers to a fibrant replace-
ment in the local model structure on sShv•(Sm/k).

The main results of the theory of big framed motives are Theorems 12.4 and 12.5.
Theorem 12.4 says that an explicitly constructed functor

Mb
fr : SH(k) → SHfr

nis(k)

converts classical Morel–Voevodsky stable motivic homotopy theory SH(k) into

an equivalent local homotopy theory of A1-local framed bispectra from SHfr
nis(k),

thus producing a new approach to stable motivic homotopy theory. The main
ingredients of this equivalent local homotopy theory are framed motivic spaces of
the form C∗Fr(−, Y ) with Y ∈ ΔopFr0(k) a simplicial scheme as well as their
framed motives Mfr(Y ). Theorem 12.5 states that the morphisms set in SH(k)
between two bispectra E and E′ is the set π0(E

c,Mb
fr(E

′)f ) of ordinary morphisms

between bispectra Ec and Mb
fr(E

′)f modulo naive homotopy.
Let us indicate some applications of the theory of framed motives and big framed

motives. The fact that α is a functor isomorphism yields the following statement:
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for any X ∈ Sm/k and any simplicial object Y • in Fr0(k) one has a canonical
isomorphism
(1.1)

SH(k)(Σ∞
G Σ∞

S1X+,Σ
∞
G Σ∞

S1Y •
+[n]) = SHnis

S1 (k)(Σ∞
S1X+,Mfr(Y

•)[n]), n � 0,

(see Theorem 11.5). In particular, the isomorphism α yields that for any simpli-
cial object X• in Fr0(k) the projection X• × A1 → X• induces an isomorphism
Mfr(X

• × A1) ∼= Mfr(X
•). Furthermore, the functor Mfr converts any elemen-

tary distinguished Nisnevich square of k-smooth varieties to a Mayer–Vietoris exact
triangle (see Theorem 8.10). Another important property of framed motives is as
follows: given a morphism ϕ : Y • → Z• of simplicial objects in Fr0(k) such that
the morphism Σ∞

G
Σ∞

S1(ϕ) is an isomorphism in SH(k), the morphism Mfr(ϕ) is a
local equivalence.

By definition, the framed motive of a smooth scheme X ∈ Sm/k over a field k is
a motivic S1-spectrumMfr(X) whose terms are certain explicit motivic spaces with
framed correspondences (see Definition 5.2). We use framed motives to construct an
explicit quasi-fibrant motivic replacement (i.e. an Ω-spectrum in positive degrees)
of the suspension P

1-spectrum Σ∞
P1X+ in Theorem 4.1 (here P

1 is pointed at ∞).
Another application is to show in Theorem 11.1 that an explicitly constructed
bispectrum

MG

fr(X) = (Mfr(X),Mfr(X)(1),Mfr(X)(2), . . .),

each term of which is a twisted framed motive of X, has the motivic homotopy type
of the suspension bispectrum Σ∞

G
Σ∞

S1X+ of X. Moreover, if we take a stable local
fibrant replacementMfr(X)(n)f of each twisted framed motive then the bispectrum

MG

fr(X)f = (Mfr(X)f ,Mfr(X)(1)f ,Mfr(X)(2)f , . . .)

is motivically fibrant by [1, Theorem A]. These definitions and results hold equally
for simplicial objects in the category Fr0(k). We should point out that for any
simplicial object Y • in Fr0(k) there is a canonical morphism of bispectra

MG

fr(Y
•) → Mb

fr(Σ
∞
G Σ∞

S1Y •
+),

which is an isomorphism in SH(k). Thus the composite morphism Σ∞
G
Σ∞

S1Y •
+ →

MG

fr(Y
•) → Mb

fr(Σ
∞
G
Σ∞

S1Y •
+) is an isomorphism in SH(k). This yields an equality

(see Theorem 12.5)

SH(k)(Σ∞
G Σ∞

S1X+,Σ
∞
G Σ∞

S1Y •
+) = π0(Mb

fr(Σ
∞
G Σ∞

S1Y •
+)

f
0,0(X)).

Here “f” refers to a fibrant replacement in the local model structure on
sShv•(Sm/k).

Let us also give some applications of the isomorphism (1.1). Since Mfr(Y
•)

is a sheaf of Segal S1-spectra, it follows that for any n < 0 the Nisnevich sheaf

πA
1

n,0(Σ
∞
G
Σ∞

S1Y •
+) vanishes. By varying Y •, one gets a much stronger vanishing

property. Namely, for any n < r one has πA
1

n,r(Σ
∞
G
Σ∞

S1Y •
+) = 0. We can also

compute πA
1

n,r(Σ
∞
G
Σ∞

S1Y •
+) for n = r with r � 0 as

πA
1

−n,−n(Σ
∞
S1Σ∞

G Y •
+)(K) = H0(ZF (Δ•

K , Y • ×G
∧n
m )), n � 0.

HereK/k is any field extension and ZF (Δ•
K , Y •×G∧n

m )) is an explicit chain complex
of free Abelian groups. If X = Spec(k), char k = 0, then using Neshitov’s compu-
tation H0(ZF (Δ•

K ,G∧n
m )) = KMW

n (K) [19] we recover the celebrated theorem of
Morel [17] for Milnor–Witt K-theory for fields of characteristic zero.
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We also give an explicit computation of the suspension functor (see Theorem 10.5)

Σ∞
P1 : HA1(k) → SH(k).

It is isomorphic to an explicitly constructed functor

MP∧1 : HA1(k) → SH(k)

that takes a motivic space to a spectrum consisting of spaces with framed corre-
spondences.

As a topological application, using the machinery of framed motives together
with a theorem of Levine [16], we show in Theorem 11.9 that Mfr(pt)(pt), the
framed motive of the point pt = Spec k evaluated at pt, is a quasi-fibrant model
(i.e. an Ω-spectrum in positive degrees) of the classical sphere spectrum if the base
field k is algebraically closed of characteristic zero.

Finally, we show that every P
1-spectrum E is actually isomorphic in SH(k) to

a framed spectrum in a canonical way, functorially in E. Furthermore, there is an
equivalence of categories

SH(k)
∼=−→ SHfr(k),

where SHfr(k) is a full subcategory of framed P1-spectra (see Theorem 13.4).

2. Voevodsky’s framed correspondences

In this section we collect basic facts about framed correspondences and framed
functors in the sense of Voevodsky [24]. We start with preparations.

Let S be a scheme and let Z be a closed subscheme. Recall that an étale neigh-
borhood of Z in S is a triple (W ′, π′ : W ′ → S, s′ : Z → W ′) satisfying the
conditions:

(i) π′ is an étale morphism;
(ii) π′ ◦ s′ coincides with the inclusion Z ↪→ S (thus s′ is a closed embedding);
(iii) (π′)−1(Z) = s′(Z)
A morphism between two étale neighborhoods (W ′, π′, s′) → (W ′′, π′′, s′′) of Z

in S is a morphism ρ : W ′ → W ′′ such that π′′ ◦ ρ = π′ and ρ ◦ s′ = s′′. Note that
such ρ is automatically étale by [11, VI.4.7].

Definition 2.1 (Voevodsky, [24]). For k-smooth schemes X,Y and n � 0, an
explicit framed correspondence Φ of level n consists of the following data:

(1) a closed subset Z in A
n
X which is finite over X;

(2) an etale neighborhood p : U → An
X of Z in An

X ;
(3) a collection of regular functions ϕ = (ϕ1, . . . , ϕn) on U such that ∩n

i=1{ϕi =
0} = Z;

(4) a morphism g : U → Y .

The subset Z will be referred to as the support of the correspondence. We shall also
write triples Φ = (U,ϕ, g) or quadruples Φ = (Z,U, ϕ, g) to denote explicit framed
correspondences.

Two explicit framed correspondences Φ and Φ′ of level n are said to be equivalent
if they have the same support and there exists an open neighborhood V of Z in
U×An

X
U ′ such that, on V , the morphism g ◦pr agrees with g′ ◦pr′ and ϕ◦pr agrees

with ϕ′ ◦ pr′. A framed correspondence of level n is an equivalence class of explicit
framed correspondences of level n.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

266 GRIGORY GARKUSHA AND IVAN PANIN

Let Frn(X,Y ) denote the set of framed correspondences from X to Y . We
consider it as a pointed set with the basepoint being the class 0n of the explicit
correspondence with U = ∅.

As an example, the set Fr0(X,Y ) coincides with the set of pointed morphisms
X+ → Y+. In particular, for a connected scheme X one has

Fr0(X,Y ) = HomSm/k(X,Y ) � {00}.
If f : X ′ → X is a morphism of schemes and Φ = (U,ϕ, g) is an explicit correspon-
dence from X to Y then

f∗(Φ) := (U ′ = U ×X X ′, ϕ ◦ pr, g ◦ pr)
is an explicit correspondence from X ′ to Y .

Remark 2.2. Let Φ = (Z,An
X

p←− U,ϕ : U → An
k , g : U → Y ) ∈ Frn(X,Y ) be an

explicit framed correspondence of level n. It can more precisely be written in the
form

((α1, α2, . . . , αn), f, Z, U, (ϕ1, ϕ2, . . . , ϕn), g) ∈ Frn(X,Y )

consisting of

� Z ⊂ An
X a closed subset finite over X,

� an etale neighborhood (α1, α2, . . . , αn), f) = p : U → An
k ×X of Z,

� a collection of regular functions ϕ = (ϕ1, . . . , ϕn) on U such that ∩n
i=1{ϕi =

0} = Z,
� a morphism g : U → Y .

We shall usually drop ((α1, α2, . . . , αn), f) from notation and just write

(Z,U, (ϕ1, ϕ2, . . . , ϕn), g) = ((α1, α2, . . . , αn), f, Z, U, (ϕ1, ϕ2, . . . , ϕn), g).

The following definition is to describe compositions of framed correspondences.

Definition 2.3. Let X,Y and S be k-smooth schemes, let

a = ((α1, α2, . . . , αn), f, Z, U, (ϕ1, ϕ2, . . . , ϕn), g)

be an explicit correspondence of level n from X to Y and let

b = ((β1, β2, . . . , βm), f ′, Z ′, U ′, (ψ1, ψ2, . . . , ψm), g′) ∈ Frm(Y, S)

be an explicit correspondence of level m from Y to S. We define their composition
as an explicit correspondence of level n+m from X to S by

((α1, . . . , αn, β1, . . . , βm), f, Z ×Y Z ′, U ×Y U ′, (ϕ1, . . . , ϕn, ψ1, . . . , ψm), g′).

Clearly, the composition of explicit correspondences respects the equivalence rela-
tion on them and defines associative maps

Frn(X,Y )× Frm(Y, S) → Frn+m(X,S).

Given X,Y ∈ Sm/k, denote by Fr+(X,Y ) the set
∨

n Frn(X,Y ). The com-
position of framed correspondences defined above gives a category Fr+(k). Its
objects are those of Sm/k and the morphisms are given by the sets Fr+(X,Y ),
X,Y ∈ Sm/k. Since the naive morphisms of schemes can be identified with certain
framed correspondences of level zero, we get a canonical functor

Sm/k → Fr+(k).
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The category Fr+(k) has the zero object. It is the empty scheme. One can easily
see that for a framed correspondence Φ : X → Y and a morphism f : X ′ → X, one
has f∗(Φ) = Φ ◦ f .

Definition 2.4. LetX,Y, S and T be smooth schemes. There is an external product

Frn(X,Y )× Frm(S, T )
−�−−−−→ Frn+m(X × S, Y × T )

given by

((α1, . . . , αn), f, Z, U, (ϕ1, . . . , ϕn), g)� ((β1, . . . , βm), f ′, Z ′, U ′, (ψ1, . . . , ψm), g′)

=((α1, . . . , αn, β1, . . . , βm), f×f ′, Z×Z ′, U×U ′, (ϕ1, . . . , ϕn, ψ1, . . . , ψm), g×g′).

For the constant morphism c : A1 → pt, we set (following Voevodsky [24])

Σ = −� (t, c, {0},A1, t, c) : Frn(X,Y ) → Frn+1(X,Y )

and refer to it as the suspension.
Also, following Voevodsky [24], one puts

Fr(X,Y ) = colim(Fr0(X,Y )
Σ−→ Fr1(X,Y )

Σ−→ . . .
Σ−→ Frn(X,Y )

Σ−→ . . . )

and refers to it as the set of stable framed correspondences. The above external
product induces external products

Frn(X,Y )× Fr(S, T )
−�−−−−→ Fr(X × S, Y × T ),

F r(X,Y )× Fr0(S, T )
−�−−−−→ Fr(X × S, Y × T ).

Definition 2.5.
(I) Let Y be a k-smooth scheme and S ⊂ Y be a closed subset and let U ∈ Sm/k.

An explicit framed correspondence of level m � 0 from U to Y/(Y − S) is a tuple:

(Z,W,ϕ1, . . . , ϕm; g : W → Y ),

where Z is a closed subset of U ×Am, finite over U , W is an étale neighborhood of
Z in U × Am, ϕ1, . . . , ϕm are regular functions on W , and g is a regular map such
that Z = Z(ϕ1, . . . , ϕm) ∩ g−1(S). The set Z is called the support of the explicit
framed correspondence. We shall also write quadruples Φ = (Z,W,ϕ; g) to denote
explicit framed correspondences.

(II) Two explicit framed correspondences (Z,W,ϕ; g) and (Z ′,W ′, ϕ′; g′) of level
m are said to be equivalent if Z = Z ′ and there exists an étale neighborhood W ′′

of Z in W ×Am
U
W ′ such that ϕ ◦ pr agrees with ϕ′ ◦ pr′ and the morphism g ◦ pr

agrees with g′ ◦ pr′ on W ′′.
(III) A framed correspondence of level m from U to Y/(Y −S) is the equivalence

class of an explicit framed correspondence of level m from U to Y/(Y − S). We
write Frm(U, Y/(Y − S)) to denote the set of framed correspondences of level m
from U to Y/(Y − S). We regard it as a pointed set whose distinguished point is
the class 0Y/(Y−S),m of the explicit correspondence (Z,W,ϕ; g) with W = ∅.

(IV) If S = Y then the pointed set Frm(U, Y/(Y −S)) coincides with the pointed
set Frm(U, Y ) of framed correspondences of level m from U to Y .

Definition 2.6. A framed presheaf F on Sm/k is a contravariant functor from
Fr+(k) to the category of sets. A framed functor F on Sm/k is a contravariant
functor from Fr+(k) to the category of pointed sets such that F(∅) = pt and
F(X � Y ) = F(X)×F(Y ).
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A framed Nisnevich sheaf on Sm/k is a framed presheaf F such that its restric-
tion to Sm/k is a Nisnevich sheaf.

Note that the representable presheaves on Fr+(k) are not framed functors.

Construction 2.7. We set Fr+(−, Y/(Y − S)) :=
∨

m�0 Frm(−, Y/(Y − S)) and
define the structure of a framed presheaf on it as follows. Let X,Y and S be
k-smooth schemes and let

Ψ = (Z ′,Ak × V
(α,π′)←−−−− W ′, ψ1, ψ2, . . . , ψk; g : W ′ → U) ∈ Frk(V, U)

be an explicit correspondence of level k from V to U . Suppose

Φ = (Z,Am × U
(β,π)←−−− W,ϕ1, ϕ2, . . . , ϕm; g′ : W → Y ) ∈ Frm(U, Y/(Y − S))

is an explicit correspondence of level m from U to Y/(Y − S). We define Ψ∗(Φ) as
an explicit correspondence of level k +m from V to Y/(Y − S) as

(Z×UZ′,Ak+m×V
(α,β,π′)←−−−−−− W ′×UW,ψ1, . . . , ψk, ϕ1, . . . , ϕm, g′◦prW ) ∈ Frk+m(V, Y/(Y −S)).

Clearly, the pullback operation (Ψ,Φ) �→ Ψ∗(Φ) of explicit correspondences respects
the equivalence relation on them. We get a pairing

(2.1) Frk(V, U)× Frm(U, Y/(Y − S)) → Frk+m(V, Y/(Y − S))

making Fr+(−, Y/(Y − S)) a Fr+(k)-presheaf.

Denote by

(2.2) σY/(Y−S) : Frm(U, Y/(Y − S)) → Frm+1(U, Y/(Y − S))

a map, which takes Φ = (Z,W,ϕ; g) to (Z × {0},W × A1, ϕ ◦ prW , prA1 ; g).
Following Voevodsky [24] we give the following

Definition 2.8. We shall refer to the set

Fr(U, Y/(Y − S)) :=

= colim(Fr0(U, Y/(Y − S))
σY/(Y −S)−−−−−−→ Fr1(U, Y/(Y − S))

σY/(Y −S)−−−−−−→ · · · )
as the set of stable framed correspondences from U to Y/(Y − S).

Remark 2.9. It is straightforward to check that for any framed correspondences
Ψ ∈ Frn(U

′, U) and Φ ∈ Frm(U, Y/(Y − S)) one has that σY/(Y−S)(Ψ
∗(Φ)) =

Ψ∗(σY/(Y−S)(Φ)). This shows that the assignment U �→ Fr(U, Y/(Y − S)) from
Definition 2.8 is a framed presheaf.

For a scheme X we let Et/X denote the category of schemes separated and étale
over X.

Theorem 2.10 (Voevodsky, [24]). Let X be a k-smooth scheme. Then for any
scheme Y the functor U �→ Frn(U, Y ) from Et/X to Sets• is a sheaf in the etale
topology.

The proof of the latter theorem given in [24] yields the following

Corollary 2.11. Given Y ∈ Sm/k and any closed subset S in Y , the presheaf
Frn(−, Y/(Y −S)) on Sm/k is a pointed Nisnevich sheaf. Also, the framed presheaf
Fr(−, Y/(Y − S)) is a framed Nisnevich sheaf.
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3. The Voevodsky lemma

In this section we discuss the Voevodsky lemma computing framed correspon-
dences in terms of morphisms of associated Nisnevich sheaves. It is crucial in
our analysis. Corollary 3.3 and a sketch of its proof was communicated to us by
A. Suslin. It very much helped the authors in understanding Voevodsky’s notes
[24].

Construction 3.1. Given an explicit framed correspondence α = (Z,W, g : W →
Y ) from X to Y/(Y −S) of level zero, consider an elementary distinguished square
of the form

W − Z
in ��

(ρ)|W−Z

��

W

ρ

��

X − Z
in

�� X

where ρ : W → X is an étale neighborhood of Z. Let q : Y → F := Y/(Y − S)
be the canonical morphism of Nisnevich sheaves. Take a morphism of sheaves
q ◦ g : W → F and a morphism of sheaves c : X − Z → F sending X − Z to the
distinguished point of F . These two morphisms agree on W − Z. Thus there is a
unique morphism of Nisnevich sheaves

s(Z,W,g) : X → F

such that s(Z,W,g) ◦ in = c and s(Z,W,g) ◦ ρ = q ◦ g. Clearly, the sheaf morphism
s(Z,W,g) depends only on the equivalence class of (Z,W, g) in Fr0(U, Y/(Y − S)).
The assignment (Z,W, g) �→ s(Z,W,g) defines a map of pointed sets

aX,Y/(Y−S) : Fr0(X,Y/(Y − S)) → MorShv(X,Y/(Y − S)).

The map aX,Y/(Y−S) is natural in X with respect to morphisms of smooth varieties.
Hence aY/(Y−S) : Fr0(−, Y/(Y − S)) → MorShv(−, Y/(Y − S)) is a morphism of
presheaves on the category Sm/k. Using Corollary 2.11, the morphism

aY/(Y−S) : Fr0(−, Y/(Y − S)) → MorShv(−, Y/(Y − S))

is a morphism of Nisnevich sheaves on Sm/k.

Lemma 3.2 (Voevodsky’s lemma). Let Y be a k-smooth scheme and let S ⊂ Y be
a closed subset. The morphism of pointed Nisnevich sheaves

(3.1) aY/(Y−S) : Fr0(−, Y/(Y − S)) → MorShv(−, Y/(Y − S))

is an isomorphism.

Proof. Since aY/(Y−S) is a morphism of Nisnevich sheaves, it suffices to check that
for any essentially k-smooth local Henselian U the map aX,Y/(Y−S) is a bijection.
Let U be local essentially smooth Henselian with the closed point u ∈ U . Since U
is local Henselian the following holds: for any non-empty closed subset Z in U the
Henselization Uh

Z of U at Z coincides with U itself. This shows that

Fr0(U, Y/(Y − S))− 00 = {(Z,U, f : U → Y ) | Z = f−1(S), Z �= ∅}
= {f : U → Y |f(u) ∈ S}.

Here 00 is the distinguished point in Fr0(U, Y/(Y −S)). The map aU,Y/(Y −S) takes
a triple (Z,U, f) to the morphism q ◦f : U → Y/(Y −S), where q : Y → Y/(Y −S)
is the quotient map.
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Let Yu(U) ⊂ Y (U) be the subset of U -points of Y consisting of g ∈ Y (U) with
g(u) ∈ S. Then the map Y (U) = MorShv(U, Y ) → MorShv•(U, Y/(Y − S)) taking
f ∈ Y (U) to q ◦ f identifies Yu(U) with the subset MorShv•(U, Y/(Y − S))− ∗. In
fact,

(3.2) MorShv(U, Y/(Y − S)) = (Yu(U) � (Y − S)(U))/(Y − S)(U)) = Yu(U) � ∗,
where ∗ is a singleton. Hence the map

aU,Y/(Y−S)|Fr0(U,Y/(Y −S))−{00} : Fr0(U, Y/(Y − S)) \ {00}
→ MorShv•(U, Y/(Y − S)) \ ∗

is a bijection. Thus the map aU,Y/(Y −S) is a bijection, too. �
Corollary 3.3. Let Y be a k-smooth scheme and let S ⊂ Y be a closed subset. Let
X be a k-smooth variety and B ⊂ X a closed subset. Suppose Fr0(X/B, Y/(Y −S))
is the subset of Fr0(X,Y/(Y − S)) consisting of framed correspondences (Z,W, g)
with Z ∩B = ∅. Then the map of pointed sets

aX/B,Y/(Y −S) : Fr0(X/B, Y/(Y − S)) → MorShv•(X/B, Y/(Y − S))

is a bijection.

Proof. Consider a commutative diagram

Fr0(X/B, Y/(Y − S))
aX/B,Y/(Y −S)

��

in

��

MorShv•(X/B, Y/(Y − S))

r∗

��

Fr0(X,Y/(Y − S)) aX,Y/(Y −S)

�� MorShv(X,Y/(Y − S))

,

where r∗ is induced by the quotient map r : X → X/(X − S). Since r is an
epimorphism the map r∗ is injective. The map in is an inclusion by the definition
of Fr0(X/B, Y/(Y − S)). By Lemma 3.2 the map aX,Y/(Y−S) is bijective. Thus
the map aX/B,Y/(Y−S) is injective. It remains to check its surjectivity.

Let g : X → Y/(Y −S) be a Nisnevich sheaf map. It is in MorShv•(X/B, Y/(Y −
S)) if and only if g(B) is the distinguished point ∗ in Y/(Y − S).

Let g : X → Y/(Y − S) be a Nisnevich sheaf morphism such that g(B) = ∗.
We claim that g is in the image of aX/B,Y/(Y −S). By Lemma 3.2 there is an
explicit framed correspondence (Z,W, g̃ : W → Y ) from X to Y/(Y − S) such that
g = aX,Y/(Y−S)((Z,W, g̃ : W → Y )). The latter equality means that the morphism
g is unique such that g(X −Z) = ∗ and q ◦ g̃ = g ◦ ρ. If g(B) = ∗, then B ∩Z = ∅.
Indeed, if b is a closed point of the closed subset B ∩ Z then ∗ �= g̃(b) ∈ S. On
the other hand, g̃(b) = g(b) = ∗. We see that B ∩ Z = ∅, (Z,W, g̃ : W → Y ) is in
Fr0(X/B, Y/(Y − S)), and g = aX/B,Y/(Y −S)((Z,W, g̃ : W → Y )) as claimed. �

Remark 3.4. Let n > 0 be an integer. Let Bn ⊂ (P1)n be a closed subset which is
the union of all subsets of the form P1 × ... × {∞} × ... × P1. Set B0 = {∞}. For
any X,Y ∈ Sm/k and any n � 0 the inclusion

Frn(X,Y ) ⊂ Fr0(X × (P1)n/X × Bn, Y × A
n/Y × (An − {0}))

is an equality. To see this, it suffices to check that any element (Z,W, f : W →
Y × A

n) from Fr0(X × (P1)n/X × Bn, Y × A
n/Y × (An − {0})) is contained in

Frn(X,Y ). Since Z ∩ (X ×Bn) = ∅, it follows that Z ⊂ X ×An. Since Z is closed
in X × (P1)n, Z is projective over X. Since Z is also affine over X, it is finite over
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X. Giving a morphism f : W → Y ×An is the same as giving n functions ϕ1, ..., ϕn

and a morphism g : W → Y . The condition Z = f−1(Y ×{0}) is equivalent to that
of Z = {ϕ1 = ... = ϕn = 0}. The desired equality is checked.

The preceding remark and Corollary 3.3 imply the following

Proposition 3.5 (Voevodsky). For any X,Y ∈ Sm/k and any n � 0 the map

an,X,Y = aX×(P1)n/X×Bn,Y ×An/Y×(An−{0}) : Frn(X,Y )

→ HomShvnis
• (Sm/k)(X+ ∧ (P1,∞)∧n, Y+ ∧ (A1/(A1 − 0))n)

= HomShvnis
• (Sm/k)(X+ ∧ (P1,∞)∧n, Y+ ∧ Tn)

is a bijection.

In what follows we shall write P∧n for (P1,∞)∧n and Hom(X+ ∧ P∧n, Y+ ∧ Tn)
instead of HomShvnis

• (Sm/k)(X+ ∧ P
∧n, Y+ ∧ Tn). We shall also write Frn(X,Y ) to

denote Hom(X+ ∧ P
∧n, Y+ ∧ Tn).

Consider two categories Fr+(k) and Fr+(k), where the objects in both categories
are those of Sm/k. The category Fr+(k) is defined in 2.3. The morphisms between
X and Y in Fr+(k) are defined as

∨
n�0 Frn(X,Y ). The composition is defined as

follows. Given two morphisms α : X+∧P∧m → Y+∧Tm and β : Y+∧P∧n → S+∧Tn,
define a morphism β ◦ α ∈ Frm+n(X,S) as the composite

X+ ∧ P
∧m ∧ P

∧n α∧id−−−→ Y+ ∧ Tm ∧ P
∧n

∼= Tm ∧ Y+ ∧ P
∧n id∧β−−−→ Tm ∧ Y+ ∧ Tn ∼= Y+ ∧ Tm ∧ Tn.

It is straightforward to check commutativity of the diagram

Frm(X,Y )× Frm(Y, S)
◦ ��

a×a

��

Frm+n(X,S)

a

��

Frm(X,Y )×Frn(Y, S)
◦ �� Frm+n(X,S).

These observations imply the following

Corollary 3.6. The functor

a : Fr+(k) → Fr+(k)

is an isomorphism of categories.

It is also worthwhile to make the following

Remark 3.7. One has that

Frn(X,Y/(Y − S)) ⊂ Fr0(X × (P1)n/X ×Bn, Y × A
n/(Y × A

n − S × {0}))
is an equality. To prove this it suffices to check that any element (Z,W, f : W →
Y × An) from Fr0(X × (P1)n/X × Bn, Y × An/(Y × An − S × {0})) is contained
in Frn(X,Y (Y − S)). Since Z ∩ (X × Bn) = ∅, Z ⊂ X × An. Since Z is closed
in X × (P1)n, Z is projective over X. Since Z is affine over X, it is also finite
over X. Giving a morphism f : W → Y × An = An × Y is the same as giving n
functions ϕ1, ..., ϕn and a morphism g : W → Y . The condition Z = f−1(S × {0})
is equivalent to that of Z = {ϕ1 = ... = ϕn = 0}∩ g−1(S). The equality is checked.

The previous remark and Corollary 3.3 imply the following
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Proposition 3.8 (Voevodsky). For any X,Y ∈ Sm/k and any n � 0, the map

an,X,Y/(Y−S) : Frn(X,Y/(Y − S))

→ HomShv•(X+ ∧ P
∧n, Y × A

n/(Y × A
n − S × {0}))

= HomShv•(X+ ∧ P
∧n, Y/(Y − S) ∧ Tn)

is a bijection.

For brevity, we will write Frn(X,Y/(Y−S)) to denote HomShv•(X+∧P
∧n, Y/(Y−

S)∧Tn).

Remark 3.9. For any pointed Nisnevich sheaf F , Fr+(F) :=
∨

n�0 Hom(P∧n,F ∧
Tn) is a framed presheaf. Indeed, define for any U,X ∈ Sm/k and any m,n a map
of pointed sets

Hom(U+∧P∧m, X+∧Tm)×Hom(X+∧P∧n,F∧Tn)→Hom(U+∧P∧(m+n),F∧Tm+n).

If α : U+ ∧P∧m → X+ ∧Tm and s : X+ ∧P∧n → F ∧Tn are morphisms of pointed
Nisnevich sheaves, then we define α∗(s) as the composite morphism

U+ ∧ P
∧m ∧ P

∧n α∧id−−−→ X+ ∧ Tm ∧ P
∧n

∼= Tm ∧X+ ∧ P
∧n id∧s−−−→ Tm ∧ F ∧ Tn ∼= F ∧ Tm ∧ Tn.

By Corollary 3.6 the categories Fr+(k) and Fr+(k) are isomorphic. The category
isomorphism makes Fr+(F) a framed presheaf. In the special case when F =
Y/(Y − S) the bijections an,X,Y/(Y−S) induce isomorphisms of framed presheaves
aY/(Y−S) : Fr+(−, Y/(Y −S)) → Fr+(−, Y/(Y −S)), where Fr+(−, Y/(Y −S)) :=∨

n�0 Frn(−, Y/(Y − S)).

Definition 3.10. For a pointed Nisnevich sheaf F set

Fr(−,F) = colim(F σ−→ Hom(P∧1,F ∧ T )
σ−→ Hom(P∧2,F ∧ T 2)

σ−→ · · · ),

where σ(Φ : U+ ∧ P∧n → F ∧ Tn) = (U+ ∧ P∧n+1 Φ∧1
P∧1−−−−−→ F ∧ Tn ∧ P∧1 1∧σ−−→

F ∧ Tn+1). Observe that Fr(−,F) is a framed Nisnevich sheaf.

In the special case F = Y/(Y − S) one has that

(3.3) aY/(Y−S) = colimn an,Y/(Y−S) : Fr(−, Y/(Y − S)) → Fr(−, Y/(Y − S))

is an isomorphism of framed sheaves.
In what follows we shall identify the isomorphic framed sheaves Fr(−, Y/(Y −S))

and Fr(−, Y/(Y − S)). If we write Fr(−, Y/(Y − S)) then we use the geometric
description of the sheaf. In turn, the use of Fr(−, Y/(Y − S)) will mostly refer to
the equivalent categorical description. The reader should always keep in mind the
equivalent descriptions of both framed sheaves thanks to Voevodsky’s Lemma.

4. Motivic version of Segal’s theorem

After collecting necessary facts about framed correspondences in previous sec-
tions, we can formulate the main computational result of the paper. It is reminiscent
of Segal’s theorem computing the suspension spectrum Σ∞

S1X of a topological space
X as the Segal spectrum of an associated Γ-space BΣX (see [20, Section 3] for more
details). The motivic counterpart of the Segal theorem computes the suspension
P1-spectrum Σ∞

P1X+ of a smooth algebraic variety X in terms of associated motivic
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spaces with framed correspondences. In a certain sense the theory of framed cor-
respondences gives rise to an infinite P1-loop space machine. In order to formulate
the theorem, we need some preparations.

In Section 2 we introduced Nisnevich sheaves Frs(−, Y/Y −S) and Fr(−, Y/Y −
S). In the special case when Y = X×An and S = X×0 we shall write Frs(−, X×
Tn) and Fr(−, X × Tn) to denote the Nisnevich sheaves Frs(−, X × An/(X ×
A

n −X × 0)) and Fr(−, X × A
n/(X × A

n −X × 0)), respectively. Recall that an
element of Frs(−, X × Tn) can be written as a tuple (Z,W, (ϕ1, ..., ϕs;ψ1, ..., ψn) :
W → As+n; g : W → X) such that the support Z = Z(ϕ1, ..., ϕs) ∩ Z(ψ1, ..., ψn) =
Z(ϕ1, ..., ϕs, ψ1, ..., ψn).

For X ∈ Sm/k and integers s, n � 0 consider a morphism of pointed Nisnevich
sheaves

(4.1) σs,n : Frs(−, X × Tn) → Hom(P∧1, F rs(−, X × Tn+1)).

It takes (Z,W,ϕ1, ..., ϕs;ψ1, ..., ψn; g) to (Z×0,W×A
1, ϕ1, ..., ϕs;ψ1, ..., ψn, prA1 ; g).

On the other hand, we have canonical maps (2.2)

(4.2) σs,X×Tn : Frs(−, X × Tn) → Frs+1(−, X × Tn)

taking (Z,W,ϕ1, ..., ϕs;ψ1, ..., ψn; g) to (Z×0,W×A
1, ϕ1, ..., ϕs, prA1 ;ψ1, ..., ψn; g).

We have a commutative diagram

Frs(−, X × Tn)
σs,n

��

σs,X×Tn

��

Hom(P∧1, F rs(−, X × Tn+1))

(σs,X×Tn+1 )∗

��

Frs+1(−, X × Tn)
σs+1,n

�� Hom(P∧1, F rs+1(−, X × Tn+1)).

Passing to colimits in the s-direction, we get a morphism of pointed sheaves

σn : Fr(−, X × Tn) → Hom(P∧1, F r(−, X × Tn+1)).

We can form a P
1-spectrum

(4.3) FrP∧1,T (X) = (Fr(−, X), F r(−, X × T ), F r(−, X × T 2), ...)

with structure morphisms given by the σn morphisms.
We can now take the Suslin simplicial construction of each motivic space of the

spectrum FrP∧1,T (X) to form a P1-spectrum

MP∧1(X) = (C∗Fr(−, X), C∗Fr(−, X × T ), C∗Fr(−, X × T 2), ...)

with structure maps defined by C∗(σn)-s. Recall that for every n � 0, C∗Fr(−, X×
Tn) := Fr(Δ• × −, X × Tn). Here Δ• is the cosimplicial object taking k to
Spec(k[t0, . . . , tk]/(t0 + · · ·+ tk − 1)) in Sm/k.

There is a canonical morphism of P1-spectra

κ : Σ∞
P1X+ → MP∧1(X)

given by the section idX ∈ Fr0(X,X) (recall that a morphism from the suspension
spectrum of a variety X ∈ Sm/k to any other spectrum is fully determined by a
section of the zeroth motivic space of the spectrum at X).

By [14, 2.7] the category of simplicial Nisnevich sheaves on Sm/k has the injec-
tive local model structure with cofibrations monomorphisms and local weak equiv-
alences. Take a fibrant replacement C∗Fr(−, X × Tn)f of every motivic space
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C∗Fr(−, X × Tn) within the injective local model structure. We then arrive at a
P1-spectrum

MP∧1(X)f = (C∗Fr(−, X)f , C∗Fr(−, X × T )f , C∗Fr(−, X × T 2)f , ...).

Notice that MP∧1(X)f is a fibrant replacement of the P1-spectrum MP∧1(X) within
the level injective local model structure of P1-spectra. Let

κf : Σ∞
P1X+ → MP∧1(X) → MP∧1(X)f

denote the composite morphism.
A motivic counterpart of the Segal theorem says:

Theorem 4.1. Let k be an infinite perfect field. Then the following statements are
true:

(1) The morphism κf : Σ∞
P1X+ → MP∧1(X)f is a stable motivic equivalence of

P1-spectra.
(2) The P1-spectrum MP∧1(X)f is a motivically fibrant Ω-spectrum in positive

degrees. This means that for every positive integer n > 0, each motivic
space C∗(Fr(−, X×Tn))f is motivically fibrant in the Morel–Voevodsky [18]
motivic model category of simplicial Nisnevich sheaves. Furthermore, the
structure map

C∗(Fr(−, X × Tn))f → ΩP1(C∗(Fr(−, X × Tn+1))f )

is a weak equivalence schemewise.

We shall also extend Theorem 4.1 to directed colimits of simplicial schemes
(see Theorem 10.1). The next two corollaries are immediate consequences of the
preceding theorem.

Corollary 4.2. Let k be an infinite perfect field. Then for any positive integer
m > 0 the natural morphism of P1-spectra

κf : Σ∞
P1

(X+ ∧ P
∧m) → MP∧1 (X × Tm)f := (C∗Fr(−,X × Tm)f , C∗Fr(−,X × Tm+1)f , . . .)

is a fibrant replacement of the suspension P1-spectrum Σ∞
P1(X+∧P∧m) in the stable

motivic model structure of P1-spectra in the sense of Jardine [15].

Given a P1-spectrum E, let E be an Ω-spectrum stably equivalent to E. By
Ω∞

P1(E) we mean the zeroth motivic space E0 of E . If E = Σ∞
P1X is the suspension

P1-spectrum of a pointed motivic space X , we shall write Ω∞
P1Σ∞

P1(X ) to denote
Ω∞

P1(E).

Corollary 4.3. Let k be an infinite perfect field. Then for any positive integer
m > 0 the natural morphism of motivic spaces

C∗(Fr(X × Tm)) → Ω∞
P1Σ∞

P1(X+ ∧ P
∧m)

is a stalkwise weak equivalence for the Nisnevich topology. In particular, for any
field extension K/k the natural morphism of simplicial sets

Fr(Δ•
K , X × Tm) → Ω∞

P1Σ∞
P1(X+ ∧ P

∧m)(K)

is a weak equivalence.

The proof of Theorem 4.1 is lengthy and is postponed. Although it states some-
thing for motivic spaces, the main strategy to prove it is to use the machinery of
framed motives introduced and studied in this paper. By definition, the framed
motive of a variety or a sheaf is a S1-spectrum of simplicial Nisnevich sheaves, and
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hence may have nothing to do with Theorem 4.1 at first glance. But this is not the
case! It is the theory of framed motives that allows us to prove Theorem 4.1.

The proof also depends on a theorem of [8] (complemented by [3] in characteristic
2) about homotopy invariant presheaves with framed correspondences and further
two papers [1,9], in which the Cancellation Theorem for framed motives of algebraic
varieties is proved and framed motives of relative motivic spheres are computed.

5. Framed motives

As we have mentioned above, framed motives give the main technical tool to
prove Theorem 4.1. Before introducing them, we fix the following useful

General Framework. Let (V ,⊗) be a closed symmetric monoidal category and
let C be a bicomplete category which is tensored and cotensored over V . Then for
every V ∈ V and X ∈ C there are defined objects V ⊗X, X ⊗ V , Hom(V,X) of C.
They are all functorial in V and X. Moreover, for every morphism u : V → V ′ in
V the square

(5.1) X
−⊗V

��

−⊗V ′

��

Hom(V,X ⊗ V )

u∗

��

Hom(V ′, X ⊗ V ′)
u∗

�� Hom(V,X ⊗ V ′)

is commutative.
As an important example, one can take V to be the category (sShv•(Sm/k),∧)

of Nisnevich sheaves of pointed simplicial sets and one can take C to be either
sShv•(Sm/k) or the category of S1-spectra of simplicial Nisnevich sheaves.

Another example is the category (Fr0(k),×, pt) and the category Fr+(k). The
functor

Fr+(k)× Fr0(k) → Fr+(k)

takes (X,Y ) to X × Y .

Let Γop be the category of finite pointed sets and pointed maps. Its skeleton has
objects n+ = {0, 1, . . . , n}. We shall also regard each finite pointed set as a pointed
smooth scheme. For example, we identify n+ with the pointed scheme (�n

1 Spec k)+
with the distinguished point + corresponding to 0 ∈ n+. Note that 0+ = ∅+. A
Γ-space is a covariant functor from Γop to the category of simplicial sets taking 0+

to a one point simplicial set. A morphism of Γ-spaces is a natural transformation
of functors. A Γ-space X is called special if the map X((k+ l)+) → X(k+)×X(l+)
induced by the projections from (k+l)+ ∼= k+∨l+ to k+ and l+ is a weak equivalence
for all k and l. X is called very special if it is special and the monoid π0(X(1+)) is
a group.

In what follows we shall regard Γop as a full subcategory of sShv•(Sm/k) by
means of the identificationK ∈ Γop with the pointed scheme (Spec k�. . .�Spec k)+,
where the coproduct is indexed by the non-based elements in K.

By the General Framework above, for every F ,G ∈ sShv•(Sm/k) the association

K ∈ Γop �→ HomsShv•(Sm/k)(F ,G ∧K)

gives rise to a Γ-space, where the right hand side is regarded as a discrete simplicial
set. In particular, if F = X+ ∧ P∧n and G = H ∧ Tn with X ∈ Sm/k, H ∈
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sShv•(Sm/k), we have that the association

K ∈ Γop �→ Frn(X,H ∧K) := HomsShv•(Sm/k)(X+ ∧ P
∧n,H ∧ Tn ∧K)

is a Γ-space. Taking the colimit over n, we get that

K ∈ Γop �→ Fr(X,H ∧K) = colimn(Frn(X,H ∧K))

is a Γ-space as well.
Using the geometric description of framed correspondences for H = Y+, Y ∈

Sm/k, the Γ-spaces K ∈ Γop �→ Frn(X,H∧K) and K ∈ Γop �→ Fr(X,H∧K) can
equivalently be defined as

K ∈ Γop �→ Frn(X,Y ⊗K) and Fr(X,Y ⊗K)

respectively. Here Y ⊗K := Y � . . . � Y with the coproduct indexed by the non-
based elements in K. Observe that ∅ ⊗K = ∅ and X ⊗ ∗ = ∅. These Γ-spaces are
functorial in X and Y in framed correspondences of level zero. The second Γ-space
is furthermore a framed functor in X.

Definition 5.1. We define a category SmOp(Fr0(k)), which will often be used in
our constructions. Its objects are pairs (X,U), where X ∈ Sm/k and U ⊂ X is
an open subset. A morphism between (X,U) and (X ′, U ′) in SmOp(Fr0(k)) is a
morphism f ∈ Fr0(X,X ′) such that f(U) ⊂ U ′. We shall also identify X ∈ Sm/k
with the pair (X, ∅) ∈ SmOp(Fr0(k)).

The category SmOp(Fr0(k)) is symmetric monoidal with the monoidal product
∧ given by

(X,U) ∧ (Y, V ) := (X × Y,X × V ∪ U × Y ).

The point pt is its monoidal unit. Also, by (X,U) � (Y, V ) we shall mean (X �
Y, U � V ).

Let ΔopSmOp(Fr0(k)) be the category of simplicial objects in SmOp(Fr0(k)).
There is an obvious functor spc : SmOp(Fr0(k)) → Shv•(Sm/k) sending an object
(X,U) ∈ SmOp(Fr0(k)) to the Nisnevich sheaf X/U . Observe that this functor is
a strict symmetric monoidal functor. It induces a functor

spc : ΔopSmOp(Fr0(k)) → sShv•(Sm/k),

taking an object [n] �→ (Yn, Un) to the simplicial Nisnevich sheaf [n] �→ (Yn/Un).
Given Y ∈ SmOp(Fr0(k)) there is a Γ-space

K ∈ Γop �→ Fr(X,Y ⊗K) := Fr(X, spc(Y )⊗K).

Notice that the right hand side has an explicit geometric description thanks to
Voevodsky’s lemma.

Definition 5.2.
(1) The framed motive Mfr(G) of a pointed Nisnevich simplicial sheaf G is the

Segal S1-spectrum (C∗Fr(−,G), C∗Fr(−,G ∧S1), C∗Fr(−,G ∧S2), . . .) associated
with the Γ-space K ∈ Γop �→ C∗Fr(−,G∧K) = Fr(Δ•

+∧−,G∧K). More precisely,
each structure map

C∗Fr(−,G ∧ Sm) ∧ S1 → C∗Fr(−,G ∧ Sm+1)

is given as follows. For any r and m, it coincides termwise with the natural mor-
phisms ∨

Fr(Δr
+ ∧ −,G ∧ Sm) → Fr(Δr

+ ∧ −,
∨

(G ∧ Sm)),
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where coproducts are indexed by non-basepoint elements of S1
n = n+.

(2) The framed motive Mfr(Y ) of Y ∈ ΔopSmOp(Fr0(k)) is the framed motive
Mfr(spc(Y )). It is the Segal S1-spectrum (C∗Fr(−, Y ), C∗Fr(−, Y ⊗ S1), . . .)
associated with the Γ-space K ∈ Γop �→ C∗Fr(−, Y ⊗K) = Fr(Δ• ×−, Y ⊗K).

(3) In particular, by the framed motive Mfr(Y ) of a smooth algebraic variety
Y ∈ Sm/k we mean the framed motive of (Y, ∅) ∈ SmOp(Fr0(k)).

Remark 5.3. (1) We should point out that it is framed motivesMfr(Y
•) of simplicial

k-varieties which are used to construct the functor Mfr : HA1(k) → SHS1(k) in
Section 11.

(2) Framed motives of pointed Nisnevich simplicial sheaves are not suitable for
constructing such a functor. In particular, we do not expect that the functor
G �→ Mfr(G) from Definition 5.2(1) preserves motivic equivalences. Therefore we
do not expect that for a general motivic space G the value of the functor Mfr at
G constructed in Section 11 has the stable motivic homotopy type of Mfr(G) from
Definition 5.2(1).

(3) It is for this reason that the main result of [9] stating that the natural
motivic equivalence X × (A1//Gm)∧n → X × Tn of motivic spaces induces for any
n � 1 a motivic equivalence (and even a level Nisnevich local weak equivalence)
Mfr(X × (A1//Gm)∧n) � Mfr(X+ ∧ Tn) of S1-spectra is not obvious at all. Here
A1//Gm stands for the simplicial object in Fr0(k) which is obtained by taking the

pushout of the diagram Gm ←↩ A1 i0
↪→ Gm ⊗ I in ΔopFr0(k), where (I, 1) is the

pointed simplicial set Δ[1] with basepoint 1 (we also refer the reader to Section 8).
In other words, the framed motive of the sheaf X+ ∧ Tn is computed as the

framed motive of the associated simplicial scheme. This result is necessary to prove
Theorem 4.1. It is also of independent interest.

(4) More generally, we can raise a problem asking for which motivic spaces G
the framed motive Mfr(G) from Definition 5.2(1) is isomorphic in SHS1(k) to its
image under the functor Mfr : HA1(k) → SHS1(k) constructed in Section 11.

(5) However, the functor Mfr : Δop(Fr0(k)) → SpS1(k) does preserve motivic
equivalences (see Corollary 11.6).

(6) Framed motives of the form Mfr(Y ) with Y ∈ ΔopSmOp(Fr0(k)) are of
great utility in proving Theorem 4.1.

(7) The framed motive Mfr(Y ) or Mfr(G) is a symmetric semistable S1-spec-
trum, because it is the value of the Γ-space C∗Fr(−, Y ) or C∗Fr(−,G) at the sphere
spectrum S = (S0, S1, S2, . . .).

Our next goal is to show that the framed motiveMfr(Y ), Y ∈ΔopSmOp(Fr0(k)),
is a positively fibrant Ω-spectrum. To this end we need to prove the “Additivity
Theorem”.

6. Additivity Theorem

In this section we prove the Additivity Theorem. It is reminiscent of the Addi-
tivity Theorem in algebraic K-theory. We shall use it to produce special Γ-spaces in
the sense of Segal [20] for associated motivic spaces with framed correspondences.
In particular, Segal’s machine then implies that the framed motive of a variety or,
more generally, Y ∈ ΔopSmOp(Fr0(k)) is a positively fibrant S1-spectrum. This
means that it is sectionwise an Ω-spectrum in positive degrees.
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Following [24] for any X ∈ Sm/k denote by m the explicit correspondence from
X to X �X with U = (A1 − {0} �A1 − {1})X , ϕ = (t− 1) � t, where t : A1

X → X
is the projection and g : (A1 −{0}�A

1 −{1})X → X �X. For any framed functor
F it defines a map

F(X)×F(X) = F(X �X)
m∗
−−→ F(X).

Definition 6.1. Let F and G be two presheaves of sets on the category of k-smooth
schemes and let ϕ0, ϕ1 : F ⇒ G be two morphisms. An A1-homotopy between ϕ0

and ϕ1 is a morphism H : F → Hom(A1,G) such that H0 = ϕ0 and H1 = ϕ1.
We write ϕ0 ∼ ϕ1 if there is an A

1-homotopy between ϕ0 and ϕ1. We say that
ϕ0, ϕn : F ⇒ G are A1-homotopic, if there is a chain of morphisms ϕ1, ..., ϕn such
that ϕi ∼ ϕi+1 for i = 0, 1, ..., n− 1.

We now want to discuss matrix actions on framed correspondences and A1-
homotopies associated to them. Let Y be a k-smooth scheme and let A ∈ GLn(k) be
a matrix. ThenA defines an automorphism ϕA⊥Idm

: Frn+m(−, Y )→Frn+m(−, Y )
of the presheaf Frn+m(−, Y ) in the following way. GivenW ∈ Sm/k and an explicit
framed correspondence of level n

Φ = (An+m
X

p←− U,ϕ : U → A
n+m
k , g : U → Y ) ∈ Frn+m(X,Y ),

set ϕA⊥Idm
(Φ) = ((A⊥Idm)◦p, (A⊥Idm)◦ϕ, g). Within the notation of Remark 2.2

ϕA⊥Idm
(Z,U, (ϕ1, ϕ2, . . . , ϕn+m), g)) :=

= ((A⊥Idm)(Z), U, (A⊥Idm) ◦ (ϕ1, ϕ2, . . . , ϕn+m), g),

where A⊥Idm is a linear automorphism of An+m
k . In more detail, if (U,An+m

X

p←−
U, s : Z → U) is an étale neighborhood of Z in A

n+m
X , then we take

(U,An+m
X

(A⊥Idm)◦p←−−−−−−− U, s ◦ ((A⊥Idm)−1|(A⊥Idm)(Z)) : (A⊥Idm)(Z) → U)

as an étale neighborhood of (A⊥Idm)(Z) in A
n+m
X . Clearly, σ◦ϕA⊥Idm

=ϕA⊥Idm+1
◦

σ. Hence the maps ϕA⊥Idm
give rise to a unique automorphism of presheaves on

Sm/k

(6.1) ϕA : Fr(−, Y ) → Fr(−, Y )

such that for any m � 0 one has ϕA|Frn+m(−,Y ) = ϕA⊥Idm
.

Definition 6.2. Let A ∈ SLn(k). Choose a matrix As ∈ SLn(k[s]) such that A0 =
id and A1 = A. The matrices As⊥Idm ∈ SLn+m(k[s]), regarded as morphisms
An+m×A1 → An+m, give rise to an A1-homotopy h between the automorphisms id
and ϕA of Fr(−, Y ) as follows. Given a = (Z,U, (ϕ1, ϕ2, ..., ϕn+m), g) ∈ Frn(−, Y ),
one sets

h(a) = (Z × A
1, U × A

1, (As⊥Idm) ◦ (ϕ× idA1), g ◦ prU ) ∈ Frn(W × A
1, Y ).

In this way we get a morphism h : Fr(−, Y ) → Fr(− × A1, Y ) such that h0 = id
and h1 = ϕA. We see that h is an A

1-homotopy between the identity and ϕA.

Definition 6.3. Let τ ∈ Σn be an even permutation regarded as a matrix in
SLn(k). Let As ∈ SLn(k[s]) be such that A0 = id and A1 = τ . Then the morphism
h from Definition 6.2 defines an A1-homotopy between the automorphisms ϕid and
ϕτ of Fr(−, Y ).
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We are now in a position to prove the Additivity Theorem. The category
SmOp(Fr0(k)) was introduced in Definition 5.1. Given a simplicial object Y of
SmOp(Fr0(k)), by C∗Fr(−, Y ) we mean as usual the diagonal of the bisimplicial
presheaf (m,n) �→ Fr(Δm ×−, Yn).

Theorem 6.4 (Additivity). For any two simplicial objects Y1, Y2 in SmOp(Fr0(k)),
the natural map α : Fr(−, Y1 � Y2) → Fr(−, Y1) × Fr(−, Y2), given by the mor-
phisms id�∅ : Y1 � Y2 → Y1, ∅ � id : Y1 � Y2 → Y2, induces a map of simplicial
framed presheaves

C∗(α) : C∗Fr(−, Y1 � Y2) → C∗Fr(−, Y1)× C∗Fr(−, Y2),

which is a schemewise weak equivalence.

Proof. Since the realization functor takes simplicial weak equivalences of simplicial
sets to weak equivalences, it is enough to prove the theorem for any objects Y1, Y2

in SmOp(Fr0(k)). Moreover, it is sufficient to prove that for any X ∈ Sm/k and
any finite unpointed simplicial set K, the map

C∗(α)(X,K) : [K,C∗Fr(X,Y1 � Y2)] → [K,C∗Fr(X,Y1)× C∗Fr(X,Y2)]

between the Hom-sets in the homotopy category Ho(sSets) of unpointed simplicial
sets is a bijection. Furthermore, for the simplicity of the exposition we shall assume
that Y1, Y2 are just k-smooth varieties. Let Y = Y1 � Y2. Define a morphism

β : Fr(−, Y1)× Fr(−, Y2) → Fr(−, Y )

of presheaves on Sm/k by the following commutative diagram:

Fr(X,Y1)× Fr(X,Y2)

(i1)∗×(i2)∗

��

β
�� Fr(X,Y )

Fr(X,Y )× Fr(X,Y )

Fr(X �X,Y )

(j1)
∗×(j2)

∗ ∼=

��

m∗

��

Here iε : Yε → Y , ε = 1, 2, is the corresponding embedding.
We claim that the map (βα)|Fr2n(−,Y ) is A1-homotopic to the inclusion in2n :

Fr2n(−, Y ) → Fr(−, Y ) and (αβ)|Fr2n(−,Y1)×Fr2n(−,Y2) is A1-homotopic to the
inclusion

inc12n × inc22n : Fr2n(−, Y1)× Fr2n(−, Y2) → Fr(−, Y1)× Fr(−, Y2).

The first of these A1-homotopies will imply that C∗(β)◦C∗(α)|C∗(Fr2n(−,Y )) is sim-

plicially homotopic to the inclusion C∗(in2n), because C∗(−) converts A
1-homo-

topies into simplicial ones. The second of these A1-homotopies will imply that
(C∗(α) ◦ C∗(β))|C∗(Fr2n(−,Y1)×C∗(Fr2n(−,Y1)) is simplicially homotopic to the inclu-

sion C∗(inc
1
2n × inc22n). It will follow that for any X ∈ Sm/k and any finite

simplicial set K the map C∗(α)(X,K) is bijective. Indeed, one should use the
fact that the functor [K,−] : Ho(sSets) → Ho(sSets) commutes with sequential
colimits whenever K is finite. It therefore remains to prove the claim.

Firstly, let us focus on the morphism αβ. The map αβ is of the form

ρ1 × ρ2 : Fr(X,Y1)× Fr(X,Y2) → Fr(X,Y1)× Fr(X,Y2).
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Here ρ1 takes a framed correspondence (Z1,W1, ϕ
(1); g1) of level n to the framed

correspondence (0× Z1,A
1 ×W1, t1, ϕ

(1); g1) of level n+ 1, and ρ2 takes a framed

correspondence (Z2,W2, ϕ
(2); g2) of level n to the framed correspondence (1 ×

Z2,A
1 × W2, t0 − 1, ϕ(2); g2) of level n + 1. We first observe that the morphism

ρ2 is A1-homotopic to the morphism ρ02 : Fr(−, Y2) → Fr(−, Y2) taking a framed
correspondence (Z2,W2, ϕ

(2); g2) of level n to the framed correspondence (0 ×
Z2,A

1 ×W2, t0, ϕ
(2); g2) of level n+ 1. To see this, send a framed correspondence

(Z2,W2, ϕ
(2); g2) of level n to the framed correspondence

(Δ× Z2,A
1 × A

1 ×W2, t0 − λ, ϕ(2); g2)

of level n + 1. Evaluating the latter framed correspondence at λ = 1, we get
ρ2(Z2,W2, ϕ

(2); g2). Evaluating the same framed correspondence at λ = 0, we get

(0× Z2,A
1 ×W2, t0, ϕ

(2); g2).
Let n > 0 be an even integer and let τ ∈ Σn+1 be the even permutation (n +

1, 1, 2, ..., n). Let h1 denote the associated A1-homotopy from Definition 6.3 between
the automorphisms ϕid and ϕτ of Fr(−, Y1). Then h1 ◦ inc1n is an A1-homotopy
between inc1n and ϕτ ◦ inc1n = ρ1|Frn(−,Y1) : Frn(−, Y1) → Fr(−, Y1). Let h2

be the associated A1-homotopy from Definition 6.3 between the automorphisms
ϕid and ϕτ of Fr(−, Y2). Then h2 ◦ inc2n is an A1-homotopy between inc2n and
ϕτ◦inc2n = ρ02|Frn(−,Y2) : Frn(−, Y2) → Fr(−, Y2). Thus (αβ)|Fr2n(−,Y1)×Fr2n(−,Y2)

is A1-homotopic to the inclusion inc12n × inc22n.
Next, let us focus on the morphism βα. Since Y = Y1 � Y2 every framed cor-

respondence of level n from X to Y is of the form a = (Z1 � Z2,W1 �W2, ϕ
(1) �

ϕ(2); g1 � g2). One has,

βα(a) = (0× Z1 � 1× Z2,A
1 ×W1 � A

1 ×W2), (t0, ϕ
(1)) � (t0 − 1, ϕ(2)); g1 � g2).

Firstly, the morphism βα is A1-homotopic to the morphism ρ0 : Fr(−, Y ) →
Fr(−, Y ) taking a framed correspondence (Z,W,ϕ; g) to the framed correspondence

(0× Z,A1 ×W, t0, ϕ; g2) of level n+ 1. To see this, send a framed correspondence

a = (Z1 �Z2,W1 �W2, ϕ
(1) �ϕ(2); g1 � g2) of level n to the framed correspondence

of level n+ 1

(A1 × Z1 �Δ× Z2,A
1 × A

1 × (W1 �W2), (t0, ϕ
(1)) � ((t0 − λ), ϕ(2)); g1 � g2).

Evaluating the latter framed correspondence of level n+ 1 at λ = 1, we get βα(a).
Evaluating the same framed correspondence λ = 0, we get ρ0(a). Furthermore,
using the associated homotopy from Definition 6.3, we see that ρ0|Fr2n(−,Y ) is

A
1-homotopic to the inclusion in2n. Hence βα|Fr2n(−,Y ) is A

1-homotopic to the
inclusion in2n, as was to be proved. �

Now the Additivity Theorem 6.4 together with the Segal machine [20] imply the
following

Theorem 6.5. Let Y ∈ ΔopSmOp(Fr0(k)). Then the Γ-space K ∈ Γop �→
C∗Fr(−, Y ⊗ K) is sectionwise special. As a consequence, the framed motive
Mfr(Y ) of Y is sectionwise a positively fibrant Ω-spectrum, which is sectionwise
(respectively locally in the Nisnevich topology) an Ω-spectrum whenever the motivic
space C∗Fr(−, Y ) is sectionwise (respectively locally in the Nisnevich topology) con-
nected.
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Remark 6.6. Whenever we say that Mfr(Y ) is a (positively) fibrant Ω-spectrum
we tacitly assume that each of its spaces C∗Fr(−, Y ⊗ Sn) is replaced with the
space Ex∞(C∗Fr(−, Y ⊗ Sn)), where Ex∞ refers to Kan’s complex. The spaces
Ex∞(C∗Fr(−, Y ⊗Sn)) are then spaces with framed correspondences and section-
wise fibrant simplicial sets. A detailed description of the spaces will be given in
Section 12. We can equally take any naive sectionwise fibrant resolution functor
in the category of spaces with framed correspondences (which exists by standard
arguments) in place of Ex∞.

It is worth mentioning that the latter theorem is a kind of the “Cancellation
Theorem for framed motives in the S1-direction” (the meaning of this will become
clear in the proof of Theorem 4.1(2)). One should also stress that the motivic
spaces C∗Fr(−, X × Tn)f from Theorem 4.1 are zero spaces of sheaves of S1-
spectra Mfr(X × Tn)f (these are level local Nisnevich replacements of the framed
motives Mfr(X×Tn)). So each space C∗Fr(−, X×Tn)f is part of the S1-spectrum
Mfr(X × Tn)f .

If we can prove that each S1-spectrum Mfr(X × Tn), n > 0, is motivically
fibrant, then each space C∗Fr(−, X × Tn)f becomes motivically fibrant (what is
claimed in Theorem 4.1). Therefore our next goal is to investigate these kinds of
fibrant motivic spaces coming from relevant S1-spectra in more detail.

7. Fibrant motivic spaces generated by S1
-spectra

Let sShv•(Sm/k) denote the category of Nisnevich sheaves of pointed simplicial
sets. It has the injective model structure [14] in which cofibrations are the monomor-
phisms and weak equivalences are stalkwise weak equivalences of simplicial sets.
The category of S1-spectra SpS1(sShv•(Sm/k)) associated with sShv•(Sm/k) will
also be called the category of ordinary S1-spectra of simplicial Nisnevich sheaves. It
has level and stable model structures (the standard references here are [12,15]). In
this section we describe a class of motivic spaces coming from ordinary S1-spectra
of simplicial Nisnevich sheaves, which are fibrant in the motivic model category
sShv•(Sm/k)mot of Morel–Voevodsky [18]. This class occurs in our analysis. Re-
call that sShv•(Sm/k)mot is obtained from sShv•(Sm/k) by Bousfield localization
with respect to the projections p : X × A1 → X, X ∈ Sm/k. As above, the
level/stable model category of S1-spectra associated with sShv•(Sm/k)mot will
also be called the level/stable injective model category of S1-spectra.

Proposition 7.1. Let E be an S1-spectrum in the category of simplicial Nisnevich
sheaves such that each space En ∈ sShv•(Sm/k) of the spectrum is fibrant in
sShv•(Sm/k). Suppose E is sectionwise an Ω-spectrum in the category of ordi-
nary S1-spectra of pointed simplicial sets. Suppose E is locally (−1)-connected in
the Nisnevich topology. Finally suppose that for any integer n, the Nisnevich sheaf
πnis
n (E) is strictly homotopy invariant. Then the following statements are true:

(1) every motivic space En of E is motivically fibrant;
(2) E is fibrant in the stable injective motivic model structure of S1-spectra.

Proof. (1). Since E is sectionwise an Ω-spectrum, every En, n � 0, is sectionwise
fibrant. Therefore it suffices to prove that En is A1-local. So we have to check
that for any smooth variety X the projection p : X × A

1 → X induces a weak
equivalence of simplicial sets p∗ : En(X) → En(X ×A1). Since E is sectionwise an
Ω-spectrum it suffices to check that the pull-back map p∗ : E(X) → E(X × A1) is
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a stable equivalence of ordinary S1-spectra. So it is sufficient to verify that for any
integer r the map p∗ : πr(E(X)) → πr(E(X × A1)) is an isomorphism. Consider
two convergent spectral sequences

Hp
Nis(X, πnis

q (E)) ⇒ πq−p(E(X)) and

Hp
Nis(X × A

1, πnis
q (E)) ⇒ πq−p(E(X × A

1)).

The projection p induces a pull-back morphism between these two spectral se-
quences. This morphism is an isomorphism on the second page, because each
Nisnevich sheaf πnis

n (E) is strictly homotopy invariant by assumption. Hence p∗ :
πr(E(X)) → πr(X × A1) is an isomorphism. Assertion (2) easily follows from
assertion (1). �

We refer the reader to [25] for the notion of radditive presheaves. Below we shall
need the following

Lemma 7.2. Let F be a radditive framed presheaf of Abelian groups. Then the as-
sociated sheaf in the Nisnevich topology has a unique structure of a framed presheaf
such that the map F → Fnis is a map of framed presheaves.

Proof. This is proved in [24, 4.5]. �

Remark 7.3. We should stress that [24, 4.5] used in the proof of the preceding
lemma is not true unless F is radditive.

Corollary 7.4. Let k be an infinite perfect field and E be an S1-spectrum of sim-
plicial Nisnevich sheaves with framed correspondences. Suppose E is locally an
Ω-spectrum in the Nisnevich topology. Suppose it is (−1)-connected locally in the
Nisnevich topology. Finally, suppose that for any integer n the Nisnevich presheaf
πn(E) is homotopy invariant, quasi-stable and radditive. Let E → Ef be a fi-
brant replacement of E in the level injective model structure of ordinary sheaves of
S1-spectra. Then the following statements are true:

(1) each motivic space Ef
n is motivically fibrant;

(2) the spectrum Ef is fibrant in the stable injective motivic model category of
S1-spectra.

Proof. The Nisnevich presheaf πn(E) is a radditive framed presheaf. Hence the
associated Nisnevich sheaf πnis

n (E) is equipped with a unique structure of a framed
presheaf such that the canonical morphism πn(E) → πnis

n (E) is a morphism of
framed presheaves by Lemma 7.2. By [8, 1.1] (complemented by [3] in characteristic
2) the Nisnevich sheaf πnis

n (E) is strictly homotopy invariant, and hence so is the
Nisnevich sheaf πnis

n (Ef) of Ef . Our statement now follows from the previous
proposition. �

Corollary 7.5. Let k be an infinite perfect field and let Y be a simplicial object
in SmOp(Fr0(k)). Suppose the simplicial Nisnevich sheaf C∗Fr(Y ) is locally con-
nected in the Nisnevich topology. Let Mfr(Y ) → Mfr(Y )f be a fibrant replacement
in the level injective model structure of ordinary sheaves of S1-spectra. Then:

(1) Mfr(Y )f is fibrant in the stable injective motivic model category of S1-
spectra;

(2) for any n�0 and any fibrant replacement C∗(Fr(−, Y⊗Sn)) → C∗(Fr(−, Y⊗
Sn))f in sShv•(Sm/k), the space C∗(Fr(−, Y⊗Sn))f is fibrant in sShv•(Sm/k)mot.
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Proof. The zeroth space C∗Fr(−, Y ) of the framed spectrum Mfr(Y ) is locally con-
nected. Hence the framed spectrum Mfr(Y ) is locally an Ω-spectrum by the Segal
machine [20] and Theorem 6.5. The presheaves πn(Mfr(Y )) are homotopy invari-
ant, quasi-stable and radditive framed presheaves. Corollary 7.4 implies assertion
(1). To prove the second one, note that any two fibrant replacements of C∗Fr(Y )
in sShv•(Sm/k) are sectionwise weakly equivalent. Hence Corollary 7.4(1) implies
the second assertion. �

Under the notation of the preceding corollary we can now prove the following

Corollary 7.6. Let k be an infinite perfect field. Then the following statements
are true:

(1) For any integer n > 0, the S1-spectrum Mfr(X×Tn)f is motivically fibrant
and the motivic space C∗Fr(X × Tn)f is motivically fibrant.

(2) For any integer n � 0, the S1-spectrum Mfr(X × Tn × G∧1
m ⊗ S1)f is

motivically fibrant and the motivic space C∗(Fr(X × Tn × G
∧1
m ⊗ S1))f is

motivically fibrant.
(3) For any integer n � 0, the S1-spectrum Mfr(X × Tn × (A1//Gm))f is

motivically fibrant and the motivic space C∗Fr(X × Tn × (A1//Gm))f is
motivically fibrant.

Proof. By [9, A.1] the spaces C∗Fr(X × Tn), C∗Fr(X × Tn × (A1//Gm)) of the
corollary are locally connected in the Nisnevich topology. The space C∗(Fr(X ×
Tn × G∧1

m ⊗ S1)) is, moreover, sectionwise connected. Now our assertions follow
from Corollary 7.5. �

We should stress that the previous corollary is of great utility in the proof of
Theorem 4.1.

8. Comparing framed motives

One of the key properties of framed motives is that they convert motivic equiv-
alences between certain motivic spaces to Nisnevich local weak equivalences. Some
such motivic equivalences are discussed in this section. Its main result, Theorem 8.2,
is an essential step in proving Theorem 4.1. We start with preparations.

Every category A with coproducts and zero object 0 has a natural action of finite
pointed sets. For example, A = Fr0(k) or, more generally, A = SmOp(Fr0(k)).
Precisely, if A ∈ A and (K, ∗) is a finite pointed set, then we set A⊗K := A�. . .�A,
where the coproduct is taken over non-base elements of K. Clearly, A ⊗ K is
functorial in A and K. Note that A⊗ ∗ = 0 and 0⊗K = 0.

This action is extended to an action of finite pointed simplicial sets on the
category ΔopA of simplicial objects in A. Let (I, 1) denote the pointed simplicial
set Δ[1] with basepoint 1. The cone of A ∈ A is the simplicial object A ⊗ I in
A. There is a natural morphism i0 : A → A ⊗ I in ΔopA. Given a morphism
f : A → B in A, denote by B//fA a simplicial object in A which is obtained from
the pushout in ΔopA of the diagram

B
f←− A

i0
↪→ A⊗ I

We can think of B//fA as a cone of f . In practice, if A is a subobject of B, we
shall also write B//A to denote the simplicial object B//ιA in A with ι : A → B
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the inclusion. We have a sequence of simplicial objects in A

A
f−→ B → B//fA → A⊗ S1.

In practice, this sequence is a typical “triangle” of an associated triangulated cat-
egory (see, e.g., the proof of Theorem 8.2).

Notation 8.1.
(1) In the particular example when A = Fr0(k) and (X, x) is a pointed smooth

variety, we shall write X∧1 to denote the cone X//x of the inclusion x ↪→ X. The
most common example is G

∧1
m given by the pointed scheme (Gm, 1). Regarding

ΔopFr0(k) as a full subcategory of the symmetric monoidal category
ΔopSmOp(Fr0(k)), we can take the nth monoidal power of X//x for every n > 0,
which we shall denote by X∧n. The most common example is G∧n

m .
(2) If X is an open subset of Y ∈ Sm/k, we shall denote by (Y//X)∧n the

nth monoidal power of Y//X ∈ ΔopFr0(k). The most common example will be
(A1//Gm)∧n.

If A = SmOp(Fr0(k)) then the symmetric monoidal product on SmOp(Fr0(k))
defined above gives rise to a natural pairing

SmOp(Fr0(k))×ΔopFr0(k) → ΔopSmOp(Fr0(k)).

Composing it with the framed motive functor, we get a functor

Mfr : SmOp(Fr0(k))×ΔopFr0(k) → SpS1(sShv•(Sm/k)).

Taking pairings of (X × An, X × An − X × 0) ∈ SmOp(Fr0(k)) with A1//Gm ∈
ΔopFr0(k) and G∧1

m ⊗ S1 ∈ ΔopFr0(k), we get the framed motives Mfr(X × Tn ×
(A1//Gm)) and Mfr(X × Tn ×G∧1

m ⊗ S1), respectively.
Consider a commutative diagram in ΔopFr0(k)

(8.1) Gm
��

��

A1 ��

��

A1//Gm

α

��

G
∧1
m

�� A
∧1 ��

��

A
∧1//G∧1

m

β

��

G∧1
m

�� ∅ �� G∧1
m ⊗ S1

It induces a morphism of framed motives

β∗α∗ : Mfr(X × Tn × (A1//Gm)) → Mfr(X × Tn ×G
∧1
m ⊗ S1), n � 0.

The main result of this section is as follows.

Theorem 8.2. Let k be an infinite perfect field. Then the morphism β∗α∗ is a
stable Nisnevich local weak equivalence of S1-spectra.

We postpone the proof of the theorem. It requires the language of “linear framed
motives”.

Definition 8.3. Let X and Y be smooth schemes. Denote by

� ZFrn(X,Y ) := Z̃[Frn(X,Y )] = Z[Frn(X,Y )]/Z · 0n, i.e the free Abelian
group generated by the set Frn(X,Y ) modulo Z · 0n;
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� ZFn(X,Y ) := ZFrn(X,Y )/A, where A is the subgroup generated by the
elements

(Z � Z ′, U, (ϕ1, ϕ2, . . . , ϕn), g)

−(Z,U\Z ′, (ϕ1, ϕ2, . . . , ϕn)|U\Z′ , g|U\Z′)−(Z ′, U \ Z, (ϕ1, ϕ2, . . . , ϕn)|U\Z , g|U\Z).

We shall also refer to the latter relation as the additivity property for supports. In
other words, it says that a framed correspondence in ZFn(X,Y ) whose support is a
disjoint union Z � Z ′ equals the sum of the framed correspondences with supports
Z and Z ′ respectively. Note that ZFn(X,Y ) is Z[Frn(X,Y )] modulo the subgroup
generated by the elements as above, because 0n = 0n + 0n in this quotient group,
and hence 0n equals zero. Indeed, it is enough to observe that the support of 0n
equals ∅ � ∅ and then apply the above relation to this support.

The elements of ZFn(X,Y ) are called linear framed correspondences of level n
or just linear framed correspondences. It is worthwhile to mention that ZFn(X,Y )
is the free Abelian group generated by the elements of Frn(X,Y ) with connected
support.

Denote by ZF∗(k) the additive category whose objects are those of Sm/k and
with Hom-groups defined as

HomZF∗(k)(X,Y ) =
⊕
n�0

ZFn(X,Y ).

The composition is induced by the composition in the category Fr∗(k).
There is a functor Sm/k → ZF∗(k) which is the identity on objects and which

takes a regular morphism f : X → Y to the linear framed correspondence 1·(X,X×
A0, prA0 , f ◦ prX) ∈ ZF0(k).

Definition 8.4. Let X,Y, S and T be schemes. The external product from Defi-
nition 2.4 induces a unique external product

ZFn(X,Y )× ZFm(S, T )
−�−−−−→ ZFn+m(X × S, Y × T )

such that for any elements a ∈ Frn(X,Y ) and b ∈ Frm(S, T ) one has 1 · a� 1 · b =
1 · (a� b) ∈ ZFn+m(X × S, Y × T ).

For the constant morphism c : A1 → pt, we set

Σ := −� 1 · ({0},A1, t, c) : ZFn(X,Y ) → ZFn+1(X,Y )

and refer to it as the suspension.

Definition 8.5. For any k-smooth variety Y there is a presheaf ZF∗(−, Y ) on the
category ZF∗(k) represented by Y . We also have a ZF∗(k)-presheaf

ZF (−, Y ) := colim(ZF0(−, Y )
Σ−→ ZF1(−, Y )

Σ−→ · · · Σ−→ ZFn(−, Y )
Σ−→ · · · ).

For a k-smooth variety X, the elements of ZF (X,Y ) are also called stable linear
framed correspondences. Stable linear framed correspondences do not form the
morphisms of a category.

Remark 8.6. For any X,Y in Sm/k one has ZF∗(−, X � Y ) = ZF∗(−, X) ⊕
ZF∗(−, Y ) and ZF (−, X � Y ) = ZF (−, X)⊕ ZF (−, Y ).
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For every (Y, Y −S) ∈ SmOp(Fr0(k)), ZF∗(k)-presheaves ZF∗(−, Y/Y −S) and
ZF (−, Y/Y − S) are defined in a similar fashion. Namely, each ZFn(X,Y/Y − S)
is the free Abelian group generated by the elements of Frn(X,Y/Y − S) with
connected support. Then we set ZF∗(X,Y/Y − S) = ⊕n�0ZFn(X,Y/Y − S).
Finally, ZF (X,Y/Y −S) is obtained from ZF∗(X,Y/Y −S) by stabilization in the
Σ-direction.

For every Y ∈ ΔopSmOp(Fr0(k)) there is a Γ-space

(K, ∗) ∈ Γop �→ ZF (−, (Y/Y − S)⊗K).

Definition 8.7. The linear framed motive LMfr(Y ) of Y ∈ ΔopSmOp(Fr0(k)) is
the Segal S1-spectrum (C∗ZF (−, Y ), C∗ZF (−, Y ⊗ S1), C∗ZF (−, Y ⊗ S2), . . .) of
spaces in sShv•(Sm/k) associated with the Γ-space K ∈ Γop �→ C∗ZF (−, Y ⊗K) =
ZF (Δ• ×−, Y ⊗K).

Note that LMfr(Y ) is the Eilenberg–Mac Lane spectrum associated with the
complex of Nisnevich sheaves C∗ZF (−, Y ) (we often identify simplicial Abelian
groups with their normalized complexes by the Dold–Kan correspondence). There-
fore π∗(LMfr(Y )) = H∗(C∗ZF (−, Y )).

Proof of Theorem 8.2. Since the spectra Mfr(X × Tn × (A1//Gm)) and Mfr(X ×
Tn ×G

∧1
m ⊗ S1) are sectionwise connected, β∗α∗ is a stable Nisnevich local equiva-

lence of spectra if and only if this is true of the induced map on homology

β∗α∗ : ZMfr(X × Tn × (A1//Gm)) → ZMfr(X × Tn ×G
∧1
m ⊗ S1).

Here both linear spectra are defined by taking free Abelian groups of every entry of
Mfr(X×Tn×(A1//Gm)) and Mfr(X×Tn×G∧1

m ⊗S1), respectively. By [9, 1.2] the
latter arrow is schemewise stably equivalent to the map of linear framed motives

β∗α∗ : LMfr(X × Tn × (A1//Gm)) → LMfr(X × Tn ×G
∧1
m ⊗ S1).

We see that the map of the theorem is a stable Nisnevich local equivalence of spectra
if and only if the morphism of complexes of Nisnevich sheaves

β∗α∗ : C∗ZF (−, X × Tn × (A1//Gm)) → C∗ZF (−, X × Tn ×G
∧1
m ⊗ S1)

is a quasi-isomorphism.
Since C∗ZF (−, Y1 � Y2) = C∗ZF (−, Y1)⊕C∗ZF (−, Y2) for any objects Y1, Y2 ∈

ΔopSmOp(Fr0(k)), the diagram (8.1) induces a commutative diagram of triangles
of complexes of Nisnevich sheaves
(8.2)

C∗ZF (X × Tn × Gm) ��

��

C∗ZF (X × Tn × A
1) ��

��

C∗ZF (X × Tn × (A1//Gm))

α

��

+
��

C∗ZF (X × Tn × G
∧1
m ) �� C∗ZF (X × Tn × A

∧1) ��

��

C∗ZF (X × Tn × (A∧1//G∧1
m ))

β

��

+
��

C∗ZF (X × Tn × G
∧1
m ) �� 0 �� C∗ZF (X × Tn × G

∧1
m ⊗ S1)

+
��
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Firstly, we claim that α is a schemewise quasi-isomorphism of complexes of presheaves.
Indeed, we have a map of two triangles of complexes of presheaves

C∗ZF (X × Tn × Gm) ��

��

C∗ZF (X × Tn × G∧1
m ) ��

��

C∗ZF (X × Tn × (pt⊗ S1))
+ ��

C∗ZF (X × Tn × A1) �� C∗ZF (X × Tn × A∧1) �� C∗ZF (X × Tn × (pt⊗ S1))
+ ��

We see that the left square of the diagram is Mayer–Vietoris, hence α is a scheme-
wise quasi-isomorphism of complexes of presheaves.

Secondly, we claim that β is a local quasi-isomorphism of complexes of Nisnevich
sheaves. This is equivalent to showing that the complex C∗ZF (−, X × Tn × A

∧1)
of diagram (8.2) is locally quasi-isomorphic to zero. To prove the latter, consider a
map of two triangles of complexes of sheaves

C∗ZF (X × Tn × pt) �� C∗ZF (X × Tn × A1) �� C∗ZF (X × Tn × A∧1)

��

+ ��

C∗ZF (X × Tn × pt) �� C∗ZF (X × Tn × A1) �� C∗ZF (X × Tn × A1)/C∗ZF (X × Tn × pt)
+ ��

The cohomology sheaves of the lower right complex are homotopy invariant and
quasi-stable framed presheaves. By [8, 1.1] (complemented by [3] in characteristic
2) these cohomology sheaves are strictly homotopy invariant. The terms of this
complex are contractible sheaves. Now the proof of [22, 1.10.2] yields the local
acyclicity of the complex. It follows that the complex C∗ZF (−, X × Tn × A∧1)
is locally acyclic, and hence β is locally a quasi-isomorphism. This completes the
proof of the theorem. �

In fact, the proof of Theorem 8.2 also shows the following fact.

Corollary 8.8. Suppose k is an infinite perfect field. Then for every n � 0 and
X ∈ Sm/k, the natural maps Mfr(X × Tn ×A1) → Mfr(X × Tn) and LMfr(X ×
Tn × A1) → LMfr(X × Tn) are stable local weak equivalences of S1-spectra.

Let us take the nth power (βα)∧n : (A1//Gm)∧n → (G∧1
m ⊗ S1)∧n of the mor-

phism βα in the symmetric monoidal category ΔopSmOp(Fr0(k)). Below we shall
also need the following

Corollary 8.9. Suppose k is an infinite perfect field. For every n � 1 and X ∈
Sm/k, the map (βα)∧n

∗ : C∗Fr(−, X×(A1//Gm)∧n) → C∗Fr(−, X×(G∧1
m ⊗S1)∧n)

is a local Nisnevich weak equivalence of motivic spaces.

Proof. The space C∗Fr(−, X × (G∧1
m ⊗ S1)∧n) is plainly sectionwise connected.

By [9, A.1] the space C∗Fr(−, X × (A1//Gm)∧n) is locally connected. Therefore
Mfr(X×(G∧1

m ⊗S1)∧n) is sectionwise an Ω-spectrum and Mfr(X×(A1//Gm)∧n) is
locally an Ω-spectrum by Theorem 6.5. Therefore our assertion would follow if we
showed that the map (βα)∧n

∗ : Mfr(X × (A1//Gm)∧n) → Mfr(X × (G∧1
m ⊗ S1)∧n)

is a local Nisnevich weak equivalence of S1-spectra. The latter follows by using
induction in n, Theorem 8.2 and the fact that the realization of Nisnevich local
weak equivalences is a local Nisnevich weak equivalence. �

We finish the section by proving the following useful result.
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Theorem 8.10. Suppose k is an infinite perfect field. For every n � 0 and every
elementary Nisnevich square

U ′ ��

��

X ′

��

U �� X

the square of S1-spectra

Mfr(U
′ × Tn) ��

��

Mfr(X
′ × Tn)

��

Mfr(U × Tn) �� Mfr(X × Tn)

is homotopy cartesian locally in the Nisnevich topology. The same is also true for
linear framed motives.

Proof. Since we deal with connected S1-spectra, the proof of Theorem 8.2 shows
that it suffices to verify our statement for linear framed motives. It follows from
the proof of [24, 4.4] that the sequence of presheaves

0 → ZFs(−, U ′×Tn) → ZFs(−, U×Tn)⊕ZFs(−, X ′×Tn) → ZFs(−, X×Tn) → 0

is locally exact for every s � 0. Passing to the colimit over s, the sequence of
presheaves

0 → ZF (−, U ′ × Tn) → ZF (−, U × Tn)⊕ ZF (−, X ′ × Tn) → ZF (−, X × Tn) → 0

is locally exact as well. It follows that the sequence of Eilenberg–Mac Lane spectra

EM(ZF (−, U ′ × Tn)) → EM(ZF (−, U × Tn))× EM(ZF (−, X ′ × Tn))

→ EM(ZF (−, X × Tn))

is locally a homotopy fibre sequence. Therefore the sequence

(8.3) LMfr(U
′ × Tn) → LMfr(U × Tn)× LMfr(X

′ × Tn) → LMfr(X × Tn)

is a homotopy fibre sequence in the motivic model structure of S1-spectra, and
hence so is the sequence

LMfr(U
′ × Tn)f → LMfr(U × Tn)f × LMfr(X

′ × Tn)f → LMfr(X × Tn)f ,

where “f” is as in Corollary 7.4. It follows from Corollary 7.4 that the latter se-
quence is a sequence of fibrant objects in the stable injective motivic model structure
of S1-spectra. Therefore this sequence is also locally a homotopy fibre sequence,
and hence so is the sequence (8.3). �

9. Proof of Theorem 4.1

In this section we prove Theorem 4.1. We first give a proof for the second
statement of the theorem and then a proof for the first statement.
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9.1. Proof of Theorem 4.1(2). Recall that A ∈ sShv•(Sm/k) is finitely pre-
sentable if the functor HomsShv•(Sm/k)(A,−) preserves directed colimits. Using
the General Framework on p. 275, for every A,L ∈ sShv•(Sm/k) with A finitely
presentable there is a canonical morphism in sShv•(Sm/k)

C∗Fr(L) → Hom(A,C∗Fr(L ∧ A))

as well as a canonical morphism of ordinary S1-spectra of simplicial Nisnevich
sheaves

(9.1) Mfr(L) → Hom(A,Mfr(L ∧ A)).

These induce morphisms of spaces and S1-spectra respectively:

aA : C∗Fr(L)f → Hom(A,C∗Fr(L ∧ A)f )

and
αA : Mfr(L)f → Hom(A,Mfr(L ∧A)f ).

Here C∗Fr(L)f (respectively Mfr(L)f ) is a Nisnevich local fibrant replacement of
C∗Fr(L) (respectively a level Nisnevich local fibrant replacement of Mfr(L) in the
category of ordinary S1-spectra).

Lemma 9.1. Suppose u : A → B is a motivic weak equivalence in sShv•(Sm/k)
between finitely presentable objects such that the induced map u∗ : Mfr(L ∧ A) →
Mfr(L ∧ B) is a stable Nisnevich local weak equivalence of spectra. Suppose that
Mfr(L)f ,Mfr(L ∧A)f ,Mfr(L ∧B)f are all motivically fibrant S1-spectra. Then
αA : Mfr(L)f → Hom(A,Mfr(L ∧ A)f ) is a sectionwise stable equivalence if and
only if αB : Mfr(L)f → Hom(B,Mfr(L ∧B)f ) is.

Proof. The commutative square (5.1) of the General Framework gives rise to a
commutative square

Mfr(L)f
αA ��

αB

��

Hom(A,Mfr(L ∧ A)f )

u∗

��

Hom(B,Mfr(L ∧B)f )
u∗

�� Hom(A,Mfr(L ∧B)f )

By assumption, Mfr(L∧A)f ,Mfr(L∧B)f are motivically fibrant S1-spectra, and
hence u∗ is a sectionwise stable equivalence. Since Mfr(L∧A) → Mfr(L∧B) is a
stable Nisnevich local weak equivalence of spectra, it follows that Mfr(L∧A)f →
Mfr(L ∧ B)f is a sectionwise stable weak equivalence of spectra. We see that
the right vertical arrow u∗ of the square is a sectionwise stable weak equivalence
of spectra. Our statement now follows from the two-out-three property for weak
equivalences. �
Corollary 9.2. Under the assumptions of Lemma 9.1 the map of spaces aA :
C∗Fr(L)f → Hom(A,C∗Fr(L∧A)f ) is a sectionwise weak equivalence if and only
if aB : C∗Fr(L)f → Hom(B,C∗Fr(L ∧B)f ) is.

Lemma 9.3. Suppose u : A → B is a motivic weak equivalence in sShv•(Sm/k)
between finitely presentable objects. Suppose that Mfr(L)f ,Mfr(L ∧B)f are mo-

tivically fibrant S1-spectra. Then the composite map of spaces C∗Fr(L)f
aB−−→

Hom(B,C∗Fr(L ∧B)f )
u∗
−→ Hom(A,C∗Fr(L ∧ B)f ) is a sectionwise weak equiva-

lence if and only if αB : Mfr(L)f → Hom(B,Mfr(L∧B)f ) is a sectionwise stable
equivalence of spectra.
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Proof. Our assumptions on spectra imply C∗Fr(L)f , C∗Fr(L ∧ B)f are motivi-

cally fibrant spaces. It follows that C∗Fr(L)f
aB−−→ Hom(B,C∗Fr(L ∧ B)f )

u∗
−→

Hom(A,C∗Fr(L∧B)f ) is a sectionwise weak equivalence if and only if C∗Fr(L)f
aB−−→

Hom(B,C∗Fr(L ∧ B)f ) is, because u : A → B is a motivic weak equivalence (re-
call that all spaces in the Morel–Voevodsky model category sShv•(Sm/k)mot are
cofibrant).

Again because of our assumptions on spectra we have that C∗Fr(L)f
aB−−→

Hom(B,C∗Fr(L ∧ B)f ) is a sectionwise weak equivalence if and only if αB :
Mfr(L)f → Hom(B,Mfr(L ∧ B)f ) is a sectionwise stable equivalence of spec-
tra. �

We are now in a position to prove the second statement of Theorem 4.1.

Proof of Theorem 4.1(2). By Corollary 7.6 for any integer n > 0, the S1-spectrum
Mfr(X × Tn)f is motivically fibrant and the motivic space C∗Fr(X × Tn)f is
motivically fibrant. Let u : P∧1 = (P1,∞) → T be the canonical motivic weak
equivalence in sShv•(Sm/k). It is also given by the framed correspondence of level
one ({0},A1, t) ∈ Fr1(pt, pt). By Lemma 9.3 the map

C∗Fr(X × Tn)f → Hom(P∧1, C∗Fr(X × Tn+1)f )

is a sectionwise weak equivalence if and only if the map αT : Mfr(X × Tn)f →
Hom(T,Mfr(X × Tn+1)f ) is a sectionwise stable equivalence of spectra.

Consider the zigzag of motivic weak equivalences

T
∼←− (−,A1//Gm)+

∼−→ (−,G∧1
m ⊗ S1)+,

where the right arrow is induced by βα of the diagram (8.1). By Corollary 7.6
for any integer n � 0, the S1-spectra Mfr(X × Tn × G∧1

m ⊗ S1)f ,Mfr(X × Tn ×
(A1//Gm))f are motivically fibrant and C∗(Fr(X × Tn ×G

∧1
m ⊗ S1))f , C∗Fr(X ×

Tn × (A1//Gm))f are motivically fibrant spaces.
By [9, 8.1] Mfr(X × Tn × (A1//Gm)) → Mfr(X × Tn+1) is a stable Nisnevich

local weak equivalence of spectra. By Theorem 8.2 Mfr(X × Tn × (A1//Gm)) →
Mfr(X × Tn × G

∧1
m ⊗ S1) is a stable Nisnevich local weak equivalence of spectra.

By Lemma 9.1 αT : Mfr(X × Tn)f → Hom(T,Mfr(X × Tn+1)f ) is a sectionwise
stable equivalence of spectra if and only if so is the map of spectra αG∧1

m ⊗S1 :

Mfr(X × Tn)f → Hom((G∧1
m ⊗ S1)+,Mfr(X × Tn ×G

∧1
m ⊗ S1)f ).

Consider a commutative diagram

Mfr(X × (A1//Gm)∧n)f

α
G∧1
m ⊗S1

��

��

Hom((G∧1
m ⊗ S1)+,Mfr(X × (A1//Gm)∧n × G∧1

m ⊗ S1)f )

��

Mfr(X × Tn)f

α
G∧1
m ⊗S1

�� Hom((G∧1
m ⊗ S1)+,Mfr(X × Tn × G∧1

m ⊗ S1)f )

Here Mfr(X × (A1//Gm)n)f is a stable Nisnevich local fibrant replacement of
ordinary spectra and (A1//Gm)∧n is from Notation 8.1. It follows from [9, 1.1] that
the left vertical arrow is a sectionwise stable weak equivalence of spectra, hence so
is the right vertical arrow. We see that the lower arrow is a sectionwise stable weak
equivalence of spectra if and only if the upper arrow is. But the upper arrow is
a sectionwise stable weak equivalence of spectra by the Cancellation Theorem for
framed motives of algebraic varieties [1, Theorem A] and Theorem 6.5. �
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The proof of Theorem 4.1(2) and Corollary 8.9 also implies the following

Corollary 9.4. Suppose k is an infinite perfect field. For any n � 1, the map
C∗Fr(−, X × (A1//Gm)∧n) → C∗Fr(−, X × Tn) is a local Nisnevich weak equiva-
lence of motivic spaces.

9.2. Proof of Theorem 4.1(1). In this section we finish the proof of Theorem 4.1.

It remains to show part (1) of the theorem. Denote by SptP
1

(Sm/k) the category
of P1-spectra, where P1 is pointed at ∞. We shall work with the injective stable mo-

tivic model structure on SptP
1

(Sm/k) (see [15] for details). The weak equivalences
in this model category will be referred to as stable equivalences.

We define the fake suspension functor Σ

P1 : SptP

1

(Sm/k) → SptP
1

(Sm/k) by

(Σ

P1Z)n = Zn ∧ P1 and structure maps

(Σ

P1Zn) ∧ P

1 σn∧P
1

−−−−→ Σ

P1Zn+1,

where σn is a structure map of Z. The fake suspension functor is left adjoint to

the fake loops functor Ω

P1 : SptP

1

(Sm/k) → SptP
1

(Sm/k) defined by (Ω

P1Z)n =

ΩP1Zn = Hom(P1,Zn) and structure maps adjoint to

ΩP1Zn
Ω

P1 σ̃n−−−−→ ΩP1(ΩP1Zn+1),

where σ̃n is adjoint to the structure map σn of Z.

Define the shift functors t : SptP
1

(Sm/k) −→ SptP
1

(Sm/k), s : SptP
1

(Sm/k) −→
SptP

1

(Sm/k) by (sZ)n = Zn+1 and (tZ)n = Zn−1, (tZ)0 = pt, with the evident
structure maps. Note that t is left adjoint to s.

Define Θ : SptP
1

(Sm/k) → SptP
1

(Sm/k) to be the functor s ◦ Ω

P1 , where s is

the shift functor. Then we have a natural map ιZ : Z → ΘZ, and we define

(9.2) Θ∞Z = colim(Z ιZ−→ ΘZ ΘιZ−−−→ Θ2Z Θ2ιZ−−−→ · · · Θn−1ιZ−−−−−→ ΘnZ ΘnιZ−−−→ · · · ).
Set ηZ : Z → Θ∞Z to be the obvious natural transformation.

Lemma 9.5. For every P1-spectrum Z the natural map ηZ : Z → Θ∞Z is a stable
motivic weak equivalence.

Proof. The assertion will follow from [12, 4.11] as soon as we find a weakly finitely
generated model structure on pointed simplicial presheaves sPre•(Sm/k) in the
sense of [4] such that its model category of P1-spectra is Quillen equivalent to the
injective stable motivic model structure of Jardine [15]. Such a model structure on
sPre•(Sm/k) is the flasque motivic model structure of Isaksen [13]. The fact that
it is weakly finitely generated follows from [13, 3.10, 4.9, 5.1] and [6, 2.2]. �

We are now in a position to prove Theorem 4.1(1).

Proof of Theorem 4.1(1). Let X ∈ sPre•(Sm/k) be a pointed motivic space. Con-
sider its suspension spectrum

Σ∞
P1X = (X ,X ∧ P

1,X ∧ P
∧2, . . .).

We set
Σ∞

P1,TX = (X ,X ∧ T,X ∧ T 2, . . .)

to be the P1-spectrum with structure maps defined by (X∧Tn)∧P1 id∧σ−−−→ X∧Tn+1,
where σ : P1 → T is the canonical motivic equivalence of sheaves.
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Since the smash product of a motivic weak equivalence and a motivic space is
again a motivic weak equivalence, we get a level motivic equivalence of spectra

σ : Σ∞
P1X → Σ∞

P1,TX .

Let us take the Nisnevich sheaf (X ∧ Tn)nis of each space X ∧ Tn of Σ∞
P1,TX . Then

we get a P1-spectrum Σ∞
P1,TXnis and a level local weak equivalence of spectra

ν : Σ∞
P1,TX → Σ∞

P1,TXnis.

By Lemma 9.5 the natural map of spectra

η : Σ∞
P1,TXnis → Θ∞Σ∞

P1,TXnis

is a stable equivalence.
If we apply the Suslin complex C∗ to the spectrum Θ∞Σ∞

P1,TXnis levelwise, we

get a spectrum C∗(Θ
∞Σ∞

P1,TXnis). By [18, 2.3.8] the natural map of spectra

δ : Θ∞Σ∞
P1,TXnis → C∗(Θ

∞Σ∞
P1,TXnis)

is a level motivic weak equivalence. Likewise, the morphism δ can be defined for
all spectra, which we will denote by the same letter below.

Denote by

ρ := δ ◦ η ◦ ν ◦ σ : Σ∞
P1(X ) → C∗(Θ

∞Σ∞
P1,TXnis).

Then ρ is a stable motivic weak equivalence of P1-spectra.
Suppose X is represented by a smooth scheme X, i.e. X = X+. By construction,

MP∧1(X) = C∗FrP∧1,T (X) (see Section 4). As above, the natural map of spectra
δ : FrP∧1,T (X) → MP∧1(X) is a level motivic equivalence. There is a commutative
diagram of P1-spectra

Σ∞
P1(X ) ρ

��

κ

��

νσ
����

���
���

���

Σ∞
P1,TXnis

δη
��

can

��

C∗Θ
∞(Σ∞

P1,TXnis)

C∗Θ
∞(can)

��

FrP∧1,T (X)

δ

��

δη
�� C∗Θ

∞(FrP∧1,T (X))

MP∧1(X)

with can being the canonical map. We see that κ is a stable motivic weak equiv-
alence if and only if can is. Since η is a stable motivic weak equivalence by
Lemma 9.5, it follows that can is a stable motivic weak equivalence if and only
if C∗Θ

∞(can) is.
We claim that C∗Θ

∞(can) is a level local weak equivalence. To show this, we
first present the spectra FrP∧1,T (X) and MP∧1(X) in terms that use the language
of symmetric spectra.

Given a motivic symmetric T -spectrum E, there is a canonical morphism of
symmetric spectra T ∧ E → E[1], which is defined at each level by the composite
map

T ∧ En
tw−→ En ∧ T

u−→ En+1
χn,1−−−→ E1+n,
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where χn,1 is the obvious shuffle permutation. Then by adjointness we have a
morphism of symmetric T -spectra E → R1(E) := Hom(T,E[1]). It induces a

morphism of P1-spectra E → R1(E)
σ∗
−→ R1

mot(E), where σ : P∧1 → T is the
canonical motivic equivalence and R1

mot(E) := Hom(P∧1, E[1]). Set,

R∞
mot(E) := colim(E → R1

mot(E) → R2
mot(E) → · · · ).

If we apply Suslin’s construction C∗ levelwise, we get a P1-spectrum C∗R
∞
mot(E).

If E = Σ∞
T X+ with X ∈ Sm/k, then we have that FrP∧1,T (X) = R∞

motE and
MP∧1(X) = C∗R

∞
motE.

Fix a number r and consider a two-dimensional sequence

An,m := C∗Θ
n(Rm

mot(Σ
∞
T X+))r

(here the right hand side is the rth space of the spectrum C∗Θ
n(Rm

mot(Σ
∞
T X+)))

with horizontal maps An,m → An+1,m induced by Θn → Θn+1 and vertical maps

An,m → An,m+1 induced by Rm
mot → Rm+1

mot . To prove the claim, it suffices to show
that the map colimn An,0 → colimn,m An,m is a local weak equivalence. Without
loss of generality it is sufficient to prove that for every m,n the map

(9.3) colimn A2n,2m → colimn A2n,2m+2

is a local weak equivalence.
To prove that (9.3) is a local weak equivalence, let fn : A2n,2m → A2n,2m+2

be given by the map from the two dimensional sequence above. Define a map
gn : A2n,2m+2 → A2n+2,2m as an identification via the associativity isomorphism

A2n,2m+2 = C∗Hom(P∧2n,Hom(P∧2m+2, T 2n+2m+2+r))

= C∗Hom(P∧2n+2,Hom(P∧2m, T 2n+2m+2+r)) = A2n+2,2m.

Then gnfn differs from in : A2n,2m → A2n+2,2m by the action of an even permu-
tation on P∧2n+2m+2 and an even permutation on T 2n+2m+2+r. Thus gnfn and in
are simplicially homotopic, because the action of an even permutation lifts to the
action of a matrix from a special linear group (see, e.g., Definition 6.3) and using
the fact that A1-homotopies become the usual ones because of Suslin’s complex C∗.
We also use here Voevodsky’s Lemma from Section 3. Similarly, fn+1gn differs from
jn : A2n,2m+2 → A2n+2,2m+2 by the action of an even permutation on P∧2n+2m+4

and an even permutation on T 2n+2m+4+r. Therefore fn+1gn is simplicially homo-
topic to jn for the same reasons as above. Thus the map (9.3) on the colimits is a
local weak equivalence, because it becomes an isomorphism on homotopy sheaves.
This proves the claim.

We have shown that C∗Θ
∞(can) is a level local weak equivalence. In particular,

it is a stable motivic weak equivalence, and hence so is κ. It remains to observe
that the morphism κf is the composition of κ and a level local weak equivalence
MP∧1(X) → MP∧1(X)f . Therefore κf is a stable motivic weak equivalence. This
finishes the proof of part (1) of Theorem 4.1. �

10. Computing infinite P1
-loop spaces

The purpose of this section is to produce a motivic infinite loop space machine
for motivic spaces. This is one of the most impressive applications of Theorem 4.1.

Precisely, given a pointed motivic space F , the main result here, Theorem 10.7,
states that C∗Fr(−,Fc)gp is locally equivalent to the motivic space Ω∞

P1Σ∞
P1(F),

where Fc is a canonical replacement of F which is a directed colimit of simplicial
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smooth schemes and “gp” refers to a group completion of C∗Fr(−,Fc), locally in
the Nisnevich topology.

Let
−→

ΔopFr0(k) be the full subcategory of sShv•(Sm/k) consisting of directed
colimits of objects from ΔopFr0(k). Recall that ΔopFr0(k) can be regarded as
a full subcategory of sShv•(Sm/k) by the embedding sending X ∈ Fr0(k) to
X+ ∈ Shv•(Sm/k).

In order to compute Ω∞
P1Σ∞

P1(F) of any motivic space F ∈ sShv•(Sm/k) (see The-

orem 10.7), we need the following extension of Theorem 4.1 to objects of
−→

ΔopFr0(k):

Theorem 10.1. Let k be an infinite perfect field and let Y be an object of
−→

ΔopFr0(k).
Then the following statements are true:

(1) The morphism κf : Σ∞
P1Y+ → MP∧1(Y )f is a stable motivic equivalence of

P1-spectra.
(2) The P1-spectrum MP∧1(Y )f is a motivically fibrant Ω-spectrum in positive

degrees. This means that for every positive integer n > 0 each motivic
space C∗(Fr(−, Y ×Tn))f is motivically fibrant in the Morel–Voevodsky [18]
motivic model category of simplicial Nisnevich sheaves and the structure
map

C∗(Fr(−, Y × Tn))f → ΩP1(C∗(Fr(−, Y × Tn+1))f )

is a weak equivalence schemewise.

Proof. The first statement of the theorem can be proved similarly to Theorem 4.1(1)

for any Y ∈
−→

ΔopFr0(k). Without loss of generality it is enough to prove the second
statement of the theorem for Y ∈ ΔopFr0(k). Indeed, we use the facts that the
functor MP∧1(−) respects directed colimits and directed colimits of locally fibrant
objects are Nisnevich excisive (even more: they are fibrant in the local flasque
model structure of sheaves in the sense of [13, 4.6]).

We first observe that each space C∗(Fr(−, Y ×Tn)), n > 0, is locally connected,
because it is the geometric realization of a simplicial locally connected H-space
[k ∈ Δop �→ C∗(Fr(−, Yk × Tn))] and πnis

0 (C∗(Fr(−, Y × Tn))) = 0 by [10, 7.1].
Now Corollary 7.6 is true if we replace X by Y in it. Indeed, its proof relies on
connectedness of the corresponding spaces, which we have just verified, and on
Corollary 7.5. As a result, for every positive integer n > 0 each motivic space
C∗(Fr(−, Y × Tn))f is motivically fibrant in the Morel–Voevodsky [18] motivic
model category of simplicial Nisnevich sheaves.

In order to show that the structure map

C∗(Fr(−, Y × Tn))f → ΩP1(C∗(Fr(−, Y × Tn+1))f ), n > 0,

is a weak equivalence schemewise, we use Corollary 7.6 (replacing X by Y in it)
and the proof of Theorem 4.1(2) (in that we also use the fact that the geometric
realization of a simplicial stable local equivalence of S1-spectra is a stable local
equivalence) to say that this is equivalent to showing that the map

Mfr(Y × (A1//Gm)n)f → ΩG∧1
m
ΩS1(Mfr(Y × (A1//Gm)n ⊗G

∧1
m ⊗ S1)f )

is a schemewise stable weak equivalence of spectra. But the latter follows from the
Cancellation Theorem for framed motives [1]. �
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Corollary 10.2. Let k be an infinite perfect field. If n > 0 and ϕ : X → Y is a

map between spaces in
−→

ΔopFr0(k) such that Σ∞
P1(ϕ) is an isomorphism in SH(k)

then the induced map ϕ∗ : C∗Fr(−,X × Tn) → C∗Fr(−,Y × Tn) is a local weak
equivalence of motivic spaces.

In the situation when X ∈
−→

ΔopFr0(k) is such that the space C∗Fr(−,X ) is locally
connected we arrive at the following result:

Theorem 10.3. Let k be an infinite perfect field. Suppose X ∈
−→

ΔopFr0(k) is such
that the space C∗Fr(−,X ) is locally connected. Then C∗Fr(−,X ) is an A

1-local
space and there is a local weak equivalence of motivic spaces

C∗Fr(−,X ) � Ω∞
P1Σ∞

P1(X+).

Proof. The fact that C∗Fr(−,X ) is an A1-local space is proved similarly to Corol-
lary 7.5(2). The theorem will follow if we show that the P1-spectrum MP∧1(X )f is
motivically fibrant, because the suspension spectrum Σ∞

P1X+ is stably equivalent to
MP∧1(X )f by Theorem 10.1(1). Now the fact that MP∧1(X )f is motivically fibrant
repeats the proof of Theorem 10.1(2) word for word. �

The proof of the preceding theorem shows the following

Corollary 10.4. Under the assumptions of Theorem 10.3 the motivic P
1-spectrum

MP∧1(X )f is motivically fibrant.

By [2, 3.1] sShv•(Sm/k) has the projective motivic model structure in which
generating cofibrations are given by

X+ ∧ ∂Δn
+ → X+ ∧Δn

+, X ∈ Sm/k, n � 0.

Equivalently, this family can be regarded as a family in ΔopFr0(k) of the arrows
X ⊗ ∂Δn → X ⊗Δn, n � 0.

Let X �→ X c be the cofibrant replacement functor in sShv•(Sm/k) with respect

to the projective model structure. Then X c ∈
−→

ΔopFr0(k), and hence Theorem 10.1
is applicable to it. It also follows from Corollary 10.2 that each functor

C∗Fr(−, (−)c × Tn) : X ∈ sShv•(Sm/k) �→ C∗Fr(−,X c × Tn) ∈ sShv•(Sm/k),

where n � 1, takes motivic weak equivalences to local weak equivalences. Thus we
get a functor

C∗Fr(−, (−)c × Tn) : HA1(k) → Hnis(k), n � 1,

where Hnis(k) stands for the homotopy category of sShv•(Sm/k) equipped with
the local injective model structure.

Denote by Ω∞
P1Σ∞

P1(Hnis(k)) the full subcategory of Hnis(k) consisting of the
infinite P1-loop spaces. The above arguments together with Theorem 10.1 imply
the following result:

Theorem 10.5. Let k be an infinite perfect field. Then the following statements
are true:

(1) The functor C∗Fr(−, (−)c × Tn)f : HA1(k) → Hnis(k), n � 1, lands in
Ω∞

P1Σ∞
P1(Hnis(k)).
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(2) For every n � 1 and X ∈ sShv•(Sm/k) the space C∗Fr(−,X c × Tn)f has
the motivic homotopy type of Ω∞

P1Σ∞
P1(X ∧ Tn). In particular, the functor

Ω∞
P1Σ∞

P1 ◦(−∧Tn) : HA1(k) → Ω∞
P1Σ∞

P1(Hnis(k)) is isomorphic to the functor
X �→ C∗Fr(−,X c × Tn)f .

(3) For every X ∈ sShv•(Sm/k) the motivic space ΩP1(C∗Fr(−,X c × T )f )
has the motivic homotopy type of Ω∞

P1Σ∞
P1(X ). In particular, the functor

Ω∞
P1Σ∞

P1 : HA1(k) → Ω∞
P1Σ∞

P1(Hnis(k)) is isomorphic to the functor X �→
ΩP1(C∗Fr(−,X c × T )f ).

(4) The functor Σ∞
P1 : HA1(k) → SH(k) is isomorphic to the functor X �→

MP∧1(X c)f .

Corollary 10.6. Let k be an infinite perfect field. If n > 0 then for any map of
motivic spaces ϕ : Y → Z such that Σ∞

P1(ϕ) is an isomorphism in SH(k) the induced
map ϕ∗ : C∗Fr(−,Yc × Tn) → C∗Fr(−,Zc × Tn) is a local weak equivalence.

Let X ∈
−→

ΔopFr0(k). It follows from the Additivity Theorem that the π0-sheaf
of C∗Fr(−,X ) is a sheaf of Abelian monoids. In order to state the main result of
this section, Theorem 10.7, we fix any local group completion C∗Fr(−,X )gp of the
motivic space C∗Fr(−,X ), which is functorial in X . This means that there is a
map of pointed motivic spaces

α : C∗Fr(−,X ) → C∗Fr(−,X )gp

which is a group completion locally in the Nisnevich topology. One such local group
completion functor is given in assertion (3) of the preceding theorem. Another local
group completion is given by ΩS1(C∗Fr(−,X ⊗ S1)).

We are now in a position to prove the main result of the section. It gives an
explicit computation of motivic infinite loop spaces in terms of framed correspon-
dences.

Theorem 10.7. Let k be an infinite perfect field. Then the following statements
are true:

(1) If X ∈
−→

ΔopFr0(k) then C∗Fr(−,X )gp is an A1-local space and there is a
local equivalence of motivic spaces

C∗Fr(−,X )gp � Ω∞
P1Σ∞

P1(X ).

(2) If F ∈ sShv•(Sm/k) is a pointed motivic space then C∗Fr(−,Fc)gp is an
A1-local space and there is a local equivalence of motivic spaces

C∗Fr(−,Fc)gp � Ω∞
P1Σ∞

P1(F).

Proof.
(1). Without loss of generality we may replace the space C∗Fr(−,X )gp with

ΩS1(C∗Fr(−,X ⊗ S1)), because there is a zigzag of local weak equivalences of mo-

tivic spaces ΩS1(C∗Fr(−,X ⊗S1))
α−→ ΩS1(C∗Fr(−,X ⊗S1)gp) ←− C∗Fr(−,X ))gp.

The space C∗Fr(−,X ⊗ S1) is sectionwise connected, and hence it is A1-local
and there is a local weak equivalence of motivic spaces

C∗Fr(−,X ⊗ S1) � Ω∞
P1Σ∞

P1(X+ ∧ S1)

by Theorem 10.3. It follows that there is a local weak equivalence of motivic spaces

ΩS1C∗Fr(−,X ⊗ S1) � ΩS1Ω∞
P1Σ∞

P1(X+ ∧ S1).
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It remains to observe that there is a sectionwise weak equivalence of motivic spaces
Ω∞

P1Σ∞
P1(X ) � ΩS1Ω∞

P1Σ∞
P1(X+ ∧ S1).

(2). This immediately follows from the first assertion of the theorem. �

In turn, if X ∈ sShv•(Sm/k) is such that the space C∗Fr(−,X c) is locally
connected we get the following result:

Theorem 10.8. Let k be an infinite perfect field and let X ∈ sShv•(Sm/k) be such
that the space C∗Fr(−,X c) is locally connected. Then C∗Fr(−,X c) is an A

1-local
space and there is a local equivalence of motivic spaces

Ω∞
P1Σ∞

P1(X ) � C∗Fr(−,X c).

Proof. Since C∗Fr(−,X c) is locally connected by assumption, it follows that the
space C∗Fr(−,X c) is locally equivalent to C∗Fr(−,X c)gp. The theorem now fol-
lows from Theorem 10.7. �

The proof of the preceding theorem shows the following

Corollary 10.9. Under the assumptions of Theorem 10.8 the motivic P1-spectrum
MP∧1(X c)f is motivically fibrant. Moreover, Σ∞

P1X is isomorphic to MP∧1(X c)f in
SH(k).

11. Further applications of framed motives

Having applied the machinery of framed motives to prove Theorem 4.1, we want
to give further applications. One of the applications computes the suspension bis-
pectrum Σ∞

S1Σ∞
G
X+ of a smooth algebraic variety X in terms of twisted framed

motives of X. Another important application will be purely topological. It will
compute the classical sphere spectrum Σ∞

S1S0 as the framed motive Mfr(pt)(pt)
of the point pt = Spec k evaluated at the point whenever the base field k is alge-
braically closed of characteristic zero.

Denote by G the cone (Gm)+//pt+ of the embedding pt+
1
↪→ (Gm)+ in the

category of pointed simplicial presheaves sPre•(Sm/k). It is termwise equal to

(−,Gm)+, (−,Gm)+ ∨ (−, pt)+, (−,Gm)+ ∨ (−, pt)+ ∨ (−, pt)+, . . .

Moreover, its sheafification equals (G∧1
m )+, which is termwise equal to

(−,Gm)+, (−,Gm � pt)+, (−,Gm � pt � pt)+, . . .

The sheafification is represented in the category Δop(Fr0(k)) by the object G∧1
m

(see Notation 8.1), which is termwise equal to

Gm,Gm � pt,Gm � pt � pt, . . .

One of the models for Morel–Voevodsky’s SH(k) can be defined in terms of (S1,G)-
bispectra (see, e.g., [15]). The main (S1,G)-bispectrum we work with is given by the
sequence of framed motives MG

fr(X) = (Mfr(X),Mfr(X ×G∧1
m ), . . .), X ∈ Sm/k,

where the simplicial objects G∧n
m ∈ Δop(Fr0(k)) are those defined in Notation 8.1.

Each structure map is defined as the composition

Mfr(X ×G
∧n
m ) → Hom((G∧1

m )+,Mfr(X ×G
∧n+1
m )) → Hom(G,Mfr(X ×G

∧n+1
m )),
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where the left map is defined as (9.1). We shall also call Mfr(X × G∧n
m ) the n-

twisted framed motive of X, and write Mfr(X)(n) to denote Mfr(X × G∧n
m ). So

we can write for brevity

MG

fr(X) = (Mfr(X),Mfr(X)(1),Mfr(X)(2), . . .),

to denote the (S1,G)-bispectrum MG

fr(X).

It is worthwhile to mention that the bispectrum MG

fr(X) is constructed in the
same way as the bispectrum

MG

K (X) = (MK(X),MK(X)(1),MK(X)(2), . . .), X ∈ Sm/k,

where each S1-spectrum MK(X)(n) = MK(X ×G∧n
m ) is the n-twisted K-motive of

X in the sense of [7]. It was shown in [7] that MG

K
(pt) represents the bispectrum

f0(KGL).
The main result of this section is as follows.

Theorem 11.1. Let k be an infinite perfect field. Then for any X ∈ Sm/k, the
canonical map of bispectra γ : Σ∞

S1Σ∞
G
X+ → MG

fr(X) is a stable motivic weak
equivalence.

Proof. It is enough to prove that on bigraded presheaves πA
1

∗,∗(γ) is an isomorphism.

Every bispectrum yields a S1∧G-spectrum by taking the diagonal. In order to avoid
massive notation, we prove the theorem for the case X = pt. The same proof works
for any X ∈ Sm/k. Let r � 0, s, n � 1 be integers with s + n � 0. There is a
commutative diagram in the homotopy category HA1(k) of pointed motivic spaces

[Sr ∧ U+ ∧ (S1 ∧G)s+n, (S1 ∧G)n]
(1n)

�� [Sr ∧ U+ ∧ (S1 ∧ G)s+n, C∗Fr((S1 ⊗ G∧1
m )∧n)]

[Sr ∧ U+ ∧ (S1 ∧ G)s+n, (A1
+//(Gm)+)n]

(2n)
��

(u∧n)∗

��

(v∧n)∗

��

[Sr ∧ U+ ∧ (S1 ∧ G)s+n, C∗Fr((A1//Gm)∧n)]

un
∗

��

vn
∗
��

[Sr ∧ U+ ∧ (S1 ∧ G)s+n, Tn]
(3n)

��

(u∧(s+n))∗

��

[Sr ∧ U+ ∧ (S1 ∧ G)s+n, C∗Fr(Tn)]

(u∧(s+n))∗

��

[Sr ∧ U+ ∧ (A1
+//(Gm)+)s+n, Tn]

(4n)
�� [Sr ∧ U+ ∧ (A1

+//(Gm)+)s+n, C∗Fr(Tn)]

[Sr ∧ U+ ∧ T s+n, Tn]
(5n)

��

(v∧(s+n))∗

��

(σ∧(s+n))∗

��

[Sr ∧ U+ ∧ T s+n, C∗Fr(Tn)]

(v∧(s+n))∗

��

(σ∧(s+n))∗

��

[Sr ∧ U+ ∧ P∧s+n, Tn]
(6n)

�� [Sr ∧ U+ ∧ P∧s+n, C∗Fr(Tn)]

In this diagram all left vertical arrows are bijections, because the natural maps
u : A1

+//(Gm)+ → S1 ∧ G, v : A1
+//(Gm)+ → T and σ : P∧1 → T are motivic

equivalences. All right vertical arrows are bijections, because the morphisms

C∗Fr((A1//Gm)∧n)
un
∗−−→ C∗Fr((S1⊗G

∧1
m )∧n), C∗Fr((A1//Gm)∧n)

vn
∗−→ C∗Fr(Tn)

are local equivalences by Corollaries 8.9 and 9.4.
Fit now each of the twelve vertices of the diagram into a direct colimit over n

as follows. For vertices on the right hand side we form direct colimits with respect
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to the T -spectrum with entries {C∗Fr(Tn)}, with respect to the A1
+//(Gm)+-

spectrum with entries {C∗Fr((A1//Gm)∧n)} as well as with respect to the S1 ∧G-
spectrum with entries {C∗Fr((S1⊗G∧1

m )∧n)}. Likewise, for vertices on the left hand
side we form direct colimits with respect to the T -spectrum with entries {Tn}, with
respect to the A

1
+//(Gm)+-spectrum with entries {(A1//Gm)∧n}, with respect to

the S1 ∧G-spectrum with entries {(S1 ∧G)∧n}.
The family of morphisms {(6n)} forms a morphism on the direct colimit, since

it corresponds to the T -spectra morphism {Tn} → {C∗Fr(Tn)}. For i = 5, 4, 3
the families of morphisms {(in)} form morphisms on the direct colimits by the
same reason. The family of morphisms {(1n)} forms a morphism on the direct
colimit, since it corresponds to the S1 ∧ G-spectra morphism {(S1 ∧ G)∧n} →
{C∗Fr((S1⊗G∧1

m )∧n)}. Finally, the family of morphisms {(2n)} forms a morphism
on the direct colimit, because it corresponds to the A1

+//(Gm)+-spectra morphism
{(A1//Gm)∧n} → {C∗Fr((A1//Gm)∧n)}. In a similar fashion for each vertical
map the corresponding family of arrows forms a morphism on the direct colimits.

In this way we get a commutative diagram consisting of twelve direct colimits
and morphisms between them. We also get a commutative diagram consisting of
twelve groups and homomorphisms between them. In that diagram of groups all
the vertical arrows are isomorphisms as mentioned above. The bottom arrow is an
isomorphism by Theorem 4.1, and hence so is the top arrow. We conclude that

for r � 0 the map of presheaves πA
1

r+2s,s(Σ
∞
G
Σ∞

S1(S0))
γ∗−→ πA

1

r+2s,s(M
G

fr(pt)) is an
isomorphism for any integer s. In other words, the map γ∗ is an isomorphism on

presheaves πA
1

a,b with 2a − b � 0. In particular, for any U ∈ Sm/k and any t > 0
the map

πA
1

2a,a(Σ
∞
G Σ∞

S1(S0))(U ×G
×t
m )

γ∗−→ πA
1

2a,a(M
G

fr(pt))(U ×G
×t
m )

is an isomorphism. Note that πA
1

2a,a(Σ
∞
G
Σ∞

S1(S0))(U+ ∧ G∧t
m ) is a canonical direct

summand of the Abelian group πA
1

2a,a(Σ
∞
G
Σ∞

S1(S0))(U×G
×t
m ), and the Abelian group

πA
1

2a,a(M
G

fr(pt))(U∧G∧t
m ) is a canonical direct summand of πA

1

2a,a(M
G

fr(pt))(U×G×t
m ).

Hence the map

πA
1

2a−t,a(Σ
∞
G Σ∞

S1(S0))(U) = πA
1

2a,a(Σ
∞
G Σ∞

S1(S0))(U+ ∧G
∧t
m )

γ∗−→ πA
1

2a,a(M
G

fr(pt))(U+ ∧G
∧t
m ) = πA

1

2a−t,a(M
G

fr(pt))(U)

is an isomorphism, too. Thus the map γ∗ is an isomorphism on presheaves πA
1

a,b

with 2a− b < 0 and the theorem follows. �

Corollary 11.2. Let k be an infinite perfect field and let X be smooth. Then

πA
1

−n,−n((Σ
∞
S1Σ∞

G
X+)(pt)), n � 0, is the Grothendieck group of the commutative

monoid π0(C∗Fr(pt,X ×G∧n
m )).

Corollary 11.3. Let k be an infinite perfect field and let X be smooth. Then

πA
1

−n,−n(Σ
∞
S1Σ∞

G X+)(pt) = H0(ZF (Δ•
k, X ×G

∧n
m )), n � 0.

In particular, πA
1

−n,−n(Σ
∞
S1Σ∞

G
S0)(pt) = H0(ZF (Δ•

k,G
∧n
m )) = KMW

n (k) if n � 0
and char k = 0.
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Proof. The fact that H0(ZF (Δ•
k,G

∧n
m )) = KMW

n (k), n � 0, was proved by Neshitov
in [19] for fields of characteristic zero. Thus the statement recovers the celebrated
theorem of Morel [17] for Milnor–Witt K-theory. �

It is also useful to have Theorem 11.1 for simplicial schemes or, more generally,

for objects in
−→

ΔopFr0(k) (cf. Theorem 10.1).

Theorem 11.4. Let k be an infinite perfect field. Then for any Y ∈
−→

ΔopFr0(k),
the canonical map of bispectra Σ∞

S1Σ∞
G
Y+ → MG

fr(Y ) is a stable motivic weak equiv-
alence.

Proof. If we use Theorem 10.1, our proof repeats that of Theorem 11.1 word for
word. �

Here is an application of the preceding theorem.

Theorem 11.5. Suppose the base field k is infinite perfect. For any Y ∈
−→

ΔopFr0(k)
one has a canonical isomorphism

SH(k)(Σ∞
G Σ∞

S1X+,Σ
∞
G Σ∞

S1Y+[n]) = SHnis
S1 (k)(Σ∞

S1X+,Mfr(Y )[n]), n � 0,

where SHnis
S1 (k) is the stable homotopy category of Nisnevich sheaves of S1-spectra.

Proof. Consider a bispectrum

MG

fr(Y )f = (Mfr(Y )f ,Mfr(Y ×G
∧1
m )f ,Mfr(Y ×G

∧2
m )f , . . .)

obtained fromMG

fr(Y ) by taking Nisnevich local stable fibrant replacements at each

level. It is shown similarly to [1, Theorem B] that MG

fr(Y )f is a motivically fibrant
bispectrum.

Theorem 11.4 implies an isomorphism

SH(k)(Σ∞
G Σ∞

S1X+,Σ
∞
G Σ∞

S1Y+[n]) = SH(k)(Σ∞
G Σ∞

S1X+,M
G

fr(Y )f [n]), n � 0.

But

SH(k)(Σ∞
G Σ∞

S1X+,M
G

fr(Y )f [n]) ∼= SHS1(k)(Σ∞
S1X+,Mfr(Y )f [n])

∼= SHnis
S1 (k)(Σ∞

S1X+,Mfr(Y )f [n]) ∼= SHnis
S1 (k)(Σ∞

S1X+,Mfr(Y )[n]),

as was to be shown. �

Corollary 11.6. Suppose the base field k is perfect infinite. For any morphism

ϕ : Y → Z in
−→

ΔopFr0(k) such that Σ∞
G
Σ∞

S1(ϕ) is an isomorphism in SH(k),
the morphism of framed motives Mfr(ϕ) : Mfr(Y ) → Mfr(Z) is a local stable
equivalence of S1-spectra.

Let X �→ X c be the cofibrant replacement functor in sShv•(Sm/k) (see p. 295).

Then X c is in
−→

ΔopFr0(k), and hence we can apply Theorems 11.4-11.5 to it. It also
follows from Corollary 11.6 that each functor

Mfr((−)c) : X ∈ sShv•(Sm/k) �→ Mfr(X c) ∈ SpS1(sShv•(Sm/k))

takes motivic weak equivalences to stable local weak equivalences. Thus we get a
functor

Mfr((−)c) : HA1(k) → SHnis
S1 (k),



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

FRAMED MOTIVES OF ALGEBRAIC VARIETIES 301

where SHnis
S1 (k) stands for the homotopy category of SpS1(sShv•(Sm/k)) equipped

with the stable local injective model structure.
In a similar fashion, we define a functor

MG

fr((−)c) : HA1(k) → SH(k).

Explicitly, it takes a motivic space X to the bispectrum MG

fr(X c). In fact, we will

extend the functor to SH(k) in Section 12.
Denote by Ω∞

G
(SHnis

S1 (k)) the full subcategory of SHnis
S1 (k) consisting of the in-

finite G-loop spectra. The above arguments together with Theorems 11.4-11.5 and
Corollary 11.6 imply the following

Theorem 11.7. Let k be an infinite perfect field. Then the following statements
are true:

(1) The functor Mfr((−)c)f : HA1(k) → SHnis
S1 (k) lands in Ω∞

G
(SHnis

S1 (k)),
where “f” refers to the stable local fibrant replacement of S1-spectra.

(2) For every X ∈ sShv•(Sm/k) the spectrum Mfr(X c)f has the stable motivic
homotopy type of Ω∞

G
Σ∞

G
Σ∞

S1(X ). In particular, the functor Ω∞
G
Σ∞

G
Σ∞

S1 :

HA1(k) → Ω∞
G
(SHnis

S1 (k)) is isomorphic to the functor X �→ Mfr(X c)f .
(3) The functor Σ∞

G
Σ∞

S1 : HA1(k) → SH(k) is isomorphic to the functor X �→
MG

fr(X c).

Corollary 11.8. Let k be an infinite perfect field. Then for any map of motivic
spaces ϕ : Y → Z such that Σ∞

S1Σ∞
G
(ϕ) is an isomorphism in SH(k), the induced

map ϕ∗ : Mfr(Yc) → Mfr(Zc) is a local stable equivalence.

We finish the section with topological applications of framed motives. The first
result gives an explicit model for the classical sphere spectrum Σ∞

S1S0.

Theorem 11.9. Let k be an algebraically closed field of characteristic zero, with
embedding k ↪→ C. Then the framed motive Mfr(pt)(pt) of the point pt = Spec k
evaluated at pt has the stable homotopy type of the classical sphere spectrum Σ∞

S1S0.

Proof. By a theorem of Levine [16] the functor c : SH → SH(k), induced by the
functor

sSets• → sPre•(Sm/k)

sending a pointed simplicial set to the constant presheaf on Sm/k, is fully faithful.
The functor c comes from a left Quillen functor (see the proof of [16, 6.5]). Its right
Quillen functor from bispectra to ordinary S1-spectra takes a bispectrum E =

(E0, E1, . . .) to E0(pt). Moreover, c induces an isomorphism πn(E) → πA
1

n,0(c(E))
for all spectra E.

Consider MG

fr(pt). By Theorem 11.1 the canonical morphism

Σ∞
S1Σ∞

G S0 = c(Σ∞
S1S0) → MG

fr(pt)

is a motivic stable equivalence of bispectra. Consider a bispectrum

MG

fr(pt)f = (Mfr(pt)f ,Mfr(G
∧1
m )f ,Mfr(G

∧2
m )f , . . .)

obtained from MG

fr(pt) by taking Nisnevich local stable fibrant replacements at

each level. By [1, Theorem B] MG

fr(pt)f is a motivically fibrant bispectrum, and

hence a fibrant replacement of Σ∞
S1Σ∞

G
S0.

It follows that Mfr(pt)f (pt) is a fibrant replacement of Σ∞
S1S0, because each ho-

momorphism πn(Σ
∞
S1S0) → πA

1

n,0(c(Σ
∞
S1S0))

∼=→ πA
1

n,0(M
G

fr(pt)f ) = πn(Mfr(pt)f (pt))
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is an isomorphism. It remains to observe that Mfr(pt)f (pt) is stably equivalent to
Mfr(pt)(pt). �

The previous theorem immediately implies the following

Theorem 11.10. Let k be an algebraically closed field of characteristic zero, with
embedding k ↪→ C. Then the following statements are true:

(1) For every n > 0, the geometric realization of the simplicial set Fr(Δ•
k, S

n)
has the homotopy type of the topological space Ω∞Σ∞(Sn

top), where Sn
top stands for

the usual topological n-sphere.
(2) The geometric realization of the simplicial set Fr(Δ•

k, pt)
gp has the homotopy

type of the topological space Ω∞Σ∞(S0
top), where “gp” refers to group completion.

If we pass to homotopy groups with finite coefficients, then the preceding theorem
has the following extension:

Theorem 11.11. Let k be an algebraically closed field of characteristic zero, with
embedding k ↪→ C. Then for any integers m,N > 0, r � 0 and any X ∈ Sm/k,
there are canonical isomorphisms of Abelian groups

πr(Fr(Δ•
k, X ⊗ SN );Z/m) = πst

r (X(C)+ ∧ SN
top;Z/m)

and
πr(Fr(Δ•

k, X)gp;Z/m) = πst
r (X(C)+;Z/m).

Also, if k is any infinite perfect field, then the assignments X �→ π∗(Fr(Δ•
k, X)gp)

and X �→ π∗(Fr(Δ•
k, X ⊗ SN )) are generalized homology theories on the category

Sm/k.

Proof. The natural functorX ∈ Sm/k �→ X(C) ∈ Top can be extended to a functor
Re : SH(k) → SH (see, e.g., [16]). By [16, 7.2] Re induces an isomorphism

πA
1

r,0(Σ
∞
S1Σ∞

G X+;Z/m)(pt)
∼=−→ πst

r (X(C)+;Z/m)

for any r ∈ Z. Theorem 11.5 implies that πA
1

r,0(Σ
∞
S1Σ∞

G
X+;Z/m) is computed as

the Nisnevich sheaf πNis
r (Mfr(X);Z/m). We have that

πr(Mfr(X);Z/m)(pt) = πr(Mfr(X)(pt);Z/m) = πr(Fr(Δ•
k, X)gp;Z/m).

Thus we have verified the second isomorphism of the theorem. The first isomor-
phism is checked in a similar fashion.

Now the fact that the assignments X �→ π∗(Fr(Δ•
k, X)gp), X �→ π∗(Fr(Δ•

k, X⊗
SN )) are generalized homology theories on Sm/k with k infinite perfect immedi-
ately follow from Theorem 8.10 (verifying the excision property for homology the-
ories) and Corollary 8.8 (verifying the homotopy invariance property for homology
theories). �

The preceding theorem is also an extension of the celebrated theorem of Suslin
and Voevodsky [21] on singular algebraic homology.

12. The big framed motive functor Mb
fr

In Section 11 we computed the functor Σ∞
S1Σ∞

G
: HA1(k) → SH(k) to be iso-

morphic to the functor MG

fr : HA1(k) → SH(k). We extend the latter functor to
bispectra below, but first we start with preparations. We assume in this section
that the base field k is infinite perfect.
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We first give an explicit description of Ex∞(C∗Fr(X )) for every space X ∈
sShv•(Sm/k), where Ex∞ is the Kan complex. Voevodsky [23, Section 3] defined
a realization functor from simplicial sets to Nisnevich sheaves | − | : sSets →
Shvnis(Sm/k) such that |Δ[n]| = Δn, where Δ[n] is the standard n-simplex. Under
this notation the cosimplicial scheme Δ• equals |Δ[•]|. For every � � 0 denote by
sd
Δ• the cosimplicial Nisnevich sheaf |sd
Δ[•]|. Under this notation we then have
a canonical isomorphism of motivic spaces

Ex
(C∗Fr(X )) = Fr(|sd
Δ[•]|+ ∧ −,X ).

It follows that Ex
(C∗Fr(X )) is a space with framed correspondences, as is the
space

Ex∞(C∗Fr(X )) = colim
 Ex
(C∗Fr(X )).

Note that Ex∞(C∗Fr(X )) is a sectionwise fibrant pointed simplicial set and the
canonical map C∗Fr(X ) → Ex∞(C∗Fr(X )) is a sectionwise weak equivalence.

For brevity we denote by G the sheafification of G. It equals the simplicial
sheaf (G∧1

m )+ ∈ sShv•(Sm/k) (see Section 11). Given a (S1,G)-bispectrum E of
simplicial Nisnevich sheaves, replace it by a stably cofibrant bispectrum Ec in the
stable projective motivic model structure of bispectra associated with the projective
motivic structure on sShv•(Sm/k) in the sense of [2] (we shall deal with this model
structure throughout the section). Then each (i, j)-entry Ec

i,j of Ec belongs to
−→

ΔopFr0(k). We set

MG

fr(E)i,j := Ex∞(C∗Fr(Ec
i,j)), i, j � 0.

The structure maps in the S1- and G-direction

Ex∞(C∗Fr(Ec
i,j)) → Hom(S1, Ex∞(C∗Fr(Ec

i+1,j))),

Ex∞(C∗Fr(Ec
i,j)) → Hom(G, Ex∞(C∗Fr(Ec

i,j+1)))

are obviously induced by the structure maps uv, uh of Ec (see [15, p. 488] for the
relevant definitions on bispectra). Precisely, they are compositions

Ex∞(C∗Fr(Ec
i,j)) → Hom(S1, Ex∞(C∗Fr(Ec

i,j ⊗ S1)))
uv−→ Hom(S1, Ex∞(C∗Fr(Ec

i+1,j)))

and

Ex∞(C∗Fr(Ec
i,j)) → Hom(G, Ex∞(C∗Fr(Ec

i,j ⊗G
∧1
m )))

uh−−→ Hom(G, Ex∞(C∗Fr(Ec
i,j+1)))

respectively.
For brevity we drop Ex∞ from notation and tacitly assume below that all spaces

like C∗Fr(Ec
i,j) are sectionwise fibrant with framed correspondences. We then have

a canonical morphism of bispectra

ζ : Ec → MG

fr(E).

Clearly, ζ is functorial in E.
Denote by SHfr(k) the full subcategory of SH(k) consisting of framed bispectra,

i.e. those bispectra E such that each space Ei,j is a space with framed correspon-
dences and the structure maps Ei,j → Hom(S1, Ei+1,j), Ei,j → Hom(G, Ei,j+1)
preserve framed correspondences.
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Theorem 12.1. For every (S1,G)-bispectrum of simplicial Nisnevich sheaves E
the morphism of bispectra ζ : Ec → MG

fr(E) is a stable motivic equivalence. In

particular, E is isomorphic to MG

fr(E) in SH(k) by the zigzag of equivalences E ←
Ec → MG

fr(E) and MG

fr induces an equivalence of categories MG

fr : SH(k)
�−→

SHfr(k).

Proof. Let diag(Ec), diag(MG

fr(E)) be the diagonal S1 ∧G-spectra. They consist

of motivic spaces (Ec
0,0, E

c
1,1, . . .) and (C∗Fr(Ec

0,0), C∗Fr(Ec
1,1), . . .) respectively.

It suffices to show that diag(ζ) : diag(Ec) → diag(MG

fr(E)) is a stable motivic

equivalence of S1 ∧G-spectra.
By [15, p. 496] diag(Ec) has a natural filtration

diag(Ec) = colimn Ln(diag(E
c)),

where Ln(diag(E
c)) is the spectrum

Ec
0,0, . . . , E

c
n,n, E

c
n,n ∧ (S1 ∧G), Ec

n,n ∧ (S1 ∧G)2, . . .

In turn, diag(MG

fr(E)) has a natural filtration

diag(MG

fr(E)) = colimn M
S1∧G

fr (Ln(diag(E
c))),

where MS1∧G

fr (Ln(diag(E
c))) is the spectrum

C∗Fr(Ec
0,0), . . . , C∗Fr(Ec

n,n), C∗Fr(Ec
n,n ⊗ (S1 ⊗ G

∧1
m )), C∗Fr(Ec

n,n ⊗ (S1 ⊗ G
∧1
m )2), . . .

It follows from Theorem 11.4 that each morphism of spectra Ln(diag(E
c)) →

MS1∧G

fr (Ln(diag(E
c))) is a stable motivic equivalence, and hence so is diag(ζ). �

Observe that the composite functor

HA1(k)
Σ∞

G
Σ∞

S1−−−−−→ SH(k)
MG

fr−−−→ SH(k)

is isomorphic to the functor MG

fr of Theorem 11.7(3). Thus the functor of Theo-

rem 12.1 extends the functor of Theorem 11.7(3).
Next, denote by Mb

fr the functor taking a bispectrum E to (Θ∞
G
◦Θ∞

S1 ◦MG

fr)(E)

and refer to it as the big framed motive functor. Here Θ∞
S1 applies to each S1-

spectrum of the bispectrum MG

fr(E) as in the formula (9.2), and Θ∞
G

similarly

applies to the bispectrum (Θ∞
S1 ◦MG

fr)(E) in G-direction.

Theorem 12.2. The following statements are true for every bispectrum E:

(1) the natural map μ : MG

fr(E) → Mb
fr(E) is a stable motivic equivalence of

bispectra;
(2) for any i, j � 0 the space with framed correspondences Mb

fr(E)i,j is A
1-local

as an ordinary motivic space;
(3) the bispectrum Mb

fr(E)f , obtained from Mb
fr(E) by taking Nisnevich local

replacements Mb
fr(E)fi,j in all entries, is motivically fibrant.

Proof.
(1). Since the projective motivic model structure on sShv•(Sm/k) is weakly

finitely generated in the sense of [4], our assertion is proved similarly to that
of Lemma 9.5.
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(2). Write Ec = (Ec
∗,0, E

c
∗,1, . . .) as a collection of S1-spectra. Then MG

fr(E) is a

collection of S1-spectra (C∗Fr(Ec
∗,0), C∗Fr(Ec

∗,1), . . .) and

Θ∞
S1MG

fr(E) = (Θ∞
S1(C∗Fr(Ec

∗,0)),Θ
∞
S1(C∗Fr(Ec

∗,1)), . . .).

By construction, the (i, j)-entry equals

Θ∞
S1MG

fr(E)i,j :=

= colim(C∗Fr(Ec
i,j) → Hom(S1, C∗Fr(Ec

i+1,j)) → Hom(S2, C∗Fr(Ec
i+2,j)) → · · · ).

In each weight j, the S1-spectrum Ec
∗,j has a natural filtration Ec

∗,j=colimnLn(E
c
∗,j),

where Ln(E
c
∗,j) is the spectrum

Ec
0,j , E

c
1,j , . . . , E

c
n,j , E

c
n,j ∧ S1, Ec

n,j ∧ S2, . . .

Then C∗Fr(Ec
∗,j) = C∗Fr(colimn Ln(E

c
∗,j)) = colimn C∗Fr(Ln(E

c
∗,j)), where the

spectrum C∗Fr(Ln(E
c
∗,j) is

C∗Fr(Ec
0,j), C∗Fr(Ec

1,j), . . . , C∗Fr(Ec
n,j), C∗Fr(Ec

n,j ⊗ S1), C∗Fr(Ec
n,j ⊗ S2), . . .

Since each motivic space C∗Fr(Ec
n,j ⊗ S
), � > 0, is A1-local, then so is the mo-

tivic space Hom(Sm, C∗Fr(Ec
n,j ⊗ S
)), where m � 0. Therefore each space of

Θ∞
S1(C∗Fr(Ec

∗,j)) = Θ∞
S1(colimn C∗Fr(Ln(E

c
∗,j))) = colimn Θ

∞
S1(C∗Fr(Ln(E

c
∗,j)))

is A1-local, because so is each Θ∞
S1(C∗Fr(Ln(E

c
∗,j))). We use here the fact that a

directed colimit of Nisnevich excisive spaces is Nisnevich excisive to conclude that
a directed colimit of A1-local spaces is A1-local. We see that each Θ∞

S1MG

fr(E)i,j is

A
1-local. If we take a Nisnevich local fibrant resolution Θ∞

S1MG

fr(E)fi,j in each (i, j)-

entry, we obtain a bispectrum Θ∞
S1MG

fr(E)f . Then each S1-spectrum Θ∞
S1MG

fr(E)f∗,j
of the bispectrum Θ∞

S1MG

fr(E)f is motivically fibrant in the local stable model struc-

ture of S1-spectra. Indeed, this follows from the fact that the structure maps of the
S1-spectrum Θ∞

S1(C∗Fr(Ec
∗,j)) are isomorphisms and that the functor Hom(S1,−)

preserves local equivalences.
Next, the S1-spectrum in each weight j of Mb

fr(E) equals by definition

colim(Θ∞
S1(C∗Fr(Ec

∗,j)) → Hom(G,Θ∞
S1(C∗Fr(Ec

∗,j+1)))

→ Hom(G∧2,Θ∞
S1(C∗Fr(Ec

∗,j+2))) → · · · ).

We have shown above that (Θ∞
S1(C∗Fr(Ec

∗,j)))f is a motivically fibrant S1-spectrum.
We claim that

Hom(G,Θ∞
S1(C∗Fr(Ec

∗,j+1))) → Hom(G, (Θ∞
S1(C∗Fr(Ec

∗,j+1)))f)

is a levelwise local equivalence. In this case it will follow that each space Mb
fr(E)i,j

is A1-local.
Since both spectra are sectionwise Ω-spectra, it suffices to prove that this arrow

is a stable local equivalence. The presheaves of stable homotopy groups of the
left spectrum are A1-invariant quasi-stable radditive with framed correspondences
(see [7, Introduction]. Therefore our claim follows from the following

Sublemma. Let X be an A
1-local motivic S1-spectrum whose presheaves of sta-

ble homotopy groups are homotopy invariant quasi-stable radditive presheaves with
framed correspondences (see [8] for the definition of such presheaves). Suppose X f
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is a local stable fibrant replacement of X . Then the map of spectra Hom(G,X ) →
Hom(G,X f ) is a local stable equivalence.

Proof. First compute πnis
∗ (Hom((Gm)+,X f )). We have X f = hocolimn→−∞ X f

�n,

where X�n is the naive nth truncation of X in SpS1(sShv•(Sm/k)). X has ho-
motopy invariant, quasi-stable radditive presheaves with framed correspondences
of stable homotopy groups π∗(X ). By [8, 1.1] (complemented by [3] in character-

istic 2) the Nisnevich sheaves πnis
∗ (X�n) are strictly homotopy invariant. If X f

�n

is a stable local replacement of X�n, it follows from Proposition 7.1 that X f
�n is

motivically fibrant, hence X�n is A1-local in SHS1(k). Since

Hom((Gm)+,X f ) = hocolimn→−∞ Hom((Gm)+,X f
�n)

one has πnis
∗ (Hom((Gm)+,X f )) = colimn→−∞ πnis

∗ (Hom((Gm)+,X f
�n)).

Consider the Brown–Gersten convergent spectral sequence

Hp
nis(U ×Gm, πnis

q (X�n)) =⇒ πq−p(X f
�n)(U ×Gm), U ∈ Sm/k.

By [8, Section 17] each presheaf U �→ Hp
nis(U×Gm, πnis

q (X�n)) is A
1-invariant quasi-

stable radditive with framed correspondences. If U is a smooth local Henselian
scheme then by [8, 3.15(3’)] there is an embedding

Hp
nis(U ×Gm, πnis

q (X�n)) ↪→ Hp
nis(Gm,k(U), π

nis
q (X�n)),

where k(U) is the function field of U . By the Sublemma in [7, Appendix A] we have

that Hp
nis(Gm,k(U), π

nis
q (X�n)) = 0 for p > 0, and hence Hp

nis(U ×Gm, πnis
q (X f

�n)) =
0 for p > 0. We can conclude that

πnis
n (Hom((Gm)+,X f )) = πnis

n (X f )(Gm ×−).

It also follows that

πnis
n (Hom(G,X f )) = (πnis

n (X f ))−1 = (πnis
n (X f ))−1.

It remains to show that the morphism of A
1-invariant radditive quasi-stable

framed sheaves

(πn(Hom(G,X )))nis = (πn(X ))nis−1 → (πnis
n (X ))−1

is an isomorphism. Using [8, 3.15(3’)] it suffices to check that it is an isomorphism
for every field extension K/k. The homomorphism of Abelian groups

(πn(X ))nis−1(K) = (πn(X ))−1(K) → (πnis
n (X ))−1(K)

is an isomorphism, because for any A1-invariant radditive quasi-stable framed
presheaf of Abelian groups F and every open V ⊂ A

1
K , one has F(V ) = Fnis(V )

(see the proof of [8, 3.1]). �

(3). By the previous assertion each space Mb
fr(E)i,j is A1-local, and hence

Mb
fr(E)fi,j is a motivically fibrant space. The proof of the assertion shows that

Mb
fr(E)fi,j can be computed as the ith space of the motivically fibrant S1-spectrum

colim(Θ∞
S1(C∗Fr(Ec

∗,j))
f → ΩG(Θ∞

S1(C∗Fr(Ec
∗,j+1))

f )

→ ΩG∧2(Θ∞
S1(C∗Fr(Ec

∗,j+2))
f ) → · · · ).
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Moreover, this colimit is the S1-spectrum in weight j of the bispectrum Mb
fr(E)f .

By [12, 4.12] such a bispectrum must be motivically fibrant. This completes the
proof. �

Definition 12.3.
(1) Given a (S1,G)-bispectrum E and i, j � 0, denote by πfr

i,j(E) the graded

Nisnevich sheaf
⊕

n�0 π
nis
n (Mb

fr(E)i,j) and refer to such sheaves as framed sheaves
of E.

(2) Denote by SHfr
nis(k) the full subcategory of SHfr(k) consisting of framed

(S1,G)-bispectra whose motivic spaces are A1-local as ordinary motivic spaces.

Theorem 12.2 implies the following

Theorem 12.4. The following statements are true:

(1) Framed sheaves detect stable weak equivalences of bispectra. Namely, a
map of bispectra f : E → E′ is a stable motivic equivalence if and only if

πfr
i,j(E)

f∗−→ πfr
i,j(E) is an isomorphism of sheaves for all i, j � 0.

(2) For every bispectrum E the bispectrum Mb
fr(E) belongs to SHfr

nis(k). More-

over, the functor Mb
fr : SH(k) → SHfr

nis(k) is an equivalence of categories

and there is a natural isomorphism of endofunctors on SH(k):

id → ι ◦Mb
fr,

where ι : SHfr
nis(k) → SH(k) is the natural inclusion.

In other words, the preceding theorem says that the functor Mb
fr converts the

classical Morel–Voevodsky’s stable motivic homotopy theory SH(k) into an equiv-

alent local homotopy theory of A1-local framed bispectra from SHfr
nis(k). The main

ingredients of this equivalent local homotopy theory are framed motivic spaces of
the form C∗Fr(−, Y ), where Y ∈ ΔopFr0(k) is a simplicial scheme, as well as their
framed motives Mfr(Y ).

We document this as follows.

Theorem 12.5. The Morel–Voevodsky stable motivic homotopy category SH(k)
can be defined as follows. Its objects are (S1,G)-bispectra and morphisms be-
tween two bispectra E,E′ are given by the set π0(E

c,Mb
fr(E

′)f ) of ordinary mor-

phisms between bispectra Ec and Mb
fr(E

′)f modulo naive homotopy. In particular,

SH(k)(Σ∞
S1Σ∞

G
X+, E

′) = π0(Mb
fr(E

′)f0,0(X)) for any X ∈ Sm/k.

13. Framed P1
-spectra

In Theorem 10.5 we have shown that the suspension spectrum Σ∞
P1X of a motivic

space X ∈ sShv•(Sm/k) is naturally equivalent to the spectrum

MP∧1(X c) = (C∗Fr(−,X c), C∗Fr(−,X c ∧ T ), C∗Fr(−,X c ∧ T 2), . . .).

There is an induced functor of homotopy categories

MP∧1 : HA1(k) → SH(k),

which is equivalent to Σ∞
P1 (see Theorem 10.5). Observe that MP∧1 lands in the

full subcategory of P1-spectra, denote it by SHfr(k), whose motivic spaces are
A1-invariant with framed correspondences. This section will show the reader how
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to get naturally framed P1-spectra. Another approach for bispectra was illustrated
in the previous section.

The purpose of this final section is to construct an equivalence of categories

SH(k)
∼=−→ SHfr(k)

(see Theorem 13.4). Moreover, we shall prove that every spectrum is isomorphic in
SH(k) to a framed Ω-spectrum from SHfr(k).

Throughout the section k is assumed to be any field. By SptP
1

(Sm/k) (respec-

tively SptT (Sm/k)) we mean the category of P1-spectra (respectively T -spectra)
associated with simplicial Nisnevich sheaves.

We shall consider the level and stable flasque model structures on SptP
1

(Sm/k)

or SptT (Sm/k) in the sense of [13]. An advantage of these model structures is that
a filtered colimit of fibrant objects is again fibrant [13, 5.3, 6.7] (in fact, both model
structures are weakly finitely generated in the sense of [4]). A fibrant P1-spectrum
with respect to the stable motivic model structure will also be referred to as an
Ω-spectrum.

The motivic equivalence σ : P∧1 → T induces an adjoint pair

f : SptP
1

(Sm/k) � SptT (Sm/k) : g,

where g is the forgetful functor. When proving Theorem 4.1(1) the reader may have
observed that we first replaced the suspension spectrum Σ∞

P1X by the suspension
T -spectrum Σ∞

T X = f(Σ∞
P1X ) and then applied Θ∞ to the P1-spectrum Σ∞

P1,TX :=

gf(Σ∞
P1X ) = g(Σ∞

T X ) in order to get framed correspondences. We see that framed
correspondences are obtained from the T -spectrum Σ∞

T X .

We want to extend this construction to spectra. Suppose E ∈ SptT (Sm/k).
By [15, p. 496] E = (E0, E1, . . .) has a natural filtration

E = colimn LnE ,
where LnE is the spectrum

E0, E1, . . . , En, En ∧ T, En ∧ T 2, . . .

Denote by LP
1

n E the spectrum g(LnE). By Lemma 9.5 the natural map of spectra

ηn : LP
1

n E → Θ∞LP
1

n E
is a stable equivalence. There is an isomorphism of spectra

ιn : Θ∞LP
1

n E
∼=−→ Θ∞LP

1

n,frE :=

= (Hom(P∧n,Fr(En)), . . . ,Hom(P∧1,Fr(En)),Fr(En),Fr(En ∧ T ), . . .).

If we apply the Suslin complex functor C∗ levelwise, we get a spectrum

C∗Θ
∞LP

1

n,frE :=

= (Hom(P∧n, C∗Fr(En)), . . . ,Hom(P∧1, C∗Fr(En)), C∗Fr(En), C∗Fr(En∧T ), . . .).

By [18, 2.3.8] the natural map of spectra

δn : Θ∞LP
1

n,frE → C∗Θ
∞LP

1

n,frE
is a level motivic weak equivalence.
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Passing to the colimit over n, we get that the composite map of spectra

colimn(δnιnηn) : g(E) = colimn L
P
1

n E → colimn C∗Θ
∞LP

1

n,frE
is a stable motivic weak equivalence. We use here the fact that a sequential colimit
of stable motivic weak equivalences is a stable motivic weak equivalence by [15,
3.12].

Denote by Θ∞C∗Fr(E) the spectrum

colimn Hom(P∧n, C∗Fr(En)), colimn Hom(P∧n, C∗Fr(E1+n)), colimn Hom(P∧n, C∗Fr(E2+n)), . . .

Also, denote by C∗Fr(E) the spectrum (C∗Fr(E0), C∗Fr(E1), C∗Fr(E2), . . .). Each
structure map C∗Fr(Ek) → Hom(P∧1, C∗Fr(Ek+1)), k � 0, is given by the natural
composition

C∗Fr(Ek) → Hom(P∧1, C∗Fr(Ek ∧ P
∧1))

σ∗−→ Hom(P∧1, C∗Fr(Ek ∧ T ))
(εk)∗−−−→ Hom(P∧1, C∗Fr(Ek+1)),

where εk : Ek ∧ T → Ek+1 is the structure map of E . Observe that for any X ∈
Δop

→
Fr0 (k) the spectrum MP∧1(X ) is isomorphic to C∗Fr(Σ∞

P1,T (X )) in SH(k).

The spectrum colimn C∗Θ
∞LP

1

n,frE is naturally isomorphic to Θ∞C∗Fr(E) and
the stable motivic equivalence

α : g(E) → Θ∞C∗Fr(E)

factors as g(E) β−→ C∗Fr(E) γ−→ Θ∞C∗Fr(E). Here γ equals the stable motivic
equivalence of Lemma 9.5 and each βn : En → C∗Fr(En) is the obvious map
of motivic spaces. The two-out-of-three property implies β is a stable motivic
equivalence. It is plainly functorial in E ∈ SptT (Sm/k).

Theorem 13.1. For every T -spectrum E there is a natural stable motivic equiv-
alence of spectra β : g(E) → C∗Fr(E), functorial in E . Moreover, a morphism
of spectra u : E → E ′ is a stable motivic equivalence if and only if C∗Fr(u) :
C∗Fr(E) → C∗Fr(E ′) is. In particular, we have a functor

C∗Fr : Ho(SptT (Sm/k)) → Ho(SptP
1

(Sm/k)),

which is an equivalence of categories.

Proof. The first statement has already been verified above. The second statement
follows from the first statement and the fact that u : E → E ′ is a stable motivic
equivalence if and only if so is g(u) : g(E) → g(E ′) (see [15, p. 477]). The functor

C∗Fr : Ho(SptT (Sm/k)) → Ho(SptP
1

(Sm/k)),

is an equivalence of categories, because g is and β : g(E) → C∗Fr(E) is a stable
motivic equivalence, functorial in E . �

Lemma 13.2. For every T -spectrum E , each space of the P1-spectrum Θ∞Fr(E)
(respectively Θ∞C∗Fr(E)) is a motivic space with framed correspondences.

Proof. Θ∞Fr(E) is the spectrum

colimn Hom(P∧n,Fr(En)), colimn Hom(P∧n,Fr(E1+n)), . . .

Given a sheaf F and s > 0, we claim that Hom(P∧s,Fr(F )) is a sheaf with framed
correspondences (the internal Hom is taken in the category of pointed Nisnevich
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sheaves). To see this, define for any U,X ∈ Sm/k and any m,n a map of pointed
sets

Hom(U+ ∧ P
∧m, X+ ∧ Tm) ∧ Hom(X+ ∧ P

∧s+n, F ∧ Tn)

→ Hom(U+ ∧ P
∧(s+m+n), F ∧ Tm+n).

If α : U+ ∧ P∧m → X+ ∧ Tm and v : X+ ∧ P∧s+n → F ∧ Tn are morphisms of
pointed Nisnevich sheaves, then we define α∗(v) as the composite morphism

U+ ∧ P
∧s ∧ P

∧m ∧ P
∧n ∼= U+ ∧ P

∧m ∧ P
∧s+n α∧id−−−→ X+ ∧ Tm ∧ P

∧s+n

∼= Tm ∧X+ ∧ P
∧s+n id∧v−−−→ Tm ∧ F ∧ Tn ∼= F ∧ Tm ∧ Tn.

Passing to the colimit over n, we get that Hom(P∧s,Fr(F )) is a sheaf with framed
correspondences as claimed.

Next, the composite morphism

Hom(P∧s,Fr(Ek)) → Hom(P∧s+1,Fr(Ek ∧ T ))
(εk)∗−−−→ Hom(P∧s+1,Fr(Ek+1)),

where s, k � 0, is plainly a morphism of framed Nisnevich sheaves. Recall that
the left arrow is induced by the map taking (v : X+ ∧ P∧s+n → Ek ∧ Tn) ∈
Hom(P∧s,Frn(Ek)) to the composition

(X+ ∧ P
∧s+1+n ∼= X+ ∧ P

∧s+n ∧ P
∧1 v∧σ−−→ Ek ∧ Tn ∧ T

∼= Ek ∧ T ∧ Tn) ∈ Hom(P∧s+1,Frn(Ek ∧ T )).

It follows that each motivic space (Θ∞Fr(E))k = colimn Hom(P∧n,Fr(Ek+n)) of
the spectrum Θ∞Fr(E) has framed correspondences. Obviously, the same is true
for the spectrum Θ∞C∗Fr(E). �

Suppose E ∈ SptT (Sm/k). Then there are isomorphisms of P1-spectra

Θ∞(g(E)) = Θ∞(colimn L
P
1

n E) ∼= colimn Θ
∞(LP

1

n E)) ∼= Θ∞Fr(E).

If E is levelwise motivically fibrant it follows that Θ∞Fr(E) is an Ω-spectrum,
because so is Θ∞(g(E)) by [12, 4.6]. Using Lemma 13.2, we have shown therefore
the following

Lemma 13.3. For every levelwise fibrant T -spectrum E , the spectrum Θ∞Fr(E) ∈
SptP

1

(Sm/k) is an Ω-spectrum with framed correspondences.

We are now in a position to prove that SH(k) is canonically equivalent to its full
subcategory SHfr(k) of framed spectra, i.e. those spectra whose motivic spaces
are A1-invariant with framed correspondences.

Theorem 13.4. The functor C∗Fr : SptT (Sm/k) → SptP
1

(Sm/k) takes a spec-
trum E to a framed spectrum C∗Fr(E). The composite functor

SH(k) = Ho(SptP
1

(Sm/k))
f−→ Ho(SptT (Sm/k))

C∗Fr−−−→ Ho(SptP
1

(Sm/k)),

induces an equivalence of categories SH(k)
∼−→ SHfr(k). Moreover, every P1-

spectrum is isomorphic in SH(k) to a framed Ω-spectrum.
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Proof. By construction, C∗Fr(E) is an A1-invariant with framed correspondences.
The next statement follows from Theorem 13.1 and the fact that f is an equiva-
lence of categories (see [15, 2.13]). To show that every P

1-spectrum E is isomorphic
in SH(k) to a framed Ω-spectrum, let Ec be a cofibrant replacement of E and

f(Ec)lf ∈ SptT (Sm/k) be a level fibrant replacement of the T -spectrum f(Ec).
Let Θ∞

T denote the stabilization functor in the category of T -spectra. Since the
flasque motivic model structure on spaces is weakly finitely generated (this follows
from [13, 3.10]), the T -spectrum Θ∞

T (f(Ec)lf ) is fibrant by [12, 4.6] and the mor-
phism f(Ec)lf → Θ∞

T (f(Ec)lf ) is a stable equivalence by [12, 4.11]. The canonical
arrow g(Θ∞

T (f(Ec)lf )) → Θ∞(gf(Ec)lf ) is a level weak equivalence by [15, p. 477],
and hence the composite morphism

Ec → gf(Ec) → g(Θ∞
T (f(Ec)lf )) → Θ∞(gf(Ec)lf )

is a stable weak equivalence, where the left arrow is the adjunction unit morphism.
The P1-spectrum Θ∞(gf(Ec)lf ) is a framed Ω-spectrum by Lemma 13.3, so the
zigzag

E ← Ec → Θ∞(gf(Ec)lf )

gives an isomorphism in SH(k). �
The preceding theorem says that we can define the stable motivic homotopy

theory as framed P1-spectra or even framed Ω-spectra. However, such framed Ω-
spectra are hardly amenable for explicit calculations in general, because they require
levelwise motivically fibrant replacements by construction. Instead, the main point
of this paper is to show that whenever the base field k is infinite perfect, one can
nevertheless construct explicit fibrant Ω-spectra using the framed correspondences
of Voevodsky and the machinery of framed motives introduced and developed in
this paper.

Namely, suppose E = (E0, E1, . . .) ∈ SptT (Sm/k) is such that its framed spec-
trum C∗Fr(E) satisfies the following conditions:

(1) each space C∗Fr(En), n � 0, is locally connected;
(2) each space C∗Fr(En), n � 0, is σ-invariant (i.e. it takes the framed corre-

spondence σX = (X×0, X×A1, prA1 , prX) of level one to a weak equivalence
of simplicial sets for every X ∈ Sm/k);

(3) each structure morphism induces a motivic equivalence

C∗Fr(En)f → Hom(P∧1, C∗Fr(En+1)f ), n � 0,

where the subscript “f” refers to a local fibrant replacement.

Then the spectrum C∗Fr(E)f := (C∗Fr(E0)f , C∗Fr(E1)f , . . .) is an Ω-spectrum
stably equivalent to E . In particular, if a motivic space X is such that its suspension
T -spectrum satisfies (1) − (3), then C∗Fr(X ) is locally equivalent to the space
Ω∞

P1Σ∞
P1X (see p. 274 for the definition of the latter space). The hardest condition

in practice is condition (3), where the machinery of framed motives works in its full
capacity.

14. Concluding remarks

In [24] Voevodsky defined the category Frrat∗ (k) of rational framed correspon-
dences together with an obvious functor Fr∗(k) → Frrat∗ (k). The definition of
Frrat∗ (U,X) replaces regular functions on etale neighborhoods of supports by ra-
tional functions. It follows from [24] that C∗Frrat(U,X) is a group-like space.
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Conjecture 1 (Voevodsky). Let k be an infinite perfect field. Then for any X ∈
Sm/k the morphism of motivic spaces

Fr(Δ•
k ×−, X) → Frrat(Δ•

k ×−, X)

is Nisnevich locally a group completion map of simplicial sets.

To illustrate the importance of this conjecture, we state some of its consequences
below. To be precise, we state that if Voevodsky’s conjecture is true then so are
Corollaries 14.1, 14.2 and Theorem 14.3.

Corollary 14.1. If Voevodsky’s conjecture is true then the geometric realization
of the simplicial set Frrat(Δ•

C
, pt) has the homotopy type of the topological space

Ω∞Σ∞(S0).

Given a field k and X ∈ Sm/k, put πrfr
s (X) := πs(Frrat(Δ•

k, X)).

Corollary 14.2. Suppose Voevodsky’s conjecture is true. Let k = C. Then the

assignment X �→ πrfr
∗ (X) is a generalized homology theory on the category Sm/C.

Moreover, for any non-zero integer m, one has

πrfr
s (X;Z/m) = πst

s (X+;Z/m).

Also, the first part of this corollary is true for any infinite perfect field k. Namely,

the assignment X �→ πrfr
∗ (X) is a generalized homology theory on the category

Sm/k.

Theorem 14.3. Suppose Voevodsky’s conjecture is true. Let k be an infinite perfect
field. Then for any X ∈ Sm/k the canonical morphism

Frrat(Δ•
k ×−, X) → Ω∞

P1Σ∞
P1(X+)

is a Nisnevich local weak equivalence of motivic spaces.
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[4] Bjørn Ian Dundas, Oliver Röndigs, and Paul Arne Østvær, Enriched functors and stable
homotopy theory, Doc. Math. 8 (2003), 409–488. MR2029170

https://arxiv.org/abs/1601.06642
https://www.ams.org/mathscinet-getitem?mr=1876801
https://arxiv.org/abs/1808.07765
https://www.ams.org/mathscinet-getitem?mr=2029170


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

FRAMED MOTIVES OF ALGEBRAIC VARIETIES 313

[5] B. I. Dundas, M. Levine, P. A. Østvær, O. Röndigs, and V. Voevodsky, Motivic homotopy
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