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CLASSIFYING FINITE LOCALIZATIONS

OF QUASICOHERENT SHEAVES

G. GARKUSHA

In memory of Vera Puninskaya

Abstract. Given a quasicompact, quasiseparated scheme X, a bijection between the
tensor localizing subcategories of finite type in Qcoh(X) and the set of all subsets
Y ⊆ X of the form Y =

⋃
i∈Ω Yi, with X \ Yi quasicompact and open for all i ∈ Ω,

is established. As an application, an isomorphism of ringed spaces

(X, OX)
∼−→ (spec(Qcoh(X)), OQcoh(X))

is constructed, where (spec(Qcoh(X)), OQcoh(X)) is a ringed space associated with the
lattice of tensor localizing subcategories of finite type. Also, a bijective correspon-
dence between the tensor thick subcategories of perfect complexes Dper(X) and the
tensor localizing subcategories of finite type in Qcoh(X) is established.

§1. Introduction

In his celebrated paper [1] on Abelian categories, Gabriel proved that for any Noe-
therian scheme X, the assignments

(1.1) coh X ⊇ D "→
⋃

x∈D
suppX(x) and X ⊇ U "→ {x ∈ cohX | suppX(x) ⊆ U}

induce bijections between

(1) the set of all tensor Serre subcategories of coh X, and
(2) the set of all subsets U ⊆ X of the form U =

⋃
i∈Ω Yi, where, for all i ∈ Ω, Yi

has a quasicompact open complement X \ Yi.

As a consequence of this result, X can be reconstructed from its Abelian category, cohX,
of coherent sheaves (see Buan–Krause–Solberg [2, §8]). Garkusha and Prest [3]–[5] proved
similar classification and reconstruction results for affine and projective schemes.

Given a quasicompact, quasiseparated scheme X, let Dper(X) denote the derived
category of perfect complexes. It comes equipped with a tensor product ⊗ := ⊗L

X . A
thick triangulated subcategory T of Dper(X) is said to be a tensor subcategory if for every
E ∈ Dper(X) and every object A ∈ T , the tensor product E⊗A is also in T . Thomason [6]
established a classification similar to (1.1) for the tensor thick subcategories of Dper(X)
in terms of the topology of X. Hopkins and Neeman (see [7, 8]) did the same in the case
where X is affine and Noetherian.

On the basis of Thomason’s classification theorem, Balmer [9] reconstructed the Noe-
therian scheme X out of the tensor thick triangulated subcategories of Dper(X). This
result was generalized to quasicompact, quasiseparated schemes by Buan–Krause–Sol-
berg [2].
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434 G. GARKUSHA

The main result of this paper is a generalization of the classification result by Garkusha
and Prest [3]–[5] to schemes. Let X be a quasicompact, quasiseparated scheme. We
denote by Qcoh(X) the category of quasicoherent sheaves. We say that a localizing
subcategory S of Qcoh(X) is of finite type if the canonical functor from the quotient
category Qcoh(X)/S → Qcoh(X) preserves the directed sums.

Theorem (Classification). Let X be a quasicompact, quasiseparated scheme. Then the
maps

V "→ S = {F ∈ Qcoh(X) | suppX(F) ⊆ V }
and

S "→ V =
⋃

F∈S
suppX(F)

induce bijections between

(1) the set of all subsets of the form V =
⋃

i∈Ω Vi with quasicompact open complement
X \ Vi for all i ∈ Ω, and

(2) the set of all tensor localizing subcategories of finite type in Qcoh(X).

As an application of this classification theorem, we show that there is a one-to-one
correspondence between the tensor localizing subcategories of finite type in Qcoh(X) and
the tensor thick subcategories in Dper(X) (cf. [10, 3, 5]).

Theorem. Let X be a quasicompact and quasiseparated scheme. The assignments

T "→ S =
{

F ∈ Qcoh(X) | suppX(F) ⊆
⋃

n∈Z,E∈T
suppX(Hn(E))

}

and
S "→ {E ∈ Dper(X) | Hn(E) ∈ S for all n ∈ Z}

induce a bijection between

(1) the set of all tensor thick subcategories of Dper(X), and
(2) the set of all tensor localizing subcategories of finite type in Qcoh(X).

Another application of the classification theorem is the reconstruction theorem. A
common approach in the noncommutative geometry is to study Abelian or triangulated
categories and to think of them as the replacement of an underlying scheme. This idea
goes back to work of Grothendieck and Manin. This approach is justified by the fact
that a Noetherian scheme can be reconstructed from the Abelian category of coherent
sheaves (Gabriel [1]) or by the category of perfect complexes (Balmer [9]). Rosenberg [11]
proved that a quasicompact scheme X is reconstructed from its category of quasicoherent
sheaves.

In this paper we reconstruct a quasicompact, quasiseparated scheme X from Qcoh(X).
Our approach, similar to that used in [3, 4, 5], is entirely different from Rosenberg’s [11]
and is less abstract.

Following Buan–Krause–Solberg [2], we consider the lattice Lf.loc,⊗(X) of tensor lo-
calizing subcategories of finite type in Qcoh(X), and also its prime ideal spectrum
Spec(Qcoh(X)). In a natural way, this space is equipped with a sheaf of commuta-
tive rings OQcoh(X). The following result says that the scheme (X, OX) is isomorphic to
(Spec(Qcoh(X)), OQcoh(X)).

Theorem (Reconstruction). Let X be a quasicompact and quasiseparated scheme. Then
there is a natural isomorphism of ringed spaces

f : (X, OX)
∼−→ (Spec(Qcoh(X)), OQcoh(X)).
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Among other results presented here, we mention Theorem 11, in which the finite
localizations in a locally finitely presented Grothendieck category C are classified in terms
of some topology on the injective spectrum Sp C; this generalizes a result of Herzog [12]
and Krause [13] for locally coherent Grothendieck categories, and the classification and
reconstruction theorems for coherent schemes.

§2. Localization in Grothendieck categories

The category Qcoh(X) of quasicoherent sheaves over a scheme X is a Grothendieck
category (see [14]), so that we can apply the general localization theory for Grothendieck
categories, which is of great utility in our analysis. For the reader’s convenience we recall
some basic facts of that theory.

We say that a subcategory S of an Abelian category C is a Serre subcategory if for
any short exact sequence

0 → X → Y → Z → 0

in C, the object Y belongs to S if and only if X, Z ∈ S. A Serre subcategory S of a
Grothendieck category C is localizing if it is closed under taking direct limits. Equiva-
lently, the inclusion functor i : S → C admits the right adjoint t = tS : C → S that
takes every object X ∈ C to the maximal subobject t(X) of X belonging to S. The
functor t is called the torsion functor. An object C of C is said to be S-torsion free if
t(C) = 0. Given a localizing subcategory S of C, the quotient category C/S consists of
C ∈ C such that t(C) = t1(C) = 0. The objects in C/S are called S-closed objects. For
any C ∈ C, there exists a canonical exact sequence

0 → A′ → C
λC−→ CS → A′′ → 0,

where A′ = t(C), A′′ ∈ S, and CS ∈ C/S is the maximal essential extension of
rC = C/t(C) such that CS/ rC ∈ S. The object CS is determined uniquely up to a canon-
ical isomorphism and is called the S-envelope of C. Moreover, the inclusion functor
i : C/S → C has a left adjoint localizing functor (−)S : C → C/S, which is also exact.
It takes each C ∈ C to CS ∈ C/S. Then,

HomC(X, Y ) ∼= HomC/S(XS , Y )

for all X ∈ C and Y ∈ C/S.
If C and D are Grothendieck categories, q : C → D is an exact functor, and a functor

s : D → C is fully faithful and right adjoint to q, then S := Ker q is a localizing

subcategory and there exists an equivalence C/S
H∼= D such that H ◦ (−)S = q. We shall

refer to the pair (q, s) as a localization pair.
The following result is an example of a localization pair.

Proposition 1 (cf. [1, §III.5; Proposition VI.3]). Let X be a scheme, and let U be
an open subset of X such that the canonical injection j : U → X is a quasicompact
map. Then j∗(G) is a quasicoherent OX -module for any quasicoherent OX |U -module G,
and the pair of adjoint functors (j∗, j∗) is a localization pair. That is, the category of
quasicoherent OX |U -modules Qcoh(U) is equivalent to Qcoh(X)/S, where S = Ker j∗.
Moreover, a quasicoherent OX-module F belongs to the localizing subcategory S if and
only if suppX(F) = {P ∈ X | FP ̸= 0} ⊆ Z = X \ U . Also, for any F ∈ Qcoh(X) we
have tS(F) = H0

Z(F), where H0
Z(F) stands for the subsheaf of F with supports in Z.

Proof. The fact that j∗(G) is a quasicoherent OX -module follows from [15, I.6.9.2].
Clearly, the functor j∗ : F "→ F|U is exact, j∗(G)|U = j∗j∗(G) = G by [15, I.6.9.2].
It follows that j∗ is fully faithful, and hence (j∗, j∗) is a localization pair.
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The fact that F ∈ S if and only if suppX(F) ⊆ Z is obvious. Finally, by [16, Ex.
II.1.20] we have an exact sequence

0 → H0
Z(F) → F ρF−→ j∗j

∗(F).

Since the morphism ρF can be regarded as an S-envelope for F , we see that Ker ρF =
tS(F) = H0

Z(F). !

Given a subcategory X of a Grothendieck category C, we denote by
√

X the smallest
localizing subcategory of C containing X . To describe

√
X intrinsically, we need the

notion of a subquotient.

Definition. Given objects A, B ∈ C, we say that A is a subquotient of B, or A ≺ B, if
there is a filtration of B by subobjects B = B0 ≥ B1 ≥ B2 ≥ 0 such that A ∼= B1/B2.
In other words, A is isomorphic to a subobject of a quotient object of B.

Given a subcategory X of C, we denote by ⟨X ⟩ the full subcategory of subquotients
of objects from X . Clearly, ⟨X ⟩ = ⟨⟨X ⟩⟩ because the relation A ≺ B is transitive, and
X = ⟨X ⟩ if and only if X is closed under subobjects and quotient objects. If X is closed
under direct sums, then so is ⟨X ⟩.

Proposition 2. For any subcategory X of a Grothendieck category C, an object X belongs
to

√
X if and only if there is a filtration

X0 ⊂ X1 ⊂ · · · ⊂ Xβ ⊂ · · ·

such that X =
⋃

β Xβ, Xγ =
⋃

β<γ Xβ if γ is a limit ordinal, and X0, Xβ+1/Xβ ∈ ⟨X⊕⟩
for any β, where X⊕ stands for the subcategory of C consisting of direct sums of objects
in X .

Proof. It is easily seen that every object having such a filtration belongs to
√

X . It
suffices to show that the full subcategory S of such objects is localizing. Let

X " Y
g
# Z

be a short exact sequence with X, Z ∈ S. Let X0 ⊂ · · · ⊂ Xβ ⊂ · · · and Z0 ⊂ · · · ⊂
Zα ⊂ · · · be the corresponding filtrations. Put Yα = g−1(Zα). Then, for any α, we have
a short exact sequence

X " Yα
gα# Zα

with Yα+1/Yα
∼= Zα+1/Zα. Let the filtrations for X and Z be indexed by well-ordered

sets δ and γ, respectively. Then we have the following filtration for Y indexed by the
well-ordered set δ + γ:

X0 ⊂ · · · ⊂ Xβ ⊂ · · · ⊂ X =
⋃

β

Xβ ⊂ Y0 ⊂ · · · ⊂ Yα ⊂ · · · .

It follows that Y ∈ S. We see that S is closed under extensions.
Now, let Y ∈ S with a filtration Y0 ⊂ · · · ⊂ Yα ⊂ · · · . Set Xα = X ∩ Yα and

Zα = Yα/Xα. We get filtrations X0 ⊂ · · · ⊂ Xα ⊂ · · · and Z0 ⊂ · · · ⊂ Zα ⊂ · · · for
X and Z, respectively. Thus, X, Z ∈ S, so that S is a Serre subcategory. Clearly, it is
closed under direct sums; hence it is localizing. !

Corollary 3. Let X be a subcategory in C closed under subobjects, quotient objects, and
direct sums. An object M ∈ C is

√
X -closed if and only if Hom(X, M) = Ext1(X, M) = 0

for all X ∈ X .
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Proof. Suppose Hom(X, M) = Ext1(X, M) = 0 for all X ∈ X . We need to check that
Hom(Y, M) = Ext1(Y, M) = 0 for all Y ∈

√
X . By Proposition 2, there is a filtration

Y0 ⊂ Y1 ⊂ · · · ⊂ Yβ ⊂ · · ·

such that Y =
⋃

β Yβ , Yγ =
⋃

β<γ Yβ if γ is a limit ordinal, and Y0, Yβ+1/Yβ ∈ ⟨X⊕⟩ = X .
For any β, we have an exact sequence

Hom(Yβ+1/Yβ , M) → Hom(Yβ+1, M) → Hom(Yβ , M)

→ Ext1(Yβ+1/Yβ , M) → Ext1(Yβ+1, M) → Ext1(Yβ , M).

Hence, if Hom(Yβ, M) = Ext1(Yβ , M) = 0, then Hom(Yβ+1, M) = Ext1(Yβ+1, M) = 0
because Yβ+1/Yβ ∈ X . Since Y0 ∈ X , it follows that Hom(Yβ , M) = Ext1(Yβ, M) = 0
for all finite β.

Let γ be a limit ordinal, and let Hom(Yβ , M) = Ext1(Yβ , M) = 0 for all β < γ. We
have Hom(Yγ , M) = lim←−β<γ

Hom(Yβ , M) = 0. To show that Ext1(Yγ , M) = 0, we need

to prove that every short exact sequence

M " N
p
# Yγ

is split. There is a commutative diagram

Eβ : M !! !! Nβ
""

""

pβ !! !! Yβ
""

""

∃κβ

##

Eγ : M !! !! N
p !! !! Yγ

with Nβ = p−1(Yβ). Clearly, Eγ =
⋃

β Eβ . Since the upper row splits, there exists a
morphism κβ such that pβκβ = 1. Consider the following commutative diagram:

M !! !! Nβ
""

uβ

""

pβ !! !! Yβ
""
vβ

""
M !! !! Nβ+1

pβ+1 !! !! Yβ+1

We want to check that κβ+1vβ = uβκβ . Since the right square is Cartesian and
pβ+1κβ+1vβ = vβ , there exists a unique morphism τ : Yβ → Nβ such that pβτ = 1
and uβτ = κβ+1vβ . We claim that τ = κβ. Indeed, pβ(τ − κβ) = 0, whence τ − κβ

factors through M . This is possible only if τ − κβ = 0, because Hom(Yβ , M) = 0 by
assumption. Therefore, τ = κβ. It follows that the family of morphisms κβ : Yβ → Nβ

is directed and then p ◦ (lim−→κβ) = (lim−→ pβ) ◦ (lim−→κβ) = lim−→(pβκβ) = 1. Thus, p is
split. !

Recall that the injective spectrum or the Gabriel spectrum Sp C of a Grothendieck
category C is the set of isomorphism classes of indecomposable injective objects in C. It
plays an important role in our analysis. Given a subcategory X in C, we denote

(X ) = {E ∈ Sp C | HomC(X, E) ̸= 0 for some X ∈ X}.

Using Proposition 2 and the fact that the functor Hom(−, E), E ∈ Sp C, is exact, we see
that (X ) =

⋃
X∈X (X) = (

√
X ).

Proposition 4. The collection

{(S) | S ⊂ C is a localizing subcategory}
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of subsets of Sp C satisfies the axioms for the open sets of a topology on the injective
spectrum Sp C. This topological space will be denoted by Spgab C. Moreover, the map

(2.1) S "−→ (S)

is an inclusion-preserving bijection between the localizing subcategories S of C and the
open subsets of Spgab C.

Proof. First, note that (0) = ∅ and (C) = Sp C. We have (S1)∩ (S2) = (S1∩S2) because
every E ∈ Sp C is uniform and 0 ̸= tS1(E) ∩ tS2(E) ∈ S1 ∩ S2 whenever E ∈ (S1) ∩ (S2).
Also,

⋃
i∈I(Si) = (

⋃
i∈I Si) = (

√⋃
i∈I Si).

Clearly, the map (2.1) is bijective, because every localizing subcategory S consists
precisely of the objects X such that Hom(X, E) = 0 for all E ∈ Sp C \ (S). !

For a localizing subcategory S in C, the injective spectrum Spgab(C/S) can be viewed
as the closed subset Spgab C \ (S). Moreover, the inclusion

Spgab(C/S) ↪→ Spgab C

is a closed map. Indeed, if U is a closed subset in Spgab(C/S), then there is a unique
localizing subcategory T in C/S such that U = Spgab(C/S) \ (T ). By [17, 1.7] there is
a unique localizing subcategory P in C containing S and such that C/P is equivalent to
(C/S)/T . It follows that U = Spgab C \ (P), whence U is closed in Spgab C.

On the other hand, let Q be a localizing subcategory of C. We show that O :=
(Q) ∩ Spgab(C/S) is an open subset in Spgab(C/S).

Lemma 5. Let pQ denote the full subcategory of objects of the form XS with X ∈ Q. Then
pQ is closed under direct sums, subobjects, and quotient objects in C/S, and O = (

√ pQ).
Moreover, if T is a unique localizing subcategory of C containing S such that C/T ∼=
(C/S)/

√ pQ, then

T =
√

(Q ∪ S);

i.e., T is the smallest localizing subcategory containing Q and S. We shall also refer to
T as the join of Q and S.

Proof. First, we prove that pQ is closed under direct sums, subobjects, and quotient
objects in C/S. Clearly, it is closed under direct sums. Let Y be a subobject of XS ,
X ∈ Q, and let λX : X → XS be the S-envelope for X. Then W = λ−1

X (Y ) is a
subobject of X, so that it belongs to Q, and Y = WS . If Z is a C/S-quotient of XS and
π : XS # Z is the canonical projection, then Z = VS with V = X/Ker(πλX) ∈ Q. So,
pQ is also closed under subobjects and quotient objects in C/S.

It follows that ⟨ pQ⊕⟩ = pQ and ( pQ) = (
√ pQ). On the other hand, it is easily seen that

O = ( pQ). Thus, O is open in Spgab(C/S).
Clearly,

(T ) = (Q) ∪ (S) = (Q ∪ S) = (
√

(Q ∪ S)).

By Proposition 4, we have T =
√

(Q ∪ S). !

We summarize the above arguments as follows.

Proposition 6. For any localizing subcategory S in C, the topology on Spgab(C/S) co-
incides with the subspace topology induced by Spgab C.
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§3. Finite localizations of Grothendieck categories

Mostly, in this paper we are interested in finite localizations of a Grothendieck category
C. For this, we should impose some finiteness conditions on C.

Recall that an object X of a Grothendieck category C is finitely generated if whenever
there are subobjects Xi ⊆ X with i ∈ I satisfying X =

∑
i∈I Xi, there is a finite subset

J ⊂ I such that X =
∑

i∈J Xi. The full subcategory of finitely generated objects is
denoted by fg C. A finitely generated object X is said to be finitely presented if every
epimorphism γ : Y → X with Y ∈ fg C has finitely generated kernel Ker γ. By fp C we
denote the full subcategory consisting of finitely presented objects. The category C is
locally finitely presented if every object C ∈ C is a direct limit C = lim−→Ci of finitely
presented objects Ci, or equivalently, if C possesses a family of finitely presented gener-
ators. In such a category, every finitely generated object A ∈ C admits an epimorphism
η : B → A from a finitely presented object B. Finally, we refer to a finitely presented
object X ∈ C as coherent if every finitely generated subobject of X is finitely presented.
The corresponding full subcategory of coherent objects will be denoted by coh C. A lo-
cally finitely presented category C is locally coherent if coh C = fp C. Obviously, a locally
finitely presented category C is locally coherent if and only if coh C is an Abelian category.

In [14] it was shown that the category of quasicoherent sheaves Qcoh(X) over a scheme
X is a locally λ-presentable category, where λ is a certain regular cardinal. However,
for some nice schemes, most often used in practice in algebraic geometry, such as qua-
sicompact and quasiseparated, there are sufficiently many finitely presented generators
for Qcoh(X).

Proposition 7. Let X be a quasicompact and quasiseparated scheme. Then Qcoh(X) is
a locally finitely presented Grothendieck category. An object F belongs to fp(Qcoh(X))
if and only if it is locally finitely presented.

Proof. By [15, I.6.9.12], every quasicoherent sheaf is a direct limit of locally finitely
presented sheaves. From [18, Proposition 75] it follows that the locally finitely presented
sheaves are precisely the finitely presented objects in Qcoh(X). !

Recall that a localizing subcategory S of a Grothendieck category C is of finite type
(respectively, of strictly finite type) if the functor i : C/S → C preserves directed sums
(respectively, direct limits). If C is a locally finitely generated (respectively, locally finitely
presented) Grothendieck category and S is of finite type (respectively, of strictly finite
type), then C/S is a locally finitely generated (respectively, locally finitely presented)
Grothendieck category, and

fg(C/S) = {CS | C ∈ fg C} (respectively, fp(C/S) = {CS | C ∈ fp C}).

If C is a locally coherent Grothendieck category, then S is of finite type if and only if it
is of strictly finite type (see, e.g., [17, 5.14]). In this case C/S is locally coherent.

The following proposition says that the localizing subcategories of finite type in a
locally finitely presented Grothendieck category C are completely determined by finitely
presented torsion objects (cf. [12, 13]).

Proposition 8. Let S be a localizing subcategory of finite type in a locally finitely pre-
sented Grothendieck category C. Then

S =
√

(fp C ∩ S).

Proof. Obviously,
√

(fp C∩S) ⊂ S. Let X ∈ S, and let Y be a finitely generated subobject
of X. There is an epimorphism η : Z → Y with Z ∈ fp C. By [17, 5.8], there is a finitely
generated subobject W ⊂ Ker η such that Z/W ∈ S. It follows that Z/W ∈ fp C ∩ S
and Y is an epimorphic image of Z/W . Since X is a direct union of finitely generated
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torsion subobjects, we see that X is an epimorphic image of some
⊕

i∈I Si with each Si

in fp C ∩ S. Therefore, S ⊂
√

(fp C ∩ S). !
Lemma 9. Let Q and S be two localizing subcategories in a Grothendieck category C. If
X ∈ C is both Q-closed and S-closed, then it is T =

√
(Q ∪ S)-closed.

Proof. By Lemma 5, C/T ∼= (C/S)/
√ pQ, where pQ = {CS ∈ C/S | C ∈ Q} and pQ

is closed under direct sums, subobjects, and quotient objects in C/S. To show that
X = XS is a T -closed object it suffices to check that X is

√ pQ-closed in C/S. Obviously,
HomC/S(A, X) = 0 for all A ∈ pQ.

Consider a short exact sequence

E : X " Y
p
# CS

in C/S, where C ∈ Q. One can construct a commutative diagram

E′ : X !! !! Y ′

""

p′
!! C

λC

""
E : X !! !! Y

p !! CS

in C, where the right square is Cartesian. Put C ′ = ImC p′; then C ′ ∈ Q, C ′
S = CS , and

the short exact sequence

E′′ : X " Y ′ p′

# C ′

splits because Ext1C(C ′, X) = 0. It follows that E splits for E = E′
S = E′′

S . Therefore, X

is
√ pQ-closed by Corollary 3. !
Below we shall need the following statement.

Lemma 10. For any family of localizing subcategories of finite type {Si}i∈I in a locally
finitely presented Grothendieck category C, their join T =

√
(
⋃

i∈I Si) is a localizing
subcategory of finite type.

Proof. First, we consider the case where I is finite. It suffices to show that the join
T =

√
(Q ∪ S) of two localizing subcategories Q and S of finite type is of finite type.

We must check that the inclusion functor C/T → C respects directed sums. Clearly, it
suffices to verify that X =

∑
C Xα is a T -closed object whenever all Xα’s are T -closed.

Since Q and S are of finite type, X is both Q-closed and S-closed. Lemma 9 implies
that X is T -closed. Therefore, T is of finite type.

Now, let {Si}i∈I be an arbitrary set of localizing subcategories of finite type. Without
loss of generality we may assume that I is a directed set and Si ⊂ Sj for i ≤ j. In-
deed, given a finite subset J ⊂ I, denote by SJ the localizing subcategory of finite type√

(
⋃

j∈J Sj). Then, obviously, the set R of all finite subsets J of I is directed, SJ ⊂ SJ′

for any J ⊂ J ′, and T =
√

(
⋃

J∈R SJ).
Let X denote the full subcategory of C of the objects that can be presented as directed

sums
∑

Xα with each Xα in
⋃

i∈I Si. Since I is a directed set and Si ⊂ Sj for i ≤ j,
it follows that a direct sum X =

⊕
γ∈Γ Xγ with each Xγ in

⋃
i∈I Si is in X . Indeed,

X =
∑

XS with S running through all finite subsets of Γ and XS =
⊕

γ∈S Xγ ∈
⋃

i∈I Si.
Therefore, if {Xβ}β∈B is a family of subobjects of an object X and each Xβ belongs to⋃

i∈I Si, then the direct union
∑

Xβ belongs to X .
The subcategory X is closed under subobjects and quotient objects. Indeed, let X =∑
Xα with each Xα in

⋃
i∈I Si. Consider a short exact sequence

Y " X # Z.
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We set Yα = Y ∩ Xα and Zα = Xα/Yα ⊂ Z. Then both Yα and Zα are in
⋃

i∈I Si,
Y = Y ∩ (

∑
Xα) =

∑
Y ∩ Xα =

∑
Yα, and Z =

∑
Zα. So, Y, Z ∈ X .

Clearly, X is closed under directed sums, in particular, under direct sums, whence
X = ⟨X⊕⟩ and T =

√
X . If we show that every direct limit C = lim−→Cδ of T -closed

objects Cδ has no T -torsion, then from [17, 5.8] it will follow that T is of finite type.
Proposition 2 shows that it suffices to check that HomC(X, C) = 0 for any object

X ∈ X . Let Y be a finitely generated subobject in X. There is an index i0 ∈ I with
Y ∈ Si0 , and an epimorphism η : Z # Y with Z ∈ fp C. By [17, 5.8], there exists a
finitely generated subobject W of Ker η such that Z/W ∈ Si0 . Since Z/W ∈ fp C, we
have Hom(Z/W, C) = lim−→Hom(Z/W, Cδ) = 0. We see that Hom(Y, C) = 0, whence
Hom(X, C) = 0. !

Given a localizing subcategory of finite type S in C, we denote

O(S) = {E ∈ Sp C | tS(E) ̸= 0}.

The next result was obtained by Herzog [12] and Krause [13] for locally coherent
Grothendieck categories and by Garkusha–Prest [5] for the category of modules Mod R
over a commutative ring R.

Theorem 11. Suppose C is a locally finitely presented Grothendieck category. The col-
lection

{O(S) | S ⊂ C is a localizing subcategory of finite type}
of subsets of Sp C satisfies the axioms for the open sets of a topology on the injective
spectrum Sp C. This topological space will be denoted by Spfl C, and this topology will be
referred to as the fl-topology (“fl” for finite localizations). Moreover, the map

(3.1) S "−→ O(S)

is an inclusion-preserving bijection between the localizing subcategories S of finite type in
C and the open subsets of Spfl C.

Proof. First, note that O(S) = (S), O(0) = ∅, and O(C) = Sp C. We have O(S1) ∩
O(S2) = (S1 ∩ S2) by Proposition 4. We claim that S1 ∩ S2 is of finite type, whence
O(S1) ∩ O(S2) = O(S1 ∩ S2). Indeed, consider a morphism f : X → S from a finitely
presented object X to an object S ∈ S1 ∩ S2. From [17, 5.8] it follows that there are
finitely generated subobjects X1, X2 ⊆ Ker f such that X/Xi ∈ Si, i = 0, 1. Then
X1 + X2 is a finitely generated subobject of Ker f and X/(X1 + X2) ∈ S1 ∩ S2. By [17,
5.8], S1 ∩ S2 is of finite type.

By Lemma 10,
√⋃

i∈I Si is of finite type if so is each Si. Proposition 4 implies that⋃
i∈I O(Si) = O(

⋃
i∈I Si) = O(

√⋃
i∈I Si), and the map (3.1) is bijective. !

Let Lloc(C) denote the lattice of localizing subcategories of C, where, by definition,

S ∧ Q = S ∩ Q, S ∨ Q =
√

(S ∪ Q)

for any S, Q ∈ Lloc(C). The proof of Theorem 11 shows that the subset of localizing
subcategories of finite type in Lloc(C) is a sublattice. We shall denote it by Lf.loc(C).

Remark. If C is a locally coherent Grothendieck category, the topological space Spfl C is
also called in the literature the Ziegler spectrum of C. It arose in Ziegler’s paper [19]
on the model theory of modules. In accordance with the original Ziegler definition, the
points of the Ziegler spectrum of a ring R are the isomorphism classes of indecomposable
pure injective right R-modules. These can be identified with Sp(R mod, Ab), where
(R mod, Ab) is the locally coherent Grothendieck category consisting of additive covariant
functors defined on the category of finitely presented left modules R mod and with values
in the category of Abelian groups Ab. Closed subsets correspond to complete theories of
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modules. Later, Herzog [12] and Krause [13] defined the Ziegler topology for arbitrary
locally coherent Grothendieck categories.

Proposition 12. For any localizing subcategory of strictly finite type S in a locally
finitely presented Grothendieck category C, the topology on Spfl(C/S) coincides with the
subspace topology induced by Spfl C.

Proof. By [17, 5.9], C/S is a locally finitely presented Grothendieck category, so that the
fl-topology on Sp(C/S) makes sense. Let O(P) be an open subset of Spfl(C/S) with P a
localizing subcategory of finite type in C/S. There is a unique localizing subcategory T
of C such that (C/S)/P ∼= C/T . We claim that T is of finite type.

Obviously, it suffices to verify that X =
∑

C Xα is a T -closed object whenever each
Xα is T -closed. Since S and P are of finite type in C and C/S, respectively, X is both
S-closed and P-closed in C and in C/S, respectively. It follows that X is T -closed.
Therefore, T is of finite type and O(P) = Spfl(C/S) ∩ O(T ).

Now, let Q be a localizing subcategory of finite type in C. We want to show that
Spfl(C/S) ∩ O(Q) is open in Spfl(C/S). Let pQ = {XS | X ∈ Q}. Then pQ is closed under
direct sums, subobjects, and quotient objects in C/S (see the proof of Lemma 5) and
O( pQ) = O(

√ pQ) = Spfl(C/S) ∩ O(Q). We must show that
√ pQ is of finite type in C/S.

If we check that every direct limit C = lim−→C/S Cδ of
√ pQ-closed objects Cδ has no

√ pQ-torsion, then from [17, 5.8] it will follow that
√ pQ is of finite type. Obviously, each

Cδ is Q-closed.
By Proposition 2, it suffices to check that HomC(X, C) = 0 for any object X ∈ pQ.

Since S is of strictly finite type, we have C ∼= lim−→C Cδ. Since each Cδ is Q-closed,
lim−→C Cδ has no Q-torsion by [17, 5.8] and the fact that Q is of finite type. There is an
object Y ∈ Q such that YS = X. Then HomC/S(X, C) ∼= HomC(Y, lim−→C Cδ) = 0, as
required. !

§4. The topological space Spfl,⊗(X)

In the preceding section we studied some general properties of finite localizations in
locally finitely presented Grothendieck categories and their relationship with the topolog-
ical space Spfl C. In this section we introduce and study the topological space Spfl,⊗(X),
which is of particular importance in practice. Unless otherwise specified, X is assumed
to be a quasicompact and quasiseparated scheme.

Given a quasicompact open subset U ⊂ X, we denote SU = {F ∈ Qcoh(X) | F|U =
0}. Using [17, 5.9] and the fact that F|U ∈ fp(Qcoh(U)) whenever F ∈ fp(Qcoh(X)), we
see that SU is of strictly finite type. Below we shall need the following statement.

Lemma 13. Let X be a quasicompact and quasiseparated scheme, and let U, V be qua-
sicompact open subsets. Then

SU∩V =
√

(SU ∪ SV ).

Proof. Clearly, SU∩V contains both SU and SV , whence SU∩V ⊃
√

(SU ∪ SV ). Let
F ∈ SU∩V , and let j : U → X be the canonical inclusion. Then j∗j∗(F) ∈ SV . We have
the following exact sequence:

0 → tSU (F) → F λF−→ j∗j
∗(F).

Since tSU (F) ∈ SU and Im(λF ) ∈ SV , we see that F ∈
√

(SU ∪ SV ). !

We denote by Spfl(X) the topological space Spfl(Qcoh(X)).
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Corollary 14. Let X be a quasicompact and quasiseparated scheme and let X = U ∪V ,
where U, V are quasicompact open subsets. Then

Sp(X) = Sp(U) ∪ Sp(V ), Sp(U ∩ V ) = Sp(U) ∩ Sp(V ),

Spfl(X) = Spfl(U) ∪ Spfl(V ), Spfl(U ∩ V ) = Spfl(U) ∩ Spfl(V ).

Proof. This follows from the fact that SU ∩SV = 0, Propositions 1, 4, 6, 12, Theorem 11,
and Lemma 13. !

Let Lloc(X) (respectively, Lf.loc(X)) denote the lattice Lloc(Qcoh(X)) (respectively,
Lf.loc(Qcoh(X))). By Proposition 4 and Theorem 11, the map Lloc(X) → Lopen(Sp(X))
(respectively, Lf.loc(X) → Lopen(Spfl(X))) is a lattice isomorphism. Suppose U ⊂ X is a
quasicompact open subset. Then the map

αX,U : Lloc(X) → Lloc(U), S "→
√

( pS|U ),

where pS|U = {F|U = FSU | F ∈ S}, is a lattice map. If V is another quasicompact
subset of X such that X = U ∪ V , then, obviously,

αX,U∩V = αU,U∩V ◦ αX,U = αV,U∩V ◦ αX,V .

By the proof of Proposition 12, αX,U (S) ∈ Lf.loc(U) for every S ∈ Lf.loc(U). Thus, we
have a map

αX,U : Lf.loc(X) → Lf.loc(U).

The notion of a pullback for lattices satisfying the obvious universal property is defined
easily.

Lemma 15. The commutative squares of lattices

Lloc(X)
αX,U−−−−→ Lloc(U)

αX,V

⏐⏐(
⏐⏐(αU,U∩V

Lloc(V )
αV,U∩V−−−−−→ Lloc(U ∩ V )

and
Lf.loc(X)

αX,U−−−−→ Lf.loc(U)

αX,V

⏐⏐(
⏐⏐(αU,U∩V

Lf.loc(V )
αV,U∩V−−−−−→ Lf.loc(U ∩ V )

are pullback.

Proof. It suffices to observe that the commutative squares in the lemma are isomorphic
to the corresponding pullback squares of lattices of open sets

Lopen(Sp(X))
αX,U−−−−→ Lopen(Sp(U))

αX,V

⏐⏐(
⏐⏐(αU,U∩V

Lopen(Sp(V ))
αV,U∩V−−−−−→ Lopen(Sp(U ∩ V ))

and
Lopen(Spfl(X))

αX,U−−−−→ Lopen(Spfl(U))

αX,V

⏐⏐(
⏐⏐(αU,U∩V

Lopen(Spfl(V ))
αV,U∩V−−−−−→ Lopen(Spfl(U ∩ V ))

(see Proposition 4, Theorem 11, and Corollary 14). !
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Recall that Qcoh(X) is monoidal, and the tensor product ⊗X is right exact and
preserves direct limits (see [20, §II.2]).

Definition. A localizing subcategory S of Qcoh(X) is said to be tensor if F ⊗X G ∈ S
for every F ∈ S and G ∈ Qcoh(X).

Lemma 16. A localizing subcategory of finite type S ⊂ Qcoh(X) is tensor if and only if
F ⊗X G ∈ S for every F ∈ S ∩ fp(Qcoh(X)) and G ∈ fp(Qcoh(X)).

Proof. It suffices to observe that every F ∈ S is a quotient object of the direct sum of
objects from S ∩ fp(Qcoh(X)) and that every object G ∈ Qcoh(X) is a direct limit of
finitely presented objects. !
Lemma 17. Let X ⊂ Qcoh(X) be a tensor subcategory closed under direct sums, sub-
objects, and quotient objects. Then

√
X is a tensor localizing subcategory.

Proof. By Proposition 2, an object F belongs to
√

X if and only if there is a filtration

F0 ⊂ F1 ⊂ · · · ⊂ Fβ ⊂ · · ·
such that F =

⋃
β Fβ , Fγ =

⋃
β<γ Fβ if γ is a limit ordinal, and F0, Fβ+1/Fβ ∈ ⟨X⊕⟩ =

X .
We have F0 ⊗X G ∈ X for any G ∈ Qcoh(X). Suppose β = α+1 and Fα⊗X G ∈

√
X .

There is an exact sequence

Fα ⊗X G f−→ Fβ ⊗X G → (Fβ/Fα) ⊗X G → 0.

Since (Fβ/Fα) ⊗X G ∈ X and Im f ∈
√

X , we see that Fβ ⊗X G ∈
√

X . If γ is a limit
ordinal and Fβ ⊗X G ∈

√
X for all β < γ, then Fγ ⊗X G = lim−→β<γ

(Fβ ⊗X G) ∈
√

X .

Therefore,
√

X is tensor. !
The next statement is of great importance in this paper.

Reduction principle. Let S be the class of quasicompact and quasiseparated schemes,
and let P be a property satisfied by some schemes in S. Moreover, assume the following.

(1) P is true for affine schemes.
(2) If X ∈ S, X = U ∪ V , where U, V are quasicompact open subsets of X, and P

holds for U, V , and U ∩ V , then it holds for X.

Then P holds for all schemes from S.

Proof. See the proof in [21, 3.9.2.4] and [22, 3.3.1]. !
Lemma 18. The join T =

√
(S ∪ Q) of two tensor localizing subcategories S, Q ⊂

Qcoh(X) is tensor.

Proof. We use the reduction principle to demonstrate the lemma. It is true for affine
schemes, because every localizing subcategory is tensor in this case. Suppose X = U ∪V ,
where U, V are quasicompact open subsets of X, and the assertion is true for U, V , and
U ∩ V . We must show that it is true for X itself.

We have the following relation:

αX,U (T ) = (
√

( pS|U )) ∨ (
√

( pQ|U )).

For any F , G ∈ Qcoh(X), there is a canonical isomorphism (see [20, II.2.3.5])

(F|U ) ⊗U (G|U ) ∼= (F ⊗X G)|U .

It follows that both pS|U and pQ|U are closed under tensor products. By Lemma 17,
both

√ pS|U and
√ pQ|U are tensor. By assumption, the join of two tensor localizing

subcategories in Qcoh(U) is tensor, whence αX,U (T ) is tensor. For the same reasons,
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αX,V (T ) is tensor. Obviously, T is tensor whenever so are αX,U (T ) and αX,V (T ).
Therefore, T is also tensor, and now our assertion follows from the reduction principle.

!
Given a tensor localizing subcategory S of finite type in Qcoh(X), we denote

O(S) = {E ∈ Sp(X) | tS(E) ̸= 0}.

Theorem 19. The collection

{O(S) | S ⊂ Qcoh(X) is a tensor localizing subcategory of finite type}
of subsets of the injective spectrum Sp(X) satisfies the axioms for the open sets of a
topology on Sp(X). This topological space will be denoted by Spfl,⊗(X), and this topology
will be referred to as the tensor fl-topology. Moreover, the map

(4.1) S "−→ O(S)

is an inclusion-preserving bijection between the tensor localizing subcategories S of finite
type in Qcoh(X) and the open subsets of Spfl,⊗(X).

Proof. Obviously, the intersection S1 ∩ S2 of two tensor localizing subcategories of finite
type is a tensor localizing subcategory of finite type; hence, O(S1 ∩S2) = O(S1)∩O(S2)
by Theorem 11.

Now we show that the join T =
√

(
⋃

i∈I Si) of tensor localizing subcategories of finite
type Si is tensor. By induction and Lemma 18, T is tensor whenever I is finite. Now,
without loss of generality, we may assume that I is a directed index set and Si ⊂ Sj

for any i ≤ j. By the proof of Lemma 10, T =
√

X , where X is the full subcategory
in Qcoh(X) of objects that can be presented as directed sums

∑
Fα with each Fα in⋃

i∈I Si. Then X is closed under direct sums, subobjects, and quotient objects. It is also
closed under tensor product, because ⊗X commutes with direct limits. By Lemma 17,
T is tensor, and by Lemma 10, T is of finite type.

Theorem 11 implies that O(
√

(
⋃

i∈I Si)) =
⋃

i∈I O(Si) and the map (4.1) is a
bijection. !

We denote by Lf.loc,⊗(X) the lattice of tensor localizing subcategories of finite type
in Qcoh(X).

Corollary 20. The commutative square of lattices

Lf.loc,⊗(X)
αX,U−−−−→ Lf.loc,⊗(U)

αX,V

⏐⏐(
⏐⏐(αU,U∩V

Lf.loc,⊗(V )
αV,U∩V−−−−−→ Lf.loc,⊗(U ∩ V )

is pullback.

Proof. The proof is similar to that of Lemma 15. !

§5. The classification theorem

We recall (see [23]) that a topological space is spectral if it is T0 and quasicompact,
the quasicompact open subsets are closed under finite intersections and form an open
basis, and every nonempty irreducible closed subset has a generic point. Given a spec-
tral topological space X, Hochster [23] endowed the underlying set with a new, “dual”,
topology, denoted X∗, by taking as open sets those of the form Y =

⋃
i∈Ω Yi, where

Yi has quasicompact open complement X \ Yi for all i ∈ Ω. Then X∗ is spectral and
(X∗)∗ = X (see [23, Proposition 8]).
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As an example, the underlying topological space of a quasicompact, quasiseparated
scheme X is spectral. In this section we show that the tensor localizing subcategories of
finite type in Qcoh(X) are in one-to-one correspondence with the open subsets of X∗.
Unless otherwise specified, X is assumed to be a quasicompact, quasiseparated scheme.

Given a quasicompact open subset D ⊂ X, we denote SD = {F ∈ Qcoh(X) |
F|D = 0}.

Proposition 21. For any open subset O =
⋃

I Oi ⊂ X∗, where each Di = X \ Oi is
quasicompact and open in X, the subcategory S = {F ∈ Qcoh(X) | suppX(F) ⊆ O} is a
tensor localizing subcategory of finite type, and S =

√
(
⋃

I SDi).

Proof. Given a short exact sequence

F ′ " F # F ′′,

in Qcoh(X), we have suppX(F) = suppX(F ′) ∪ suppX(F ′′). It follows that S is a Serre
subcategory. It is also closed under direct sums, hence localizing, because suppX(

⊕
I Fi)

=
⋃

I suppX(Fi).
We use the reduction principle to show that S is a tensor localizing subcategory of

finite type and S =
√

(
⋃

I SDi). It is the case for affine schemes (see [5, 2.2]). Suppose
X = U ∪ V , where U, V are quasicompact open subsets of X, and the assertion is true
for U, V , and U ∩ V . We need to show that it is true for X itself.

For any F ∈ Qcoh(X) we have

suppX(F) = suppU (F|U ) ∪ suppV (F|V ).

Clearly, O ∩ U is open in U∗ and suppU (F|U ) ⊆ O ∩ U for any F ∈ S. We see that
pS|U = {F|U = FSU | F ∈ S} is contained in S(U) = {F ∈ Qcoh(U) | suppU (F) ⊆
O∩U}. By assumption, S(U) is a tensor localizing subcategory of finite type in Qcoh(U)
and S(U) =

√
(
⋃

I SDi∩U ). We have S(U) ⊃
√

( pS|U ). Similarly, S(V ) ⊃
√

( pS|V ) and
S(V ) =

√
(
⋃

I SDi∩V ).
Since

αU,U∩V (SDi∩U ) = αV,U∩V (SDi∩V )
Lem. 13

= SDi∩U∩V

Prop. 1
=

{
F ∈ Qcoh(U ∩ V ) | suppU∩V (F) ⊆ Oi ∩ U ∩ V

}
,

it follows that

αU,U∩V (S(U)) = αV,U∩V (S(V )) = S(U ∩ V )

=
{
F ∈ Qcoh(U ∩ V ) | suppU∩V (F) ⊆ O ∩ U ∩ V

}
=

√(⋃

I

SDi∩U∩V

)
.

By Corollary 20, there is a unique tensor localizing subcategory of finite type T ∈
Lf.loc,⊗(X) such that

√
( pT |U ) = S(U),

√
( pT |V ) = S(V ) and T =

√
(
⋃

I SDi). By

construction, suppX(F) ⊆ O for all F ∈ T , whence T ⊆ S,
√

( pT |U ) ⊆
√

( pS|U ),√
( pT |V ) ⊆

√
( pS|V ). Therefore, S(V ) =

√
( pS|V ) and S(V ) =

√
( pS|V ). By Corollary 20,

we have S = T . !

Let X = U ∪ V with U, V open and quasicompact. Then X∗ = U∗ ∪ V ∗ and both
U∗ and V ∗ are closed subsets of X∗. Let Y ∈ Lopen(X∗); then Y =

⋃
I Yi, where each

Di := X \ Yi is an open and quasicompact subset in X. Since each Di ∩ U is an open
and quasicompact subset in U , it follows that Y ∩ U =

⋃
I(Yi ∩ U) ∈ Lopen(U∗). Then

the map
βX,U : Lopen(X∗) → Lopen(U∗), Y "→ Y ∩ U

is a lattice map. The lattice map βX,V : Lopen(X∗) → Lopen(V ∗) is defined similarly.
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Lemma 22. The square

Lopen(X∗)
βX,U−−−−→ Lopen(U∗)

βX,V

⏐⏐(
⏐⏐(βU,U∩V

Lopen(V ∗)
βV,U∩V−−−−−→ Lopen((U ∩ V )∗)

is commutative and pullback.

Proof. It is easily seen that the lattice maps

Y ∈ Lopen(X∗) "→ (Y ∩ U, Y ∩ V ) ∈ Lopen(U∗)
∏

Lopen((U∩V )∗)

Lopen(V ∗)

and
(Y1, Y2) ∈ Lopen(U∗)

∏

Lopen((U∩V )∗)

Lopen(V ∗) "→ Y1 ∪ Y2 ∈ Lopen(X∗)

are mutually inverse. !
Lemma 23. Given a subcategory X in Qcoh(X), we have

⋃

F∈X
suppX(F) =

⋃

F∈
√

X

suppX(F).

Proof. Since suppX(
⊕

I Fi) =
⋃

I suppX(Fi) and suppX(F) = suppX(F ′) ∪ suppX(F ′′)
for any short exact sequence F ′ " F # F ′′ in Qcoh(X), we may assume that X is closed
under subobjects, quotient objects, and direct sums, i.e., X = ⟨X⊕⟩. If F =

∑
I Fi, we

also have suppX(F) ⊆
⋃

I suppX(Fi). Now our assertion follows from Proposition 2. !
Lemma 24. For any tensor localizing subcategory of finite type S ∈ Lf.loc,⊗(X), the set

Y =
⋃

F∈S
suppX(F)

is open in X∗.

Proof. We use the reduction principle to show that Y ∈ Lopen(X∗). This is the case for
the affine schemes (see [5, 2.2]). Suppose X = U ∪V , where U, V are quasicompact open
subsets of X, and the assertion is true for U, V , and U ∩ V . We need to show that it is
true for X itself.

By Corollary 20,

αX,U (S) =
√

( pS|U ) ∈ Lf.loc,⊗(U) and αX,V (S) =
√

( pS|V ) ∈ Lf.loc,⊗(V ).

By assumption,

Y1 =
⋃

F∈
√ pS|U

suppU (F) ∈ Lopen(U∗)

and
Y2 =

⋃

F∈
√ pS|V

suppV (F) ∈ Lopen(V ∗).

By Lemma 23,

Y1 =
⋃

F∈ pS|U

suppU (F) =
⋃

F∈S
suppU (F|U )

and
Y2 =

⋃

F∈ pS|V

suppV (F) =
⋃

F∈S
suppV (F|V ).
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For every F ∈ Qcoh(X) we have suppX(F) = suppU (F|U ) ∪ suppV (F|V ). Therefore,
Y1 = Y ∩ U and Y2 = Y ∩ V . By Lemma 22, Y = Y1 ∪ Y2 ∈ Lopen(X∗). !

Now we are in a position to prove the main result of the paper.

Theorem 25 (Classification; see Garkusha–Prest [5] for affine schemes). Let X be a
quasicompact, quasiseparated scheme. Then the maps

Y
ϕX"−→ S(Y ) = {F ∈ Qcoh(X) | suppX(F) ⊆ Y }

and
S ψX"−→ Y (S) =

⋃

F∈S
suppX(F)

induce bijections between

(1) the set of all subsets of the form Y =
⋃

i∈Ω Yi such that Yi has a quasicompact
open complement X \ Yi for all i ∈ Ω; i.e., the set of all open subsets of X∗, and

(2) the set of all tensor localizing subcategories of finite type in Qcoh(X).

Moreover, S(Y ) =
√

(
⋃

i∈I S(Yi)) =
√

(
⋃

i∈I SDi), where Di = X \ Yi and SDi =
{F ∈ Qcoh(X) | F|Di = 0}.

Proof. By Proposition 21 and Lemma 24, ϕX(Y ) ∈ Lf.loc,⊗(X) and ψX(S) ∈ Lopen(X∗).
We have lattice maps

ϕX : Lopen(X∗) → Lf.loc,⊗(X), ψX : Lf.loc,⊗(X) → Lopen(X∗).

We use the reduction principle to show that ϕXψX = 1 and ψXϕX = 1. This is the case
for the affine schemes (see [5, 2.2]). Suppose X = U ∪ V , where U, V are quasicompact
open subsets of X, and the assertion is true for U, V , and U ∩ V . We need to show that
it is true for X itself.

Consider the following commutative diagram of lattices:

Lopen(V ∗)
βV,U∩V !!

""

Lopen((U ∩ V )∗)

ϕU∩V

""

Lopen(X∗)

$$!!!!
!!

ϕX

""

Lopen(U∗)

$$!!!!

""

Lf.loc,⊗(V ) !!

""

Lf.loc,⊗(U ∩ V )

ψU∩V

""

Lf.loc,⊗(X)
αX,U !!

$$!!!!

ψX

""

Lf.loc,⊗(U)

$$!!!!

""

Lopen(V ∗) !! Lopen((U ∩ V )∗)

Lopen(X∗)
βX,U

!!

$$!!!!
Lopen(U∗)

$$!!!!

By assumption, all vertical arrows except ϕX ,ψX are bijections. Namely, the maps
ϕU ,ψU (respectively, ϕV ,ψV and ϕU∩V ,ψU∩V ) are mutual inverses. Since each hori-
zontal square is pullback (see Corollary 20 and Lemma 22), it follows that ϕX ,ψX are
mutual inverses.

The fact that S(Y ) =
√

(
⋃

i∈I S(Yi)) =
√

(
⋃

i∈I S|Di) is a consequence of Proposi-
tions 1 and 21. The theorem is proved. !

We denote by Dper(X) the derived category of perfect complexes, i.e., the homotopy
category of the complexes of sheaves of OX -modules that are locally quasi-isomorphic to
a bounded complex of free OX -modules of finite type. We say that a thick triangulated
subcategory A ⊂ Dper(X) is a tensor subcategory if for each object E in Dper(X) and
each A in A, the derived tensor product E ⊗L

X A is also in A.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



CLASSIFYING FINITE LOCALIZATIONS OF QUASICOHERENT SHEAVES 449

Let E be a complex of sheaves of OX -modules. The cohomological support of E is the
subspace supphX(E) ⊆ X of all points x ∈ X at which the stalk complex of OX,x-modules
Ex is not acyclic. Thus supphX(E) =

⋃
n∈Z suppX(Hn(E)) is the union of the supports

in the classical sense of the cohomology sheaves of E.
We shall write Lthick(Dper(X)) to denote the lattice of all thick subcategories of

Dper(X).

Theorem 26 (Thomason [6]). Let X be a quasicompact and quasiseparated scheme. The
assignments

T ∈ Lthick(Dper(X))
µ"−→ Y (T ) =

⋃

E∈T
supphX(E)

and
Y ∈ Lopen(X∗)

ν"−→ T (Y ) = {E ∈ Dper(X) | supphX(E) ⊆ Y }
are mutually inverse lattice isomorphisms.

The next result says that there is a one-to-one correspondence between the tensor
thick subcategories of perfect complexes and the tensor localizing subcategories of finite
type of quasicoherent sheaves.

Theorem 27 (see Garkusha–Prest [5] for affine schemes). Let X be a quasicompact and
quasiseparated scheme. The assignments

T ∈ Lthick(Dper(X))
ρ"−→ S = {F ∈ Qcoh(X) | suppX(F) ⊆ Y (T )}

and
S ∈ Lf.loc,⊗(X)

τ"−→ {E ∈ Dper(X) | Hn(E) ∈ S for all n ∈ Z}
are mutually inverse lattice isomorphisms.

Proof. Consider the diagram

Lopen(X∗)

ϕ

%%"""""""""""
ν

&&############

Lf.loc,⊗(X)
τ !! Lthick(Dper(X))
ρ

''

in which ϕ, ν are the lattice maps described in Theorems 25 and 26. Using the fact that
supphX(E) =

⋃
n∈Z suppX(Hn(E)), E ∈ Dper(X), and Theorems 25, 26, we see that

τϕ = ν and ρν = ϕ. Then ρτ = ρνϕ−1 = ϕϕ−1 = 1 and τρ = τϕν−1 = νν−1 = 1. !

§6. The Zariski topology on Sp(X)

We are going to construct two maps

α : X → Sp(X) and β : Sp(X) → X.

For any P ∈ X there is an affine neighborhood U = SpecR of P . Let EP denote
the injective hull of the quotient module R/P . Then EP is an indecomposable injec-
tive R-module. By Proposition 1, ModR can be regarded as the quotient category
Qcoh(X)/SU with SU = Ker j∗U , where jU : U → X is the canonical injection. There-
fore, jU,∗ : Mod R → Qcoh(X) takes injectives to injectives. We set

α(P ) = jU,∗(EP ) ∈ Sp(X).

The definition of α does not depend on the choice of an affine neighborhood U . In-
deed, let P ∈ V = SpecS with S a commutative ring. Then jU,∗(EP ) ∼= jV,∗(EP ) ∼=
jU∩V,∗(EP ), so that these elements represent one and the same element in Sp(X). We
denote it by EP .
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Now we define the map β. Let X =
⋃n

i=1 Ui, where each Ui = SpecRi is an affine
scheme, and let E ∈ Sp(X). Then E has no SUi -torsion for some i ≤ n, because⋂n

i=1 SUi = 0 and E is uniform. Since Mod Ri is equivalent to Qcoh(X)/SUi , E can
be regarded as an indecomposable injective Ri-module. Set P = P (E) to be the sum
of annihilator ideals in Ri of nonzero elements (equivalently, of nonzero submodules) of
E . Since E is uniform, the set of annihilator ideals of nonzero elements of E is closed
under finite sums. It is easy to check (see [25, 9.2]) that P (E) is a prime ideal. By
construction, P (E) ∈ Ui. Clearly, the definition of P (E) does not depend on the choice
of Ui and P (EP ) = P . Putting β(E) = P (E), we see that βα = 1X . In particular, α is
an embedding of X into Sp(X). We shall view this embedding as identification.

Given a commutative coherent ring R and an indecomposable injective R-module
E ∈ Sp R, Prest [25, 9.6] observed that E is elementarily equivalent to EP (E) in the
first order language of modules. Translated from model-theoretic idioms to algebraic
language, this fact says that every localizing subcategory of finite type S ∈ Lf.loc(ModR)
is cogenerated by prime ideals. More precisely, there is a set D ⊂ SpecR such that
S ∈ S if and only if HomR(S, EP ) = 0 for all P ∈ D. This fact was generalized to all
commutative rings by Garkusha–Prest [5]. Moreover, D = SpecR \

⋃
S∈S suppR(S).

Proposition 28. Let E ∈ Sp(X), and let P (E) ∈ X be the point defined above. Then
E and EP (E) are topologically indistinguishable in Spfl(X). In other words, for every
S ∈ Lf.loc(X), the sheaf E has no S-torsion if and only if EP (E) has no S-torsion.

Proof. Let U = SpecR ⊂ X be such that E has no SU -torsion. Then P (E) ∈ U and
E and EP (E) have no SU -torsion. These can also be viewed as indecomposable injective
R-modules, because Qcoh(X)/SU

∼= Mod R by Proposition 1. Denote S ′ = αX,U (S) ∈
Lf.loc(ModR). Then E has no S-torsion in Qcoh(X) if and only if E has no S ′-torsion in
Mod R. Now our claim follows from [5, 3.5]. !

Corollary 29. If S ∈ Lf.loc,⊗(X), then O(S) ∩ X = Y (S), where

Y (S) =
⋃

F∈S
suppX(F) ∈ Lopen(X∗).

Proof. If E ∈ O(S) and U = SpecR ⊂ X is such that E has no SU -torsion, then
P (E) ∈ U and EP (E) ∈ O(S) by Proposition 28. Let S ′ = αX,U (S) ∈ Lf.loc(ModR).
We have Y (S ′) :=

⋃
S∈S suppR(S) ⊂ Y (S). By the proof of Proposition 28, EP (E) has

S ′-torsion. Then there is a finitely generated ideal I ⊂ R such that R/I ∈ S ′ and
HomR(R/I, EP (E)) ̸= 0. From [5, 3.4] it follows that P (E) ∈ Y (S ′), whence O(S) ∩ X ⊂
Y (S).

Conversely, if P ∈ Y (S) ∩ U , then EP has S ′-torsion by [5, 3.4]. Therefore, EP ∈
O(S ′) ⊂ O(S). It follows that O(S) ∩ X ⊃ Y (S). !

Proposition 30 (cf. [5, 3.7]). Let X be a quasicompact and quasiseparated scheme. Then
the maps

Y ∈ Lopen(X∗)
σ"→ OY = {E ∈ Sp(X) | P (E) ∈ Y }

and
O ∈ Lopen(Spfl,⊗(X))

ε"→ YO = {P (E) ∈ X∗ | E ∈ O} = O ∩ X∗

induce a one-to-one correspondence between the lattices of open sets of X∗ and those of
Spfl,⊗(X).

Proof. Let S(Y ) = {F ∈ Qcoh(X) | suppX(F) ⊆ Y } ∈ Lf.loc,⊗(X); then Y = Y (S(Y ))
by the classification theorem, and O(S(Y )) ∩ X = Y by Corollary 29. It follows that
O(S(Y )) ⊆ OY . On the other hand, if E ∈ OY , then the proof of Corollary 29 shows that
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EP (E) ∈ O(S(Y )). Proposition 28 implies that E ∈ O(S(Y )), whence O(S(Y )) ⊇ OY .
We see that OY = O(S(Y )) ∈ Lopen(Spfl,⊗(X)).

Let O ∈ Lopen(Spfl,⊗(X)). By Theorem 19, there is a unique S ∈ Lf.loc,⊗(X) such
that O = O(S). By Corollary 29, O ∩ X = Y (S) = YO, so that YO ∈ Lopen(X∗). Now
it is easy to verify that YOY = Y and OYO = O. !

We note that a subset Y ⊂ X∗ is open and quasicompact in X∗ if and only if X \ Y
is an open and quasicompact subset in X.

Proposition 31. An open subset O ∈ Lopen(Spfl,⊗(X)) is quasicompact if and only if it
is of the form O = O(S(Y )), where Y is an open and quasicompact subset in X∗. The
space Spfl,⊗(X) is quasicompact, the quasicompact open subsets are closed under finite
intersections and form an open basis, and every nonempty irreducible closed subset has
a generic point.

Proof. Let O ∈ Lopen(Spfl,⊗(X)) be quasicompact. By Theorem 19, there is a unique
S ∈ Lf.loc,⊗(X) such that O = O(S). By the classification theorem, S = S(Y ) =√

(
⋃

I S(Yi)), where Y =
⋃

F∈S suppX(F) ∈ Lopen(X∗), each Yi is such that X \ Yi

is an open and quasicompact subset of X, and Y =
⋃

I Yi. Then O =
⋃

I O(S(Yi)).
Since O is quasicompact, there is a finite subset J ⊂ I such that O =

⋃
J O(S(Yi)) =

O(
√

(
⋃

J S(Yi))) = O(S(
⋃

J Yi)). Since X is spectral, X \ (
⋃

J Yi) =
⋂

J (X \ Yi) is an
open and quasicompact subset in X.

Conversely, let O = O(S(Y )), where X \Y is an open and quasicompact subset in X,
and let O =

⋃
I Oi with Oi ∈ Lopen(Spfl,⊗(X)). By Theorem 19, there are unique Si ∈

Lf.loc,⊗(X) such that Oi = O(Si) and S(Y ) =
√

(
⋃

I Si). We set Yi =
⋃

F∈Si
suppX(F)

for each i ∈ I. By Lemma 23 and the classification theorem, we have Y =
⋃

I Yi. Since
Y is quasicompact in X∗, there is a finite subset J ⊂ I such that Y =

⋃
J Yi. It follows

that S(Y ) =
√

(
⋃

J Si) and O =
⋃

J Oi.
The space Spfl,⊗(X) is quasicompact because it equals O(S(X∗)) and X∗ is quasi-

compact. The quasicompact open subsets are closed under finite intersections, because
O(S(Y1)) ∩ O(S(Y2)) = O(S(Y1 ∩ Y2)) with Y1, Y2 open and quasicompact in X∗. Since
O(S(Y )) =

⋃
I O(S(Yi)), where Y =

⋃
I Yi and each Yi is an open and quasicompact

subset in X∗, the quasicompact open subsets also form an open basis.
Finally, from Corollary 29 it follows that a subset U of Spfl,⊗(X) is closed and irre-

ducible if and only if so is pU := U ∩ X∗. Since X∗ is spectral, pU has a generic point P .
The point EP ∈ U is generic. !

In general, the space Spfl,⊗(X) is not T0 (see [3]); nevertheless, we give the same
definition for (Spfl,⊗(X))∗ as for spectral spaces and denote this space by Spzar(X).
By definition, Q ∈ Lopen(Spzar(X)) if and only if Q =

⋃
I Qi with each Qi having a

quasicompact and open complement in Spfl,⊗(X). The topology on Spzar(X) will also
be referred to as the Zariski topology. Notice that the Zariski topology on Spzar(SpecR),
where R is coherent, coincides with the Zariski topology on the injective spectrum Sp R
in the sense of Prest [25].

Theorem 32 (cf. Garkusha–Prest [3, 4, 5]). Let X be a quasicompact and quasiseparated
scheme. The space X is dense and is a retract in Spzar(X). A left inverse to the
embedding X ↪→ Spzar(X) takes E ∈ Spzar(X) to P (E) ∈ X. Moreover, Spzar(X) is
quasicompact, the basic open subsets Q, where Sp(X) \ Q is a quasicompact and open
subset in Spfl,⊗(X), are quasicompact, the intersection of two quasicompact open subsets
is quasicompact, and every nonempty irreducible closed subset has a generic point.

Proof. Let Q ∈ Lopen(Spzar(X)) be such that O := Sp(X) \ Q is a quasicompact and
open subset in Spfl,⊗(X), and let Y = O ∩ X and D = X \ Y = Q ∩ X. Since Y is a
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quasicompact subset in X∗, we see that D is a quasicompact subset in X. Observe that
O = O(SD), where SD = {F ∈ Qcoh(X) | F|D = 0}. Clearly, X is dense in Spzar(X),
and α : X → Spzar(X) is a continuous map.

The map β : Spzar(X) → X, E "→ P (E), is left inverse to α. Obviously, β is continuous.
Thus, X is a retract of Spzar(X).

We show that the basic open set Q is quasicompact. Let Q =
⋃

i∈Ω Qi, whence each
Sp(X) \ Qi is a quasicompact and open subset in Spfl,⊗(X), and let Di := Qi ∩X. Since
D is quasicompact, we have D =

⋃
i∈Ω0

Di for some finite subset Ω0 ⊂ Ω.
Assume E ∈ Q\

⋃
i∈Ω0

Qi. By Proposition 30, P (E) ∈ Q∩X = D =
⋃

i∈Ω0
Di. Propo-

sition 30 implies that E ∈ Qi0 for some i0 ∈ Ω0, a contradiction. So, Q is quasicompact.
Also, it follows that the intersection of two quasicompact open subsets is quasicompact
and that Spzar(X) is quasicompact.

Finally, from Corollary 29 it follows that a subset U of Spzar(X) is closed and irre-
ducible if and only if so is pU := U ∩ X. Since X is spectral, pU has a generic point P .
The point EP ∈ U is generic. !

Corollary 33. Let X be a quasicompact and quasiseparated scheme. Then

Spzar(X) = (Spfl,⊗(X))∗ and Spfl,⊗(X) = (Spzar(X))∗.

Though the space Spzar(X) is strictly larger than X in general (see [3]), their lattices
of open subsets are isomorphic. More precisely, Proposition 30 shows that the maps

D ∈ Lopen(X) "→ QD = {E ∈ Sp(X) | P (E) ∈ D}
and

Q ∈ Lopen(Spzar(X)) "→ DQ = {P (E) ∈ X | E ∈ Q} = Q ∩ X

induce a one-to-one correspondence between the lattices of open sets of X and those of
Spzar(X). Moreover, sheaves do not see any difference between X and Spzar(X). Namely,
the following is true.

Proposition 34. Let X be a quasicompact and quasiseparated scheme. Then the maps
of topological spaces α : X → Spzar(X) and β : Spzar(X) → X induce isomorphisms

β∗ : Sh(Spzar(X))
∼=−→ Sh(X), α∗ : Sh(X)

∼=−→ Sh(Spzar(X))

of categories of sheaves.

Proof. Since βα = 1, it follows that β∗α∗ = 1. By definition, β∗(F)(D) = F(QD) for
any F ∈ Sh(Spzar(X)); next, D ∈ Lopen(X) and α∗(G)(Q) = G(DQ) for any G ∈ Sh(X)
and Q ∈ Lopen(Spzar(X)). We have

α∗β∗(F)(Q) = β∗(F)(DQ) = F(QDQ) = F(Q).

Thus, α∗β∗ = 1, so that α∗,β∗ are mutually inverse isomorphisms. !

Let OSpzar(X) be the sheaf of commutative rings α∗(OX); clearly, (Spzar(X), OSpzar(X))
is a locally ringed space. If we set α♯ : OSpzar(X) → α∗OX and β♯ : OX → β∗OSpzar(X) to
be the identity maps, then the map of locally ringed spaces

(α,α♯) : (X, OX) → (Spzar(X), OSpzar(X))

is right inverse to
(β,β♯) : (Spzar(X), OSpzar(X)) → (X, OX).

Observe that it is not a scheme in general, because Spzar(X) is not a T0-space. Proposi-
tion 34 implies that the categories of the OSpzar(X)-modules and OX -modules are natu-
rally isomorphic.
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§7. The prime spectrum of an ideal lattice

Inspired by a recent paper of Balmer (see [24]), Buan, Krause, and Solberg [2] intro-
duced the notion of an ideal lattice and studied its prime ideal spectrum. Applications
arise in Abelian or triangulated tensor categories.

Definition (Buan, Krause, and Solberg [2]). An ideal lattice is a partially ordered set
L = (L,≤) together with an associative multiplication L × L → L with the following
properties.

(L1) The poset L is a complete lattice; that is,

sup A =
∨

a∈A

a and inf A =
∧

a∈A

a

exist in L for every subset A ⊆ L.
(L2) The lattice L is compactly generated ; that is, every element in L is the supremum

of a set of compact elements. (An element a ∈ L is compact if for all A ⊆ L with
a ≤ sup A there exists some finite A′ ⊆ A with a ≤ sup A′.)

(L3) For all a, b, c ∈ L we have

a(b ∨ c) = ab ∨ ac and (a ∨ b)c = ac ∨ bc.

(L4) The element 1 = supL is compact, and 1a = a = a1 for all a ∈ L.
(L5) The product of two compact elements is again compact.

A morphism ϕ : L → L′ of ideal lattices is a map satisfying

ϕ
( ∨

a∈A

a
)

=
∨

a∈A

ϕ(a) for A ⊆ L,

ϕ(1) = 1 and ϕ(ab) = ϕ(a)ϕ(b) for a, b ∈ L.

Let L be an ideal lattice. Following [2], we define the spectrum of prime elements in
L. An element p ̸= 1 in L is prime if ab ≤ p implies a ≤ p or b ≤ p for all a, b ∈ L. We
denote by SpecL the set of prime elements in L and, for each a ∈ L, define

V (a) = {p ∈ SpecL | a ≤ p} and D(a) = {p ∈ SpecL | a ̸≤ p}.

The subsets of SpecL of the form V (a) are closed under forming arbitrary intersections
and finite unions. More precisely,

V
( ∨

i∈Ω

ai

)
=

⋂

i∈Ω

V (ai) and V (ab) = V (a) ∪ V (b).

Thus, we obtain the Zariski topology on SpecL by declaring a subset of SpecL to be
closed if it is of the form V (a) for some a ∈ L. The set SpecL endowed with this
topology is called the prime spectrum of L. Note that the sets of the form D(a) with
compact a ∈ L form a basis of open sets. The prime spectrum SpecL of an ideal lattice
L is spectral [2, 2.5].

There is a close relationship between spectral spaces and ideal lattices. Given a topo-
logical space X, we denote by Lopen(X) the lattice of open subsets of X and consider
the multiplication map

Lopen(X) × Lopen(X) → Lopen(X), (U, V ) "→ UV = U ∩ V.

The lattice Lopen(X) is complete.
The following result, which appeared in [2], is part of the Stone duality theorem (see,

e.g., [26]).
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Proposition 35. Let X be a spectral space. Then Lopen(X) is an ideal lattice. Moreover,
the map

X → SpecLopen(X), x "→ X \ {x},

is a homeomorphism.

The next statement is deduced from the classification theorem.

Proposition 36. Let X be a quasicompact and quasiseparated scheme. Then Lf.loc,⊗(X)
is an ideal lattice.

Proof. The space X is spectral. Thus, X∗ is spectral, and Lopen(X∗) is an ideal lattice
by Proposition 35. By the classification theorem, we have the isomorphism Lopen(X∗) ∼=
Lf.loc,⊗(X). Therefore, Lf.loc,⊗(X) is an ideal lattice. !

Proposition 31 implies that S ∈ Lf.loc,⊗(X) is compact if and only if S = S(Y ) with
Y ∈ Lopen(X∗) compact.

Corollary 37. Let X be a quasicompact and quasiseparated scheme. The points of
SpecLf.loc,⊗(X) are the ∩-irreducible tensor localizing subcategories of finite type in
Qcoh(X), and the map

f : X∗ → SpecLf.loc,⊗(X), P "→ SP = {F ∈ Qcoh(X) | FP = 0}
is a homeomorphism of spaces.

Proof. This is a consequence of the classification theorem and Propositions 35 and 36. !

§8. Reconstructing quasicompact, quasiseparated schemes

Let X be a quasicompact and quasiseparated scheme. We write Spec(Qcoh(X)) :=
(SpecLf.loc,⊗(X))∗ and supp(F) := {P ∈ Spec(Qcoh(X)) | F ̸∈ P} for F ∈ Qcoh(X).
From Corollary 37 it follows that

suppX(F) = f−1(supp(F)).

Following [24, 2], we define a structure sheaf on Spec(Qcoh(X)) as follows. For an
open subset U ⊆ Spec(Qcoh(X)), we put

SU =
{
F ∈ Qcoh(X) | supp(F) ∩ U = ∅

}

and observe that SU = {F | FP = 0 for all P ∈ f−1(U)} is a tensor localizing subcate-
gory. We obtain a presheaf of rings on Spec(Qcoh(X)):

U "→ EndQcoh(X)/SU
(OX).

If V ⊆ U are open subsets, then the restriction map

EndQcoh(X)/SU
(OX) → EndQcoh(X)/SV

(OX)

is induced by the quotient functor Qcoh(X)/SU → Qcoh(X)/SV . The sheafification
is called the structure sheaf of Qcoh(X) and is denoted by OQcoh(X). Next, let P ∈
Spec(Qcoh(X)), and let P := f−1(P). There is an affine neighborhood SpecR of P . We
have

OQcoh(X),P ∼= lim−→
P∈V

EndMod R/SV
(R) ∼= RP

∼= OX,P .

The second isomorphism follows from [5, §8]. We see that each stalk OQcoh(X),P is a
commutative ring. We claim that OQcoh(X) is a sheaf of commutative rings. Indeed,
let a, b ∈ OQcoh(X)(U), where U ∈ Lopen(Spec(Qcoh(X))). For all P ∈ U we have
ϱU

P(ab) = ϱU
P(ba), where ϱU

P : OQcoh(X)(U) → OQcoh(X),P is the natural homomorphism.
Since OQcoh(X) is a sheaf, it follows that ab = ba.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



CLASSIFYING FINITE LOCALIZATIONS OF QUASICOHERENT SHEAVES 455

The next theorem says that the Abelian category Qcoh(X) contains all the necessary
information to reconstruct the scheme (X, OX).

Theorem 38 (Reconstruction; cf. Rosenberg [11]). Let X be a quasicompact and
quasiseparated scheme. The map of Corollary 37 induces an isomorphism of ringed
spaces

f : (X, OX)
∼−→ (Spec(Qcoh(X)), OQcoh(X)).

Proof. The proof is similar to that of [2, 8.3; 9.4]. Fix an open subset U ⊆ Spec(Qcoh(X))
and consider the functor

F : Qcoh(X)
(−)|f−1(U)−−−−−−−→ Qcoh f−1(U).

We claim that F annihilates SU . In fact, F ∈ SU implies f−1(supp(F))∩f−1(U) = ∅, and
therefore suppX(F)∩ f−1(U) = ∅. Thus, FP = 0 for all P ∈ f−1(U), whence F (F) = 0.
It follows that F factors through Qcoh(X)/SU and induces a map EndQcoh(X)/SU

(OX) →
OX(f−1(U)), which extends to a map OQcoh(X)(U) → OX(f−1(U)). This yields a
morphism of sheaves f ♯ : OQcoh(X) → f∗OX .

By the above, f ♯ induces an isomorphism f ♯
P : OQcoh(X),f(P ) → OX,P at each point

P ∈ X. We conclude that f ♯
P is an isomorphism. It follows that f is an isomorphism

of ringed spaces if the map f : X → Spec(Qcoh(X)) is a homeomorphism. This last
condition is a consequence of Propositions 35–36 and Corollary 37. !

§9. Coherent schemes

We end the paper with introducing coherent schemes. These lie between Noetherian
and quasicompact, quasiseparated schemes and generalize commutative coherent rings.
We want to obtain classification and reconstruction results for such schemes.

Definition. A scheme X is locally coherent if it can be covered by open affine sub-
sets SpecRi, where each Ri is a coherent ring. X is coherent if it is locally coherent,
quasicompact, and quasiseparated.

A trivial example of a coherent scheme is SpecR with R a coherent ring. There are
many coherent rings. For instance, let R be a Noetherian ring, and let X be any (possibly
infinite) set of commuting indeterminates. Then the polynomial ring R[X] is coherent.
As a note of caution, however, we should mention that, in general, the coherence of a
ring R does not imply that of R[x] for one variable x. In fact, if R is a countable product
of the polynomial ring Q[y, z], the ring R is coherent, but R[x] is not coherent by a result
of Soublin [27]. For any finitely generated ideal I of a coherent ring R, the quotient ring
R/I is coherent.

If R is a coherent ring such that the polynomial ring R[x1, . . . , xn] is coherent, then
the projective n-space Pn

R = Proj R[x0, . . . , xn] over R is a coherent scheme. Indeed, Pn
R is

quasicompact and quasiseparated by [4, 5.1] and is covered by SpecR[x0/xi, . . . , xn/xi]
with each R[x0/xi, . . . , xn/xi] coherent by assumption.

Below we shall need the following result.

Theorem 39 (Herzog [12], Krause [13]). Let C be a locally coherent Grothendieck cat-
egory. There is a bijective correspondence between the Serre subcategories P of coh C
and the localizing subcategories S of C of finite type. This correspondence is given by the
functions

P "−→ P⃗ = {lim−→Ci | Ci ∈ P},

S "−→ S ∩ coh C,

which are mutually inverse.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



456 G. GARKUSHA

Proposition 40. Let X be a quasicompact and quasiseparated scheme. Then X is a
coherent scheme if and only if coh(X) is an Abelian category, or equivalently, Qcoh(X)
is a locally coherent Grothendieck category.

Proof. Suppose X is a coherent scheme. We must show that every finitely generated
subobject F of a finitely presented object G is finitely presented. From [15, I.6.9.10]
and Proposition 7 it follows that F ∈ fg(Qcoh(X)) if and only if it is locally finitely
generated.

For any P ∈ X, there is an open subset U of P and an exact sequence

On
U → Om

U → G|U → 0.

By assumption, there is an affine neighborhood SpecR of P with R a coherent ring. Let
f ∈ R be such that P ∈ D(f) ⊆ SpecR ∩U , where D(f) = {Q ∈ SpecR | f /∈ Q}. Since
OX(D(f)) = OR(D(f)) = Rf , we get an exact sequence

On
Rf

→ Om
Rf

→ G|D(f) → 0.

If R is a coherent ring, then so is Rf .
There is an open neighborhood V of P and an epimorphism Ok

V # F|V , k ∈ N.
Without loss of generality, we may assume that V = D(f) for some f ∈ R. It follows
that F|D(f) ⊂ G|D(f) is a finitely presented ORf -module, because Rf is a coherent ring.
Therefore, F is locally finitely presented, whence F ∈ fp(Qcoh(X)).

Now suppose that Qcoh(X) is a locally coherent Grothendieck category. Given P ∈ X
and an affine neighborhood SpecR of P , we want to show that R is a coherent ring. The
localizing subcategory S = {F | F|Spec R = 0} is of finite type; therefore, Qcoh(X)/S is
a locally coherent Grothendieck category. From Proposition 1 it follows that Mod R ∼=
Qcoh(SpecR) ∼= Qcoh(X)/S is a locally coherent Grothendieck category, whence R is
coherent. !

Theorem 41 (Classification). Let X be a coherent scheme. Then the maps

V "→ S = {F ∈ coh(X) | suppX(F) ⊆ V }

and

S "→ V =
⋃

F∈S
suppX(F)

induce a bijection between

(1) the set of all subsets of the form V =
⋃

i∈Ω Vi with quasicompact open complement
X \ Vi for all i ∈ Ω, and

(2) the set of all tensor Serre subcategories in coh(X).

Theorem 42. Let X be a coherent scheme. The assignments

T "→ S =
{

F ∈ coh(X)
∣∣ suppX(F) ⊆

⋃

n∈Z,E∈T
suppX(Hn(E))

}

and

S "→ {E ∈ Dper(X) | Hn(E) ∈ S for all n ∈ Z}
induce a bijection between

(1) the set of all tensor thick subcategories of Dper(X), and
(2) the set of all tensor Serre subcategories in coh(X).

Let X be a coherent scheme. The ringed space (Spec(coh(X)), Ocoh(X)) is introduced
in the same way as (Spec(Qcoh(X)), OQcoh(X)).
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Theorem (Reconstruction). Let X be a coherent scheme. Then there is a natural iso-
morphism of ringed spaces

f : (X, OX)
∼−→ (Spec(coh(X)), Ocoh(X)).

The above theorems are direct consequences of the corresponding theorems for qua-
sicompact, quasiseparated schemes and Theorem 39. The interested reader can check
these theorems without difficulty.
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