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ABSTRACT. Given a perfect field of exponential characteristic e, the Cor-, K⊕0 -, K0- and K0-
motives of smooth algebraic varieties with Z[1/e]-coefficients are shown to be locally quasi-
isomorphic to each other. Moreover, it is proved that their triangulated categories of motives
with Z[1/e]-coefficients are equivalent. An application is given for the bivariant motivic spectral
sequence.

1. INTRODUCTION

The purpose of the paper is to compare motives of smooth algebraic varieties correspond-
ing to various categories of correspondences. We also investigate relations between associated
triangulated categories of motives. We work in the framework of symmetric monoidal strict
V -categories of correspondences defined in [1]. They are just an abstraction of basic properties
of the category of finite correspondences Cor.

Given a functor f : A →B between two such categories of correspondences, we prove in
Theorem 3.1 that whenever the base field k is perfect of exponential characteristic e and f is
such that the induced morphisms of complexes of Nisnevich sheaves

f∗ : ZA (q)[1/e]→ ZB(q)[1/e], q> 0,

are quasi-isomorphisms, then for every k-smooth algebraic variety X the morphisms of twisted
motives of X with Z[1/e]-coefficients

MA (X)(q)⊗Z[1/e]→MB(X)(q)⊗Z[1/e]

are quasi-isomorphisms. Furthermore, we prove in Theorem 3.1 that the induced functors be-
tween triangulated categories of motives

DMe f f
A (k)[1/e]→ DMe f f

B (k)[1/e], DMA (k)[1/e]→ DMB(k)[1/e]

are equivalences.
Using Theorem 3.1 together with theorems of Suslin [8] and Walker [11] (as well as a result

of [4]) comparing motivic complexes associated to the categories of correspondences Cor, K⊕0 ,
K0 and K0, we identify their motives of smooth algebraic varieties with Z[1/e]-coefficients.
Moreover, their triangulated categories of motives with Z[1/e]-coefficients are shown to be
equivalent (see Theorem 3.5).

Another application is given in Theorem 3.8 for the bivariant motivic spectral sequence in the
sense of [2].

Throughout the paper we denote by Sm/k the category of smooth separated schemes of finite
type over the base field k.
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2. PRELIMINARIES

Throughout this paper we work with symmetric monoidal strict V -categories of correspon-
dences in the sense of [1]. The categories Cor, K⊕0 , K0, K0 are examples of such categories
(see [3, 4, 8, 9, 11] for more details).

Given a symmetric monoidal strict V -category of correspondences A , it is standard to define
the category of A -motives DMe f f

A (k). By definition (see [1]), it is a full subcategory of the
derived category of Nisnevich sheaves with A -correspondences consisting of those complexes
whose cohomology sheaves are A1-invariant. As usual, the stabilization of DMe f f

A (k) in the Gm-
direction leads to the category DMA (k) (see [1] for details). If R=Z[S−1] is the ring of fractions
of Z with respect to a multiplicatively closed set of intergers S, then A ⊗R, whose objects are
those of A but morphisms are tensored with R, is a symmetric monoidal strict V -category of
correspondences (see [1]).

Definition 2.1. Following [10, 9, 8] the A -motive of a smooth algebraic variety X ∈ Sm/k,
denoted by MA (X), is the normalized complex of Nisnevich A -sheaves associated with the
simplicial sheaf

n 7−→A (−×∆
n,X)nis, ∆

n = Speck[t0, . . . , tn]/(t0 + · · ·+ tn−1).

In what follows we identify simplicial (pre-)sheaves with their normalized complexes by
using the Dold–Kan correspondence. Also, if necessary we associate Eilenberg–Mac Lane S1-
spectra to (pre-)sheaves of simplicial Abelian groups. The reader will always be able to recover
any of these associations/identifications.

We have a motivic bispectrum

MGm
A (X) := (EM(MA (X)),EM(MA (X ∧G∧1

m )),EM(MA (X ∧G∧2
m )), . . .),

where each entry EM(MA (X ∧G∧q
m ), q> 0, is the Eilenberg–Mac Lane S1-spectrum associated

with the simplicial A -sheaf n 7−→A (−×∆n,X ∧G∧q
m )nis. MA (X ∧G∧q

m ) will also be denoted
by MA (X)(q). In what follows we denote by ZA (q) the complex MA (pt)(q)[−q], pt := Speck
(the shift is cohomological).

Definition 2.2. Following terminology of [2, Section 6] the bivariant A -motivic cohomology
groups are defined by

H p,q
A (X ,Y ) := H p

nis(X ,A (−×∆
•,Y ∧G∧q

m )nis[−q]),

where the right hand side stands for Nisnevich hypercohomology groups of X with coeffitients in
A (−×∆•,Y ∧G∧n

m )nis[−q] (the shift is cohomological). If A = Cor, we shall write H p,q
M (X ,Y )

to denote H p,q
A (X ,Y ). We also call H∗,∗M (X ,Y ) the bivariant motivic cohomology groups.

Following [4] we say that the bigraded presheaves H∗,∗A (−,Y ) satisfy the cancellation prop-
erty if all maps

β
p,q : H p,q

A (X ,Y )→ H p+1,q+1
A (X ∧Gm,Y )

induced by the structure maps of the spectrum MGm
A (Y ) are isomorphisms.

Given Y ∈ Sm/k, denote by

MGm
A (Y ) f := (EM(MA (Y )) f ,EM(MA (Y ∧G∧1

m )) f ,EM(MA (Y ∧G∧2
m )) f , . . .),

where each EM(MA (Y ∧G∧n
m )) f is a fibrant replacement of EM(MA (Y ∧G∧n

m )) in the injective
local stable model structure of motivic S1-spectra. It is worth to note that each EM(MA (Y ∧
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G∧n
m )) f can be constructed within the category of chain complexes of Nisnevich A -sheaves and

then taking the corresponding S1-spectrum (this can be shown similar to [2, 5.12]).

Lemma 2.3 (see [1]). The bigraded presheaves H∗,∗A (−,Y ) satisfy the cancellation property if
and only if MGm

A (Y ) f is motivically fibrant as an ordinary motivic bispectrum.

In what follows we shall write SH(k) to denote the stable homotopy category of motivic
bispectra.

Corollary 2.4 (see [1]). The presheaves H∗,∗A (−,Y ) are represented in SH(k) by the bispectrum
MGm

A (Y ) f . Precisely,

H p,q
A (X ,Y ) = SH(k)(X+,Sp,q∧MGm

A (Y ) f ), p,q ∈ Z,

where Sp,q = Sp−q∧G∧q
m .

3. MOTIVIC COMPLEXES AND TRIANGULATED CATEGORIES OF MOTIVES

Throughout this section we assume f : A →B to be a functor of symmetric monoidal strict
V -categories of correspondences satisfying the cancellation property. We always assume that f
is the identity map on objects.

Theorem 3.1. Suppose k is a perfect field of exponential characteristic e. If the morphism of
complexes of Nisnevich sheaves

f∗ : ZA (q)[1/e] = ZA⊗Z[1/e](q)→ ZB(q)[1/e] = ZB⊗Z[1/e](q), q> 0,

is a quasi-isomorphism, then for every X ∈ Sm/k the morphism of twisted motives of X with
Z[1/e]-coefficients

MA (X)(q)⊗Z[1/e]→MB(X)(q)⊗Z[1/e]
is a quasi-isomorphism. Furthermore, the induced functor

DMe f f
A (k)[1/e]→ DMe f f

B (k)[1/e]

is an equivalence of triangulated categories.

Proof. By Lemma 2.3 the bispectra MGm
A⊗Z[1/e](X) f and MGm

B⊗Z[1/e](X) f are motivically fibrant.

Note that MGm
A⊗Z[1/e](X) f and MGm

B⊗Z[1/e](|X) f are fibrant replacements of the bispectra

H(A ⊗Z[1/e])(X) := (EM(A (−,X)⊗Z[1/e]),EM(A (−,X ∧G∧1
m )⊗Z[1/e]), . . .)

and

H(B⊗Z[1/e])(X) := (EM(B(−,X)⊗Z[1/e]),EM(B(−,X ∧G∧1
m )⊗Z[1/e]), . . .)

respectively, where “EM” stands for the Eilenberg–Mac Lane (symmetric) S1-spectrum.
By our assumption, the natural morphism of bispectra

MGm
A⊗Z[1/e](pt) f →MGm

B⊗Z[1/e](pt) f (1)

induced by f is a level local Nisnevich equivalence. Hence it is a level schemewise equivalence,
because both bispectra are motivically fibrant. Since H(A ⊗Z[1/e])(X)→MGm

A⊗Z[1/e](X) f and

H(B⊗Z[1/e])(X)→MGm
B⊗Z[1/e](X) f are level motivic equivalences, then H(A ⊗Z[1/e])(pt)→

H(B⊗Z[1/e])(pt) is a level motivic equivalence of bispectra.
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Consider a commutative diagram of bispectra

H(A ⊗Z[1/e])(pt)∧X+

��

// H(A ⊗Z[1/e])(X) //

��

MGm
A⊗Z[1/e](X) f

��

H(B⊗Z[1/e])(pt)∧X+
// H(B⊗Z[1/e])(X) // MGm

B⊗Z[1/e](X) f

Since H(A ⊗Z[1/e])(pt)→ H(B⊗Z[1/e])(pt) is a level motivic equivalence of bispectra,
then so is the left vertical arrow of the diagram by [6, 12.7]. By the proof of generalized
Röndigs–Østvær’s theorem [1, 5.3] the left horizontal arrows are stable motivic equivalences,
and hence so is the middle vertical map. Since the right horizontal arrows are stable motivic
equivalences, then so is the right vertical map. But it is a stable motivic equivalence between
motivically fibrant bispectra, and so it is a level schemewise equivalence.

We see that each morphism of S1-spectra

EM(MA⊗Z[1/e](X)(q)) f → EM(MB⊗Z[1/e](X)(q)) f

is a schemewise stable equivalence. But every such arrow is a local replacement of the mor-
phism EM(MA⊗Z[1/e](X)(q))→ EM(MB⊗Z[1/e](X)(q)). It follows that the latter arrow is a
local equivalence, and hence

MA (X)(q)⊗Z[1/e]→MB(X)(q)⊗Z[1/e]

is a quasi-isomorphism of complexes of Nisnevich sheaves.
Now to prove that the induced functor

f : DMe f f
A (k)[1/e]→ DMe f f

B (k)[1/e]

is an equivalence of triangulated categories, we use a standard argument for compactly generated
triangulated categories. Precisely, it suffices to show that the image of compact generators of the
left category is a set of compact generators of the right category and that Hom-sets between them
on the right and on the left are isomorphic. The families {MA (X)⊗Z[1/e][n] | X ∈ Sm/k,n ∈
Z}, {MB(X)⊗Z[1/e][n] | X ∈ Sm/k,n ∈ Z} are sets of compact generators for DMe f f

A (k)[1/e]
and DMe f f

B (k)[1/e] respectively.
The functor f maps one family to another by construction. Also, Hom-sets between compact

generators from the first (respectively second) family is given by bivariant A -motivic coho-
mology H∗,∗A (X ,Y )⊗Z[1/e] (respectively H∗,∗B (X ,Y )⊗Z[1/e]). By the first part of the proof F
induces a schemewise stable equivalence of bispectra

MGm
A⊗Z[1/e](X) f →MGm

B⊗Z[1/e](X) f .

It follows from Corollary 2.4 that the homomorphism

f : H∗,∗A (X ,Y )⊗Z[1/e]→ H∗,∗B (X ,Y )⊗Z[1/e]

is an isomorphism, as was to be shown. �

The following statement is proved similar to the second part of Theorem 3.1.

Corollary 3.2. Under the assumptions of Theorem 3.1 the canonical functor

DMA (k)[1/e]→ DMB(k)[1/e]

is an equivalence of triangulated categories.
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The proof of Theorem 3.1 also allows to compare motives of certain smooth algebraic vari-
eties without inverting the exponential characteristic of the base field. This is possible whenever
U ∈ Sm/k is dualizable in SH(k). For instance, it is shown in [7, Appendix] that any smooth
projective variety U ∈ Sm/k is dualizable in SH(k) over any field k. Namely, the following
result is true:

Theorem 3.3. Suppose k is any field and U ∈ Sm/k is dualizable in SH(k) (e.g. U is a smooth
projective variety). If the morphism of complexes of Nisnevich sheaves f∗ :ZA (q)→ZB(q), q>
0, is a quasi-isomorphism, then so is the morphism of twisted motives MA (U)(q)→MB(U)(q).

Proof. Since U is dualizable in SH(k), the proof of generalized Röndigs–Østvær’s theorem [1,
5.3] shows that H(A )(pt)∧U+→ H(A )(U) and H(B)(pt)∧U+→ H(B)(U) are stable mo-
tivic equivalences. It remains to repeat the proof of the first part of Theorem 3.1 word for
word. �

Corollary 3.4. Suppose k is any field and F is a family of smooth algebraic varieties which
are dualizable in SH(k). Also, suppose that the morphism of complexes of Nisnevich sheaves
f∗ : ZA (q)→ ZB(q), q > 0, is a quasi-isomorphism. Let DMe f f

A (k)〈F 〉 and DMe f f
B (k)〈F 〉

(respectively DMA (k)〈F 〉 and DMB(k)〈F 〉) be full compactly generated triangulated subcat-
egories of DMe f f

A (k) and DMe f f
B (k) (respectively DMA (k) and DMB(k)) generated by the mo-

tives {MA (U)[n] |U ∈F ,n ∈ Z} and {MB(U)[n] |U ∈F ,n ∈ Z} (respectively {MGm
A (U)⊗

G∧q
m [n] | U ∈ F ,n,q ∈ Z} and {MGm

B (U)⊗G∧q
m [n] | U ∈ F ,n,q ∈ Z}). Then the canonical

functors

DMe f f
A (k)〈F 〉 → DMe f f

B (k)〈F 〉, DMA (k)〈F 〉 → DMB(k)〈F 〉
are equivalences of triangulated categories.

Proof. This follows from Theorem 3.3 if we use the same proof as for the second part of Theo-
rem 3.1. �

Suppose k is a perfect field. Consider natural functors between categories of correspondences

K0
α−→ K⊕0

β−→ K0
γ−→ Cor,

where K0 is defined in [3]. All of these categories of correspondences are symmetric monoidal
strict V -categories of correspondences satisfying the cancellation property. Moreover, α,β ,γ
are strict symmetric monoidal functors which are the identities on objects. They induce mor-
phisms of complexes of Nisnevich sheaves

ZK0(q)
α−→ ZK⊕0

(q)
β−→ ZK0(q)

γ−→ Z(q), q> 0.

By Suslin’s theorem [8] γβ is a quasi-isomorphism. Walker [12, 6.5] proved that γ is a quasi-
isomorphism. We see that β is a quasi-isomorphism as well. Also, α is an isomorphism by [3,
7.2] (over any base field).

As an application of Theorem 3.1 and Corollary 3.2 we can now deduce the following

Theorem 3.5. Suppose k is a perfect field of exponential characteristic e. Then for every X ∈
Sm/k the morphism of twisted motives of X with Z[1/e]-coefficients

MK0(X)(q)⊗Z[1/p] α−→MK⊕0
(X)(q)⊗Z[1/e]

β−→MK0(X)(q)⊗Z[1/e]
γ−→M(X)(q)⊗Z[1/e]
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are quasi-isomorphisms of complexes of Nisnevich sheaves. Furthermore, the induced functors

DMe f f
K0

(k)[1/e] α−→ DMe f f
K⊕0

(k)[1/e]
β−→ DMe f f

K0
(k)[1/e]

γ−→ DMe f f (k)[1/e]

and
DMK0(k)[1/e] α−→ DMK⊕0

(k)[1/e]
β−→ DMK0(k)[1/e]

γ−→ DM(k)[1/e]

are equivalences of triangulated categories.

We also have the following application of Theorem 3.3.

Theorem 3.6. Suppose k is a perfect field and U ∈ Sm/k is dualizable in SH(k) (e.g. U is a
smooth projective variety). Then the morphisms of twisted motives

MK0(U)(q) α−→MK⊕0
(U)(q)

β−→MK0(U)(q)
γ−→M(U)(q), q> 0,

are quasi-isomorphisms of complexes of Nisnevich sheaves.

Corollary 3.7. Suppose k is a perfect field and F is a family of smooth algebraic varieties
which are dualizable in SH(k). Under the notation of Corollary 3.4 the functors

DMe f f
K0

(k)〈F 〉 α−→ DMe f f
K⊕0

(k)〈F 〉 β−→ DMe f f
K0

(k)〈F 〉 γ−→ DMe f f (k)〈F 〉

and
DMK0(k)〈F 〉

α−→ DMK⊕0
(k)〈F 〉 β−→ DMK0(k)〈F 〉

γ−→ DM(k)〈F 〉
are equivalences of triangulated categories.

Another application of Theorem 3.1 is for the bivariant motivic spectral sequence in the sense
of [2, 7.9]

E pq
2 = H p−q,−q

K⊕0
(U,X) =⇒ K−p−q(U,X), U ∈ Sm/k.

It is Grayson’s motivic specttral sequence [5] applied to bivariant algebaraic K-theory of smooth
algebraic varieties (see [2, Section 7] for details and definitions). The spectral sequence is
strongly convergent and the following relation is true (over perfect fields) by [2, 7.8]:

H p,q
K⊕0

(U,X) = DMe f f
K⊕0

(k)(MK⊕0
(U),MK⊕0

(X)(q)[p−2q]).

The latter relation together with Theorem 3.5 imply the relation

H p,q
K⊕0

(U,X)⊗Z[1/e] = H p,q
M (U,X)⊗Z[1/e].

In turn, if X ∈ Sm/k is dualizable in SH(k), then Theorem 3.6 implies the relation

H p,q
K⊕0

(U,X) = H p,q
M (U,X).

Thus we have proved the following

Theorem 3.8. Suppose k is a perfect field of exponential characteristic e. Then the bivariant
motivic spectral sequence with Z[1/e]-coefficients takes the form

E pq
2 = H p−q,−q

M (U,X)⊗Z[1/e] =⇒ K−p−q(U,X)⊗Z[1/e]

for all U,X ∈ Sm/k. Furthermore, if X ∈ Sm/k is dualizable in SH(k) (e.g. X is a smooth
projective variety), then for every U ∈ Sm/k the bivariant motivic spectral sequence takes the
form

E pq
2 = H p−q,−q

M (U,X) =⇒ K−p−q(U,X).
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Thus the preceding theorem says that the classical motivic spectral sequence starting from
motivic cohomology and converging to K-theory can be extended to bivariant motivic coho-
mology and bivariant K-theory on all smooth algebraic varieties after inverting the exponential
characteristic. In turn, if the second argument is dualizable in SH(k) then the exponential char-
acteristic inversion is not necessary.
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