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ABSTRACT. It is shown that the category of enriched functors [C ,V ] is Grothendieck when-
ever V is a closed symmetric monoidal Grothendieck category and C is a category enriched
over V . Localizations in [C ,V ] associated to collections of objects of C are studied. Also,
the category of chain complexes of generalized modules Ch(CR) is shown to be identified with
the Grothendieck category of enriched functors [modR,Ch(ModR)] over a commutative ring R,
where the category of finitely presented R-modules modR is enriched over the closed symmetric
monoidal Grothendieck category Ch(ModR) as complexes concentrated in zeroth degree. As
an application, it is proved that Ch(CR) is a closed symmetric monoidal Grothendieck model
category with explicit formulas for tensor product and internal Hom-objects. Furthermore, the
class of unital algebraic almost stable homotopy categories generalizing unital algebraic stable
homotopy categories of Hovey–Palmieri–Strickland [14] is introduced. It is shown that the de-
rived category of generalized modules D(CR) over commutative rings is a unital algebraic almost
stable homotopy category which is not an algebraic stable homotopy category.

1. INTRODUCTION

In the present paper we study categories of enriched functors

[C ,V ],

where V is a closed symmetric monoidal Grothendieck category and C is a category enriched
over V (i.e. a V -category). The main result here states that the category [C ,V ] is Grothendieck
with an explicit collection of generators. Namely, the following theorem is true.

Theorem. Let V be a closed symmetric monoidal Grothendieck category with a set of gen-
erators {gi}I . If C is a small V -category, then the category of enriched functors [C ,V ] is a
Grothendieck V -category with the set of generators {V (c,−)�gi | c ∈ObC , i ∈ I}. Moreover,
if C is a small symmetric monoidal V -category, then [C ,V ] is closed symmetric monoidal with
explicit formulas for monoidal product and internal Hom-object.

Taking into account this theorem, we refer to [C ,V ] as a Grothendieck category of enriched
functors. The usual Grothendieck category of additive functors

(B,Ab)

from a pre-additive category B to abelian groups Ab is recovered from the preceding theorem
in the case when V = Ab (B is a V -category). Further examples on how the category [C ,V ]
recovers some Grothendieck categories are given in Section 4.

The following result is an extension to enriched categories of similar results of [6, 9].
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Theorem. Suppose V is a closed symmetric monoidal Grothendieck category. Let C be a V -
category and let P consist of a collection of objects of C . Let SP = {G ∈ [C ,V ] | G(p) =
0 for all p ∈P}. Then SP is a localizing subcategory of [C ,V ] and [P,V ] is equivalent to
the quotient category [C ,V ]/SP .

We apply Grothendieck categories of enriched functors to study homological algebra for
generalized modules. The category of generalized modules

CR = (modR,Ab)

consists of the additive functors from the category of finitely presented R-modules, modR, to
the category of abelian groups, Ab. Its morphisms are the natural transformations of functors. It
is called the category of generalized R-modules for the reason that there is a fully faithful, right
exact functor

M 7→ −⊗R M
from the category of all R-modules to CR.

The category CR has a number of remarkable properties which led to powerful applications
in ring and module theory and representation theory (see, e.g., the books by Prest [20, 21]). The
category CR also provides a natural connecting langauge between algebra and model theory of
modules [12, 20, 21].

The following theorem states that the category Ch(CR) of chain complexes of CR over a
commutative ring can be regarded as a Grothendieck category of enriched functors.

Theorem. Suppose R is a commutative ring. Then the category of chain complexes of general-
ized R-modules Ch(CR) can naturally be identified with the Grothendieck category of enriched
functors [modR,Ch(ModR)], where the category of finitely presented modules modR is natu-
rally enriched over Ch(ModR) as complexes concentrated in zeroth degree.

A Grothendieck category of enriched functors [C ,V ] can also contain a homotopy informa-
tion whenever V is a reasonable model category in the sense of Quillen [22]. As an application
of the preceding theorem, we show the following

Theorem. Let R be a commutative ring, then Ch(CR) is a left and right proper closed symmetric
monoidal V -model category, where V = Ch(ModR). The tensor product of two complexes
F•,G• ∈ Ch(CR) is given by

F•�G• =
∫ (M,N)∈modR⊗modR

F•(M)⊗R G•(N)⊗R HomR(M⊗R N,−).

Here HomR(M⊗R N,−) is regarded as a complex concentrated in zeroth degree. The internal
Hom-object is defined as

Hom(F•,G•)(M) =
∫

N∈modR
HomCh(ModR)(F•(N),G•(M⊗R N)).

There are various ways to construct closed symmetric monoidal structures on the derived
category of a reasonable closed symmetric abelian category (see [13, 25] for some examples).
For the case of the derived category D(CR) of generalized modules with R a commutative ring
we apply the preceding theorem as well as some facts for compactly generated triangulated
categories to establish the following

Theorem. Let R be a commutative ring. Then the derived category D(CR) of the Grothendieck
category CR is a compactly generated triangulated closed symmetric monoidal category, where
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the above formulas yield the derived tensor product F•�L G• and derived internal Hom-object
RHom(F•,G•). The compact objects of D(CR) are the complexes isomorphic to bounded com-
plexes of coherent functors.

In the classical stable homotopy theory (see, for example, Hovey–Palmieri–Strickland [14])
the category of compact objects of a stable homotopy category possesses a duality, which in
some cases is also known as the Spanier–Whitehead Duality. In order to find a duality on the
category of compact objects D(CR)

c of D(CR), we use the Auslander–Gruson–Jensen Dual-
ity [1, 10, 12] for coherent objects cohCR. In the model theory of modules, this duality cor-
responds to elementary duality, introduced by Prest [20, Chapter 8] and developed by Herzog
in [11], for positive-primitive formulas. We show that the Auslander–Gruson–Jensen Duality
makes sense for compact objects of D(CR). More precisely, the following result is true.

Theorem (Auslander–Gruson–Jensen Duality for compact objects). Let D(CR)
c be the full tri-

angulated subcategory of D(CR) of compact objects. Then there is a duality

D : (D(CR)
c)op→D(CR)

c

that takes a compact object C• to DC• := RHom(C•,−⊗R R).

Basing on the above results for D(CR), we introduce the class of unital algebraic almost
stable homotopy categories. These essentially the same with unital algebraic stable homotopy
categories in the sense of Hovey–Palmieri–Strickland [14] except that the compact objects do
not have to be strongly dualizable, but must have a duality. We finish the paper by proving the
following

Theorem. Let R be a commutative ring. Then D(CR) is a unital algebraic almost stable ho-
motopy category, which is not an algebraic stable homotopy category in the sense of Hovey–
Palmieri–Strickland.

2. ENRICHED CATEGORY THEORY

In this section we collect basic facts about enriched categories we shall need later. We refer
the reader to [2, 18] for details. Throughout this paper (V ,⊗,Hom,e) is a closed symmetric
monoidal category with monoidal product⊗, internal Hom-object Hom and monoidal unit e. We
sometimes write [a,b] to denote Hom(a,b), where a,b∈ObV . We have structure isomorphisms
in V

aabc : (a⊗b)⊗ c→ a⊗ (b⊗ c), la : e⊗a→ a, ra : a⊗ e→ a
with a,b,c ∈ ObV .

Definition 2.1. A V -category C , or a category enriched over V , consists of the following data:
(1) a class Ob(C ) of objects;
(2) for every pair a,b ∈ Ob(C ) of objects, an object VC (a,b) of V ;
(3) for every triple a,b,c ∈ Ob(C ) of objects, a composition morphism in V ,

cabc : VC (a,b)⊗VC (b,c)→ VC (a,c);

(4) for every object a ∈ C , a unit morphism ua : e→ VC (a,a) in V .
These data must satisfy the following conditions:
� given objects a,b,c,d ∈ C , diagram (1) below is commutative (associativity ax-

iom);
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� given objects a,b ∈ C , diagram (2) below is commutative (unit axiom).

(VC (a,b)⊗VC (b,c))⊗VC (c,d)
cabc⊗1 //

aVC (a,b)VC (b,c)VC (c,d)

��

VC (a,c)⊗VC (c,d)

cacd

��

VC (a,b)⊗ (VC (b,c)⊗VC (c,d))

1⊗cbcd
��

VC (a,b)⊗VC (b,d) cabd
// VC (a,d)

(1)

e⊗VC (a,b)
lVC (a,b) //

ua⊗1

��

VC (a,b)

1VC (a,b)

��

VC (a,b)⊗ e
rVC (a,b)oo

1⊗ub

��
VC (a,a)⊗VC (a,b)

caab // VC (a,b) VC (a,b)⊗VC (b,b)
cabboo

(2)

When ObC is a set, the V -category C is called a small V -category.

Definition 2.2. Given V -categories A ,B, a V -functor or an enriched functor F : A → B
consists in giving:

(1) for every object a ∈A , an object F(a) ∈B;
(2) for every pair a,b ∈A of objects, a morphism in V ,

Fab : VA (a,b)→ VB(F(a),F(b))

in such a way that the following axioms hold:
� for all objects a,a′,a′′ ∈A , diagram (3) below commutes (composition axiom);
� for every object a ∈A , diagram (4) below commutes (unit axiom).

VA (a,a′)⊗VA (a′,a′′)
caa′a′′ //

Faa′⊗Fa′a′′
��

VA (a,a′′)

Faa′′
��

VB(Fa,Fa′)⊗VB(Fa′,Fa′′) cFa,Fa′,Fa′′
// VB(Fa,Fa′′)

(3)

e
ua //

uFa $$

VA (a,a)

Faa
��

VB(Fa,Fa)

(4)

Definition 2.3. Let A ,B be two V -categories and F,G : A →B two V -functors. A V -natural
transformation α : F ⇒ G consists in giving, for every object a ∈A , a morphism

αa : e→ VB(F(a),G(a))
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in V such that diagram (5) below commutes, for all objects a,a′ ∈A .

VA (a,a′)

l−1
VA (a,a′)

xx

r−1
VA (a,a′)

&&
e⊗VA (a,a′)

αa⊗Gaa′
��

VA (a,a′)⊗ e

Faa′⊗αa′
��

VB(Fa,Ga)⊗VB(Ga,Ga′)

cFaGaGa′

&&

VB(Fa,Fa′)⊗VB(Fa′,Ga′)

cFaFa′Ga′

xx
VB(Fa,Ga′)

(5)

By Set we shall mean the closed symmetric monoidal category of sets. Categories in the usual
sense are Set-categories (categories enriched over Set). If A is a category, let SetA (a,b) denote
the set of maps in A from a to b. The closed symmetric monoidal category V is a V -category
due to its internal Hom-objects. Any V -category C defines a Set-category U C , also called
the underlying category. Its class of objects is ObC , the morphism sets are SetU C (a,b) =
SetV (e,VC (a,b)) (see [2, p. 316]).

Proposition 2.4. Let V be a symmetric monoidal closed category. If A is a V -category and
F,G : A ⇒ V are V -functors, giving a V -natural transformation α : F ⇒ G is equivalent to
giving a family of morphism α : F(a)→G(a) in V , for a ∈A , in such a way that the following
diagram commutes for all a,a′ ∈A

VA (a,a′)
Faa′ //

Gaa′
��

[F(a),F(a′)]

[1,αa′ ]
��

[G(a),G(a′)]
[αa,1]

// [F(a),G(a′)]

Proof. See [2, 6.2.8]. �

Corollary 2.5. Let V be a symmetric monoidal closed category. If A is a V -category and
F,G : A ⇒ V are V -functors, giving a V -natural transformation α : F ⇒ G is equivalent to
giving a family of morphism α : F(a)→G(a) in V , for a ∈A , in such a way that the following
diagram commutes for all a,a′ ∈A

VA (a,a′)⊗F(a)
ηF //

1⊗αa
��

F(a′)

αa′
��

VA (a,a′)⊗G(a)
ηG
// G(a′),

where ηF ,ηG are the morphisms corresponding to the structure morphisms Faa′ and Gaa′ re-
spectively.
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Corollary 2.6. Let V be a symmetric monoidal closed category. If A is a small V -category
and F,G : A ⇒ V are V -functors, suppose α : F ⇒ G is a V -natural transformation such
that each αa : F(a)→ G(a), a ∈ ObA , is an isomorphism in V . Then α is an isomorphism in
[A ,V ].

Proof. This follows from the preceding corollary if we define α−1 : G⇒ F by the collection of
arrows α−1

a , a ∈ ObA . �

Let C ,D be two V -categories. The monoidal product C ⊗D is the V -category, where

Ob(C ⊗D) := ObC ×ObD

and
VC⊗D((a,x),(b,y)) := VC (a,b)⊗VD(x,y), a,b ∈ C ,x,y ∈D .

Definition 2.7. A V -category C is a right V -module if there is a V -functor act : C ⊗V →
C , denoted (c,A) 7→ c�A and a V -natural unit isomorphism rc : act(c,e)→ c subject to the
following conditions:

(1) there are coherent natural associativity isomorphisms c� (A⊗B)→ (c�A)⊗B;
(2) the isomorphisms c� (e⊗A)⇒ c�A coincide.

A right V -module is closed if there is a V -functor

coact : V op⊗C → C

such that for all A ∈ ObV , and c ∈ ObC , the V -functor act(−,A) : C → C is left V -adjoint to
coact(A,−) and act(c,−) : V → C is left V -adjoint to VC (c,−).

If C is a small V -category, V -functors from C to V and their V -natural transformations
form the category [C ,V ] of V -functors from C to V . If V is complete, then [C ,V ] is also a
V -category. We also denote this V -category by F (C ), or F if no confusion can arise. The
morphism V -object VF (X ,Y ) is the end∫

ObC
V (X(c),Y (c)). (6)

Note that the underlying category U F of the V -category F is [C ,V ].
Given c ∈ ObC , X 7→ X(c) defines the V -functor Evc : F → V called evaluation at c. The

assignment c 7→ VC (c,−) from C to F is again a V -functor C op→F , called the V -Yoneda
embedding. VC (c,−) is a representable functor, represented by c.

Lemma 2.8 (The Enriched Yoneda Lemma). Let V be a complete closed symmetric monoidal
category and C a small V -category. For every V -functor X : C → V and every c∈ObC , there
is a V -natural isomorphism X(c)∼= VF (VC (c,−),X).

Lemma 2.9. If V is a bicomplete closed symmetric monoidal category and C is a small V -
category, then [C ,V ] is bicomplete. (Co)limits are formed pointwise.

Proof. See [2, 6.6.17]. �

Corollary 2.10. Assume V is bicomplete, and let C be a small V -category. Then any V -functor
X : C → V is V -naturally isomorphic to the coend

X ∼=
∫ ObC

VC (c,−)�X(c).

Proof. See [2, 6.6.18]. �
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A monoidal V -category is a V -category C together with a V -functor � : C ⊗C → C , a
unit u ∈ ObC , a V -natural associativity isomorphism and two V -natural unit isomorphisms.
Symmetric monoidal and closed symmetric monoidal V -categories are defined similarly.

Suppose (C ,�,u) is a small symmetric monoidal V -category where V is bicomplete. In [4],
a closed symmetric monoidal product was constructed on the category [C ,V ] of V -functors
from C to V . For X ,Y ∈ Ob[C ,V ], the monoidal product X�Y ∈ Ob[C ,V ] is the coend

X�Y :=
∫ Ob(C⊗C )

VC (c�d,−)⊗ (X(c)⊗Y (d)) : C → V . (7)

The following theorem is due to Day [4] and plays an important role in our analysis.

Theorem 2.11 (Day [4]). Let (V ,⊗,e) be a bicomplete closed symmetric monoidal category
and (C ,�,u) a small symmetric monoidal V -category. Then ([C ,V ],�,VC (u,−)) is a closed
symmetric monoidal category. The internal Hom-functor in [C ,V ] is given by the end

F (X ,Y )(c) = VF (X ,Y (c�−)) =
∫

d∈ObC
V (X(d),Y (c�d)). (8)

The next lemma computes the tensor product of representable V -functors.

Lemma 2.12. The tensor product of representable functors is again representable. Precisely,
there is a natural isomorphism

VC (c,−)�VC (d,−)∼= VC (c�d,−).

3. GROTHENDIECK CATEGORIES

In this section we collect basic facts about Grothendieck categories. We mostly follow Her-
zog [12] and Stenström [24].

Definition 3.1. A family {Ui}I of objects of an abelian category A is a family of generators for
A if for each non-zero morphism α : B→C in A there exist a morphism β : Ui→ B for some
i ∈ I, such that αβ 6= 0.

Recall that an abelian category is cocomplete or an Ab3-category if it has arbitrary direct
sums. The cocomplete abelian category C is said to be an Ab5-category if for any directed
family {Ai}i∈I if subobjects of A and for any subobject B of A, the relation

(∑
i∈I

Ai)∩B = ∑
i∈I
(Ai∩B)

holds.
The condition Ab3 is equivalent to the existance of arbitrary direct limits. Also Ab5 is equiv-

alent to the fact that there exist inductive limits and the inductive limits over directed families of
indices are exact, i.e. if I is a directed set and

0 // Ai // Bi // Ci // 0

is an exact sequence for any i ∈ I, then

0 // lim−→Ai // lim−→Bi // lim−→Ci // 0

is an exact sequence.
An abelian category which satisfies the condition Ab5 and which possesses a family of gen-

erators is called a Grothendieck category.
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Example 3.2. Given any associative ring R with identity, the category ModR of R-modules is a
Grothendieck category, where R is a generator.

Example 3.3. By [12], another example of a Grothendieck category is the category of additive
functors (B,Ab) from a small preadditive category B to the category of abelian groups Ab, in
which limits and colimits of functors are defined objectwise. A family of projective generators
for (B,Ab) is given by the collection of representable functors {hB}B∈ObB. In what follows we
shall also write (B,−) to denote the representable functor hB, B ∈ ObB.

Below we shall need the following useful fact:

Proposition 3.4. The category of unbounded chain complexes Ch(A ) of a Grothendieck cate-
gory A is again a Grothendieck category.

Proof. Colimits and limits are taken dimensionwise, filtered colimits are obviously exact. Fol-
lowing notation of Hovey [13], denote by DnX , n ∈ Z and X ∈ A , the complex which is X in
degree n and n−1 and 0 elsewhere, with interesting differential being the identity map. If U is
a generator of A , then {DnU}n∈Z are generators of Ch(A ). To see that these generate Ch(A ),
use the adjunction relation HomCh(A )(DnU,X)∼= HomA (U,Xn). �

Remark 3.5. This remark is to warn the reader that one should not confuse generators in abelian
and triangulated categories. Precisely, we shall also work with the derived category D(A ) of
unbounded complexes of a Grothendieck category A . Then generators for D(A ) cannot be
generators for Ch(A ) and vice versa in general. Indeed, the generators {DnU}n∈Z of Ch(A )
are contractible complexes, and hence zero in D(A ).

On the other hand, suppose U is a generator for A . Denote by SnU , n ∈ Z, the complex
which is U in degree n and 0 elsewhere. Then {SnU}n∈Z is a family of generators for the
derived category D(A ) in the sense that for every non-zero object X ∈ D(A ) there is a non-
zero morphism in D(A ) from some SnU to X . But these cannot generate Ch(A) as the following
example shows.

Suppose K is a field, and

· · · // 0 //

��

K //

α

��

0

��

// 0

��

// · · ·

· · · // 0 //

��

K⊕K
d0 //

f
��

K //

��

0

��

// · · ·

· · · // 0 // K // 0 // 0 // · · ·
is a commutative diagram in Ch(ModK), where d0(x,y) = f (x,y) = y. We suppose the middle
complex is concentrated in degrees 0 and −1. Clearly α(1) ∈ Kerd0 implies α(1) = (x′,0) for
some x′ ∈ K. But f α(1) = f (x′,0) = 0, so f α = 0. Thus there is no non-zero map from S0K
to the middle complex such that the composite f α 6= 0. Since there is no non-zero morphism
from SnK to the middle complex such that f α 6= 0 for any n 6= 0, we see that {SnK}n∈Z are not
generators for Ch(ModK).

Definition 3.6. Recall that an object A∈C is finitely generated if whenever there are subobjects
Ai ⊆ A for i ∈ I satisfying A = ∑i∈I Ai, then there is a finite subset J ⊂ I such that A = ∑i∈J Ai.
The category of finitely generated subobjects of C is denoted by fgC . The category is locally
finitely generated provided that every object X ∈ C is a directed sum X = ∑i∈I Xi of finitely
generated subobjects Xi, or equivalently, C possesses a family of finitely generated generators.
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Definition 3.7. A finitely generated object B ∈ C is finitely presented provided that every epi-
morphism η : A→ B with A finitely generated has a finitely generated kernel Kerη . The sub-
category of finitely presented objects of C is denoted by fpC . The corresponding categories of
finitely presented left and right R-modules over the ring R are denoted by Rmod = fp(RMod)
and modR = fp(ModR), respectively. Note that the subcategory fpC of C is closed under
extensions. Moreover, if

0→ A→ B→C→ 0

is a short exact sequence in C with B finitely presented, then C is finitely presented if and only
if A is finitely generated. The category is locally finitely presented provided that it is locally
finitely generated and every object X ∈ C is a direct limit X = lim−→i∈I

Xi of finitely presented
objects Xi, or equivalently, C possesses a family of finitely presented generators.

Definition 3.8. A finitely presented object C of a locally finitely presented Grothendieck cate-
gory C is coherent if every finitely generated subobject B of C is finitely presented. Equivalently,
every epimorphism h : C→A with A finitely presented has a finitely presented kernel. Evidently,
a finitely generated subobject of a coherent object is also coherent. The subcategory of coherent
objects of C is denoted by cohC . The category C is locally coherent provided that it is locally
finitely presented and every object X ∈ C is a direct limit X = lim−→i∈I

Xi of coherent objects Xi,
or equivalently, C possesses a family of coherent generators.

The subcategories consisting of finitely generated, finitely presented and coherent objects are
ordered by inclusion as follows:

C ⊇ fgC ⊇ fpC ⊇ cohC .

Examples 3.9. (1) The categories ModR and (B,Ab) (see Examples 3.2-3.3) are locally finitely
presented. The representable functors {hB}B∈B are projective finitely presented generators of
(B,Ab) (see [12] for details). The category Ch(A ) with A a Grothendieck category (see
Proposition 3.4) is locally finitely presented whenever A is. If {Ui}i∈I are finitely presented
generators of A , then {DnUi}n∈Z,i∈I are finitely presented generators of Ch(A ).

(2) ModR is locally coherent if and only if the ring R is right coherent. (B,Ab) is locally
coherent whenever B is closed under cokernels (see [12] for details). In turn, Ch(A ) with A a
Grothendieck category is locally coherent whenever A is.

4. GROTHENDIECK CATEGORIES OF ENRICHED FUNCTORS

In this section we prove that the category of enriched functors [C ,V ] is a Grothendieck
category whenever V is a closed symmetric monoidal Grothendieck category, giving us new
Grothendieck categories in practice. Also, the localization theory of Grothendieck categories
becomes available for [C ,V ]. Moreover, [C ,V ] is closed symmetric monoidal whenever C is
a symmetric monoidal V -category.

Here are some examples of closed symmetric monoidal Grothendieck categories.

Examples 4.1. (1) Given any commutative ring R, the triple (ModR,⊗R,R) is a closed sym-
metric monoidal Grothendieck category.

(2) More generally, let X be a quasi-compact quasi-separated scheme. Consider the category
Qcoh(OX) of quasi-coherent OX -modules. By [15, 3.1] Qcoh(OX) is a locally finitely pre-
sented Grothendieck category, where quasi-coherent OX -modules of finite type form a family
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of finitely presented generators. The tensor product on OX -modules preserves quasi-coherence,
and induces a closed symmetric monoidal structure on Qcoh(OX).

(3) Let R be any commutative ring. Let C′ = {C′n,∂ ′n} and C′′ = {C′′n ,∂ ′′n } be two chain com-
plexes of R-modules. Their tensor product C′⊗R C′′ = {(C′⊗R C′′)n,∂n} is the chain complex
defined by

(C′⊗R C′′)n =
⊕

i+ j=n

(C′i⊗R C′′j ),

and

∂n(t ′i ⊗ s′′j ) = ∂
′
i (t
′
i)⊗ s′′j +(−1)it ′i ⊗∂

′′
j (s
′′
j ), for all t ′i ∈C′i , s′′j ∈C′′j , (i+ j = n),

where C′i⊗RC′′j denotes the tensor product of R-modules C′i and C′′j . Then the triple (Ch(ModR),⊗R,R)
is a closed symmetric monoidal Grothendieck category. Here R is regarded as a complex con-
centrated in the zeroth degree.

(4) (ModkG,⊗k,k) is closed symmetric monoidal Grothendieck category, where k is a field
and G is a finite group.

The main result of this section is as follows.

Theorem 4.2. Let V be a closed symmetric monoidal Grothendieck category with a set of
generators {gi}I . If C is a small V -category, then the category of enriched functors [C ,V ] is a
Grothendieck V -category with the set of generators {V (c,−)�gi | c ∈ObC , i ∈ I}. Moreover,
if C is a small symmetric monoidal V -category, then [C ,V ] is closed symmetric monoidal with
monoidal product and internal Hom-object computed by the formulas (7) and (8) of Day.

Proof. If C is a small V -category, then [C ,V ] is a V -category (see p. 6). The internal Hom-
object is given by (6). Let show that [C ,V ] is a preadditive category. Given V -functors X ,Y ∈
[C ,V ], we have that

Hom[C ,V ](X ,Y ) = HomV (e,
∫

c∈ObC
V (X(c),Y (c))

is an abelian group, because V is preadditive. We can also describe explicitly the abelian group
structure as follows. The morphisms of [C ,V ] are, by definition, the V -functors from C to V .
Using Corollary 2.5, for any V -natural transformations

α,α ′ : X → Y

its sum α +α ′ is determined by the arrows

αc +α
′
c : e→ V (X(c),Y (c)).

Recall that HomV (X(c),Y (c)) = HomV (e,V (X(c),Y (c))) and αc+α ′c is addition of αc and α ′c
in the abelian group HomV (X(c),Y (c)).

To show that the addition is bilinear, let

β ∈ HomV (e,
∫

c
V (Y (c),Z(c)) =

∫
c
HomV (e,V (Y (c),Z(c))

=
∫

c
HomV (Y (c),Z(c)).

Using Corollary 2.5, we set

(βα)c : = βc ◦αc.
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Using the fact that V is preadditive, we have

(β (α +α
′))c = βc(αc +α

′
c)

= βc ◦αc +βc ◦α
′
c

= (βα +βα
′)c.

Similarly, (α +α ′)γ = αγ +α ′γ . We see that [C ,V ] is preadditive.
Since V is a bicomplete closed symmetric monoidal category and C is a small V -category,

then by Lemma 2.9 the category [C ,V ] is bicomplete. Moreover, limits and colimits are formed
objectwise. In particular, [C ,V ] has finite products. It follows from [18, VIII.2.2] that [C ,V ] is
an additive category. Furthermore, [C ,V ] has kernels and cokernels which are defined object-
wise.

Given a morphism α in [C ,V ], the canonical map

ᾱ : Coker(kerα)→ Ker(cokerα)

is an isomorphism objectwise. Corollary 2.6 implies ᾱ is an isomorphism. It follows that [C ,V ]
is an abelian category.

Next, direct limits exist in [C ,V ] and are defined objectwise. They are exact in [C ,V ],
because direct limits in V are exact (by assumption, V is a Grothendieck category). So, [C ,V ]
is an Ab5-category.

It remains to find generators for [C ,V ]. By [5, 2.4] [C ,V ] is a closed V -module, and hence
there is an action

� : [C ,V ]⊗V → [C ,V ].

Now for any non-zero functor X ∈ [C ,V ] we have natural isomorphisms

Hom[C ,V ](V (c,−)�gi,X))∼= HomV (gi,V[C ,V ](V (c,−),X))

∼= HomV (gi,X(c)).

Let α : X → Y be a non-zero map in [C ,V ]. We want to show that there are i ∈ I, a map
β : V (c,−)�gi→ X such that αβ 6= 0.

Since α is non-zero, then αc : X(c)→ Y (c) is a non-zero map in V for some c ∈ ObC . By
assumption {gi}I are generators of V , and so there is a map β̄ : gi→ X(c) such that αcβ̄ 6= 0.
By the above isomorphism we can find a unique map β : V (c,−)�gi→ X corresponding to β̄ .
Now αcβ̄ 6= 0 implies αβ 6= 0 as required.

If C is a small symmetric monoidal V -category, then [C ,V ] is closed symmetric monoidal by
Day’s Theorem 2.11. The monoidal product and internal Hom-object are computed by formulas
of Day (7) and (8). �

Below we give a couple of examples illustrating the preceding theorem.

Example 4.3. Let R be a commutative ring with unit. Consider the closed symmetric monoidal
category V = (ModR,⊗R,R). Consider a V -category C defined as follows. Its objects are
integers ObC = Z. Given two integers m,n ∈ ObC , we define the Hom-object as

VC (m,n) =
{

0 if m 6= n;
R if m = n.

Clearly, C is a V -category and the category [C ,V ] of V -functors from C to V is the product
category ∏Z ModR. By definition, Ob(∏Z ModR) are tuples (Mi)i∈Z and morphisms are tuples
of R-homomorphisms ( fi : Mi→ Ni)i∈Z.
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Let GrR be the category of Z-graded R-modules and graded homomorphisms. It is easy to
see that the functor

∏
Z

ModR→ GrR, (Mi)i∈Z 7→ ⊕ZMi,

is an isomorphism of categories. It is well known that GrR is a closed symmetric monoidal
Grothendieck category with tensor product

(M⊗R N)k :=
⊕

i+ j=k

Mi⊗R N j for all M,N ∈ GrR. (9)

We want to show that this tensor product is recovered from Day’s theorem for [C ,V ]. Indeed,
we define a symmetric monoidal product on C as follows. For every m,n ∈ ObC

m�n := m+n.

Given a ∈ VC (m,m) = R and b ∈ VC (n,n) = R, we set

a�b = a ·b ∈ VC (m+n,m+n) = R.

Clearly, m� n = n�m. Since R is commutative, it follows that � defines a strictly symmetric
monoidal tensor product on C .

Now for every M,N ∈ [C ,V ]∼= GrR, Day’s theorem implies

M�N =
∫ (m,n)∈Z�Z

M(m)⊗R N(n)⊗R VC (m�n,−)

=
∫ (m,n)∈Z�Z

Mm⊗R Nn⊗R VC (m+n,−).

Thus,
(M�N)k =

⊕
m+n=k

Mm⊗R Nn

and

Hom(M,N)(n) =
∫

m∈ObC=Z
HomR(M(m),N(m�n))

=
∫

m
HomR(Mm,Nm+n) = HomGrR(M,N(n)).

So the tensor product (9) as well as internal Hom-functor for graded modules are recovered from
Day’s theorem.

By Theorem 4.2 [C ,V ] is Grothendieck with {R(n)}n∈Z generators, where

R(n)m =

{
0, if m 6= n;
R, if m = n.

It follows that GrR is Grothendieck. Moreover, [C ,V ]∼= GrR is closed symmetric monoidal.

Example 4.4. Let R be a commutative ring. Recall that an R-linear DG-category C is just a
category enriched over V = Ch(ModR). Right DG-modules over the DG-category C are just
contravariant V -functors from C to V . In turn, DG-morphisms of DG-modules are nothing but
V -natural transformations. The category of right DG-modules and DG-morphisms is denoted
by ModC . Using our notation, one has, by definition, ModC = [C op,V ].

Theorem 4.2 and Proposition 3.4 imply ModC is a Grothendieck category with the family of
generators

Dn(VC (−,c)) := VC (−,c)�DnR, c ∈ ObC ,n ∈ Z.

12



Here DnR stands for the complex which is R in degrees n and n− 1 and zero elsewhere, with
interesting differential being the identity.

Example 4.5. Any preadditive category B is nothing but a category enriched over abelian
groups V = Ab. V -functors from B to V are the same as additive functors. Theorem 4.2 says
that the category of additive functors (B,Ab) is Grothendieck with representable functors {hB =
VB(B,−)�Z}B∈B being a family of generators. Thus the fact that (B,Ab) is Grothendieck
(see Example 3.3) follows from Theorem 4.2.

5. LOCALIZATION WITH RESPECT TO ENRICHED SUBCATEGORIES

We say that a full subcategory S of an abelian category C is a Serre subcategory if for any
short exact sequence

0→ X → Y → Z→ 0
in C an object Y ∈ S if and only if X , Z ∈ S . A Serre subcategory S of a Grothendieck
category C is localizing if it is closed under taking direct limits. Equivalently, the inclusion
functor i : S → C admits the right adjoint t = tS : C →S which takes every object X ∈ C to
the maximal subobject t(X) of X belonging to S . The functor t we call the torsion functor. An
object C of C is said to be S -torsionfree if t(C) = 0. Given a localizing subcategory S of C
the quotient category C /S consists of C ∈ C such that t(C) = t1(C) = 0, where t1 stands for
the first derived functor associated with t. The objects from C /S we call S -closed objects.
Given C ∈ C there exists a canonical exact sequence

0→ A′→C
λC−→CS → A′′→ 0

with A′ = t(C), A′′ ∈ S , and where CS ∈ C /S is the maximal essential extension of C̃ =

C/t(C) such that CS /C̃ ∈S . The object CS is uniquely defined up to a canonical isomorphism
and is called the S -envelope of C. Moreover, the inclusion functor ι : C /S → C has the left
adjoint localizing functor (−)S : C → C /S , which is also exact. It takes each C ∈ C to
CS ∈ C /S . Then,

HomC (X ,Y )∼= HomC /S (XS ,Y )

for all X ∈ C and Y ∈ C /S .
If C and D are Grothendieck categories, q : C →D is an exact functor, and a functor s : D→

C is fully faithful and right adjoint to q, then S := Kerq is a localizing subcategory and there

exists an equivalence C /S
H∼= D such that H ◦ (−)S = q. We shall refer to the pair (q,s) as the

localization pair.

Example 5.1. Let A be a small preadditive category. Consider the category (A ,Ab) of additive
functors from A to Ab. Let p ∈ ObA , then we have

Hom(A ,Ab)((p,−),(p,−)) = EndA p.

Let
Sp = {F ∈ (A ,Ab) | F(p) = 0}.

Then Sp is a localizing subcategory of (A ,Ab). By [6] and [9] there is an equivalence of
categories

(A ,Ab)/Sp ∼= Mod(EndA p)op.

This result has some applications in ring and module theory (see [7, 8]).
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More generally, given a collection of objects P in A , we can consider the localizing subcat-
egory

SP = {F ∈ (A ,Ab) | F(p) = 0 for all p ∈P}

of (A ,Ab) and then

(A ,Ab)/SP
∼= (P,Ab),

where P on the right hand side is regarded as a full subcategory in A (see [6] for details).

Our next goal is to obtain an enriched analog of this result.
Suppose V is a closed symmetric monoidal Grothendieck category. Let C be a V -category.

By Theorem 4.2 [C ,V ] is a Grothendieck category. Suppose P is a collection of objects in C .
We shall also regard P as a natural V -subcategory. Then

SP = {F ∈ [C ,V ] | F(p) = 0 for all p ∈P}

is localizing in [C ,V ].
We shall prove below that there is a natural equivalence of Grothendieck categories

[C ,V ]/SP
∼= [P,V ].

Thus the same result of [6, 9] for the category of additive functors (A ,Ab) with A preaddtive
(see Example 5.1 above) is recovered from the case when V = Ab. But first we prove the
following

Proposition 5.2. Suppose V is a closed symmetric monoidal Grothendieck category. Let C be a
V -category and let P consist of a collection of objects of C . Then the inclusion map i : P→C
is a V -functor. It induces two adjoint functors

i∗ : [P,V ]� [C ,V ] : i∗

where i∗ is the enriched left Kan extension and i∗ is just restriction to P .

Proof. Although this fact is a consequence of [2, 6.7.7], we give a proof here for the convenience
of the reader.

If F ∈ [P,V ] then by Corollary 2.10 we have

F ∼=
∫ ObP

V (p,−)�F(p).

By definition of the left Kan extension, we have

i∗F ∼=
∫ ObP

V (i(p),−)�F(p).

We want to show that

Hom[C ,V ](i∗F,G)∼= Hom[P,V ](F, i
∗G).

Using (6), one has isomorphisms of V -objects

VF (F, i∗G) = VF (F,G◦ i) =
∫

ObP
V (F(p),G(i(p))). (10)
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On the other hand,

VF (i∗F,G) = VF

(∫ ObP

V (i(p),−)�F(p),G
)

=
∫

ObP
VF (F(p),V[C ,V ](V ((i(p),−),G)))

=
∫

ObP
V (F(p),G(i(p))). (11)

We have used here the fact that the functor VF (−,G) takes V -coends to V -ends [2, 6.6.11] as
well as the fact that [C ,V ] is a closed V -module. Now (10) and (11) imply i∗ and i∗ are adjoint
functors. �

Let SP = {G ∈ [C ,V ] | G(p) = 0 for all p ∈P}. Obviously, SP is localizing. Denote
by κ : [P,V ]→ [C ,V ]/SP the composition of the left Kan extension functor i∗ : [P,V ]→
[C ,V ] and the localization functor (−)SP

: [C ,V ]→ [C ,V ]/SP .

Theorem 5.3. The functor κ : [P,V ]→ [C ,V ]/SP is an equivalence of categories.

Proof. First observe that
i∗i∗F ∼= F

for all F ∈ [P,V ]. Second, given G ∈ [C ,V ] the adjunction map β : i∗i∗G→ G is such that
Kerβ ,Cokerβ ∈SP . Indeed, applying the exact functor i∗ to the exact sequence

Kerβ // // i∗i∗G
β // G // // Cokerβ ,

we get an exact sequence in [P,V ]

i∗(Kerβ ) // // i∗i∗i∗G
i∗(β ) // i∗G // // i∗(Cokerβ ).

Since the composite map

i∗G→ i∗i∗i∗G
i∗(β )−−−→ i∗G

is the identity map and the left arrow is an isomorphism, then so is the right arrow. Thus

i∗(Kerβ ) = i∗(Cokerβ ) = 0,

and hence Kerβ ,Cokerβ ∈SP . It also follows that

(i∗i∗G)SP
∼= GSP

. (12)

We have for all F,F ′ ∈ [P,V ]

Hom[C ,V ]/SP
(κ(F),κ(F ′))∼= Hom[C ,V ]/SP

((i∗(F)SP
, i∗(F ′)SP

)

∼= Hom[C ,V ](i∗F,(i∗F
′)SP

)

∼= Hom[P,V ](F, i
∗((i∗F ′)SP

))

∼= Hom[P,V ](F, i
∗i∗F ′)

∼= Hom[P,V ](F,F
′).

We use here an isomorphism i∗G∼= i∗(GSP
) for any G ∈ [C ,V ]. The isomorphism is obtained

by applying the exact functor i∗ to the exact sequence

S // // G
λG // GSP

// // S′, S,S′ ∈SP ,
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where λG is the SP -envelope of G.
We see that κ is fully faithful. Now let G ∈ [C ,V ]/SP be any SP -closed object, then the

isomorphism (12) implies

κ(i∗G) = (i∗i∗G)SP
∼= GSP

∼= G.

If we set F := i∗G, then κ(F)∼= G. This shows that κ is an equivalence of categories. �

Corollary 5.4 ([6]). Let C be a Grothendieck category with finitely generated projective gener-
ators B = {pi}i∈I . Let P = {p j} j∈J be a subfamily in B, where J ⊂ I. Then

SP = {x ∈ C |HomC (p j,x) = 0 for all p j ∈P}

is localizing and C /SP is a Grothendieck category with {(p j)SP
} a family of finitely generated

projective generators.

Proof. By Mitchell’s Theorem C is equivalent to the category (Bop,Ab) by means of the functor
T sending x ∈ C to (−,x). Now the latter category is the same as the category of enriched V -
functors from Bop to V where V = Ab. We use as well the fact that a category is preadditive if
and only if it is enriched in Ab.

It follows that T induces an equivalence of categories C /SP and (Bop,Ab)/S̃P , where

S̃P = {F ∈ (Bop,Ab)|F(p j) = 0 for all p j ∈P}.

Theorem 5.3 implies the latter quotient category is equivalent to (Pop,Ab). The proof of The-
orem 5.3 shows that the functor

(Pop,Ab)→ C /SP

which sends F ∈ (Pop,Ab) to (T−1(i∗F))SP
is an equivalence of categories. It follows that

{(p j)SP
} j∈J is a family of finitely generated projective generators of C /SP . �

Example 5.5. Let C and V be as in Example 4.3 and let n ∈ ObC = Z. We set

Sn = {F ∈ [C ,V ]∼= GrR | F(n) = 0}.

Then Theorem 5.3 implies

[C ,V ]/Sn ∼= GrR/Sn ∼= [P,ModR],

where P has one object n ∈ Z and VP(n,n) = R. But [P,ModR] = ModR, hence GrR/Sn ∼=
ModR.

Let R be a ring object of a closed symmetric monoidal Grothendieck category V and let
[C ,V ] be the Grothendieck category with ObC = {∗} and VC (∗,∗) = R. There is a natural
functor

ϕ : R Mod→ [C ,V ]

defined as follows. Given a left R-module M, we set ϕ(M) : C → V to be a V -functor such
that (ϕ(M))(∗) = M and the structure map

ϕ(M) : V (∗,∗)→ V ((ϕ(M))(∗),(ϕ(M))(∗))

is the map adjoint to the structure map R⊗M→M.
The following lemma is straightforward.

Lemma 5.6. The functor ϕ : R Mod→ [C ,V ] is an isomorphism of categories.
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Example 5.7. To illustrate the previous lemma, let R be a commutative unital ring and let
A = A0⊕A1⊕·· · be a graded R-algebra. Then A is a ring object in [C ,V ] = GrR with respect
to the tensor product (9). We can regard A as a one object V -category, where V = GrR. In
our notation A = VGrR(∗,∗). Lemma 5.6 implies [C ,V ] ∼= AMod is a Grothendieck category.
Moreover, {A(n) = A�R(n)}n∈Z are generators by Theorem 4.2 (see as well Example 4.3).

Corollary 5.8. Let C be a small V -category, let c be any object of C , Sc = {G ∈ [C ,V ] |
G(c) = 0} and R = V (c,c). Under the notation of Theorem 5.3 and Lemma 5.6 the composite
functor

κ ◦ϕ : RMod→ [C ,V ]/Sc

is an equivalence of Grothendieck categories.

Proof. This follows from Theorem 5.3 and Lemma 5.6. �

6. COMPARING ChCR AND [modR,Ch(ModR)]

In the remaining sections we prove that the category of chain complexes of generalized mod-
ules ChCR over a commutative ring R can be identified with the category of enriched functors
[modR,Ch(ModR)], where the category of finitely presented modules modR is regarded as a
full subcategory of Ch(ModR) of complexes concentrated in zeroth degree and this single en-
try is finitely presented. As an application of this, we show that ChCR is a closed symmetric
monoidal category. We shall also establish that ChCR is a closed symmetric monoidal model
category with nice finiteness conditions. As another application, the derived category D(CR)
will be shown to be closed symmetric monoidal compactly generated triangulated category with
duality on compact objects. However, compact objects are not strongly dualisable as it will
be shown below. Thus D(CR) is an example of a category which satisfies all the axioms of a
unital algebraic stable homotopy theory in the sense of Hovey–Palmieri–Strickland [14] except
the property that compact objects are strongly dualisable. This kind of category is new for the
authors. We refer to these as unital algebraic almost stable homotopy theories, a basic example
of which is the category D(CR).

Let Ch(ModR) be the category of chain complexes of modules over a commutative ring R.
It is a closed symmetric monoidal cofibrantly generated and weakly finitely generated model
category by [13, sections II.3 and IV.2]. Weak equivalences are the quasi-isomorphisms and
fibrations are the surjective chain maps. The tensor product and internal Hom-object are defined
as above. The monoidal unit is the chain complex with the ring R concentrated in zeroth degree
and other degrees are zero.

The category of finitely presented modules modR is a small symmetric monoidal category
naturally enriched over ModR. Moreover, modR can also be enriched over ChModR if we
regard a module M ∈ modR as the chain complex with M concentrated in zeroth degree and
other degrees are zero. Given, M,N ∈modR the internal Hom-object is the chain complex

· · · → 0→ HomR(M,N)→ 0→ ·· ·

where HomR(M,N) is concentrated in zeroth degree. Observe that this complex equals Hom(M,N),
where M,N are regarded as complexes defined above.

If there is no likelihood of confusion, we shall also write the internal Hom-chain complex as
V (A•,B•), where A•,B• are two chain complexes. In other words,

V (A•,B•) := Hom(A•,B•).
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Following the notation of section 2 we denoted by [modR,Ch(ModR)] the category of enriched
functors from the small symmetric monoidal category modR to Ch(ModR) (see Definition 2.2).

Following Herzog [12], we define the category of generalized modules CR as

CR := (modR,Ab),

whose objects are the additive functors F : modR → Ab from the category of right finitely
presented R-modules modR to the category of abelian groups Ab. Its morphisms are the natural
transformations of functors. Similarly, the category RC consists of the additive functors from
the category of left finitely presented R-modules to Ab.

In Theorems 6.1-6.2 below we shall construct important identifications of categories. By
these we mean explicit isomorphisms of categories. The description of the isomorphisms is
lengthy and the reader can easily recover them from the proof of each of these theorems.

Theorem 6.1. Suppose R is a commutative ring. Then the category of generalized R-modules
CR can naturally be identified with the category [modR,ModR].

Proof. We briefly recall the proof from [3] for the convenience of the reader.
I. We first associate to any object in [modR,ModR] an object in CR.
Let F ∈ Ob[modR,ModR]. By Definition 2.2 F takes Ob(modR) to Ob(ModR) and for all

M,M′ ∈modR there is a R-module homomorphism

FMM′ : HomR(M,M′)→ HomR(F(M),F(M′)). (13)

Let f : M → M′ be a homomorphism in modR, then we set F( f ) to be the image of f in
HomR(M,M′) under (13). Observe that an R-module structure on F(M) is given by

x · r = FMM(r)(x)

for all x ∈ F(M) and r ∈ R. Here FMM(r) stands for the image of the right multiplication endo-
morphism r : M→M.

II. Next, we want to show that the morphisms of [modR,ModR] can naturally be regarded as
morphisms of CR.

We have to verify that V -natural transformations in [modR,ModR] are morphisms in CR.
Given F,G ∈ [modR,ModR], the first step shows that F,G ∈ CR. So given a V -natural transfor-
mation t in [modR,ModR], we want to prove that t yields a morphism in CR in a natural way.
For t we have structure homomorphisms in ModR (see Definition 2.3)

tM : R→ HomR(F(M),G(M)).

for all M,M′ ∈modR. For any M ∈ModR, set

τM := tM(1) : F(M)→ G(M).

Therefore t yields a natural transformation in CR

τ : F → G.

We see that morphisms in [modR,ModR] can naturally be regarded as morphisms of CR. So
F(M) ∈ModR.

III. In this step we shall show that any object F of CR can be regarded as an enriched functor
in [modR,ModR].

For any M ∈ modR we have that F(M) ∈ Ab. Let us show that F(M) is an R-module.
For all x ∈ F(M), we have to define x · r, where r ∈ R. The element r defines an R-module
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homomorphism r : M→M sending m ∈M to m · r. We have a morphism F(r) : F(M)→ F(M)
and we set

x · r := F(r)(x).

So F(M) ∈ModR. Now we define an enriched functor associated with F . We therefore define
a morphism in ModR

FMM′ : HomR(M,M′)→ HomR(F(M),F(M′)), FMM′( f ) := F( f ),

for all M, M′ in modR.
Next we construct diagram (4). We have that

uM : R→ HomR(M,M)

is given by the right multiplication homomorphism. One has

FMM(uM(r)) = F(r)

for all r ∈ R, and hence the diagram

R

uF(M)
''

uM // HomR(M,M)

FMM
��

HomR(F(M),F(M))

is commutative. The structure of an enriched functor for F , denoted by the same letter, is
completed.

So every object in CR can naturally be regarded as an enriched functor in [modR,ModR].
IV. In this step we shall show that morphisms in CR (recall that these are natural transforma-

tions of additive functors) can naturally be regarded as V -natural transformations in [modR,ModR],
i.e. as morphisms of [modR,ModR].

Let τ : F → G be any natural transformation in CR. Then for each object M ∈ modR, there
exists a homomorphism τM : F(M)→ G(M) in Ab and for each homomorphism f : M→M′ in
modR the diagram

F(M)

F( f )
��

τM // G(M)

G( f )
��

F(M′)
τM
// G(M′)

is commutative.
By above we can regard F,G as enriched functors. We want to show that τ yields a V -natural

transformation t between the V -functors F and G. For any M ∈modR define a map

tM : R→ HomR(F(M),G(M))

as tM(r) := τM ◦F(r) = G(r)◦τM. By definition, tM(1) = τM. Then the maps tM yield V -natural
transformations between the V -functors F and G. �

More generally, we have the following

Theorem 6.2. Suppose R is a commutative ring. Then the category of chain complexes of gen-
eralized R-modules Ch(CR) can naturally be identified with the category [modR,Ch(ModR)].
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Proof. Given M ∈modR we want to describe chain morphisms of the form:

· · · // 0 0 //

��

M 0 //

α

��

0 //

��

· · ·

· · · // V (A•,B•)1
∂1 // V (A•,B•)0

∂0 // V (A•,B•)−1 // · · ·

From the diagram we have ∂0α = 0. This means ∂0α(m) = 0, for all m ∈M.

α(m) ∈ V (A•,B•)0 = ∏
p∈Z

HomR(Ap,Bp)

α(m) = (αp(m) : Ap→ Bp)p∈Z

∂αp(m) = 0 = ∂αp(m)−α(m)p−1∂ .

We get a commutative diagram

· · · // Ap+1
∂p+1 //

αp+1(m)

��

Ap
∂p //

αp(m)

��

Ap−1 //

αp−1(m)

��

· · ·

· · · // Bp+1
∂p+1

// Bp
∂p

// Bp−1 // · · ·

This shows α(m) : A•→ B• is a chain map.
I. Consider a V -functor F ∈ [modR,Ch(ModR)]. By definition, we have F(M)∈Ch(ModR)

for any M in modR. We also have a map

FMM′ : V (M,M′)→ V (F(M),F(M′)) ∈ Ch(ModR).

This is the same as a chain map

FMM′ : (· · · → 0→ HomR(M,M′)→ 0→ · · ·)−→ Hom(F(M),F(M′)).

By above we have a chain map

FMM′( f ) : F(M)→ F(M′)

for all f ∈ HomR(M,M′). It is directly verified that FMM(idM) = idF(M) and FMM′′(g f ) =
FM′M′′(g)FMM′( f ) for any g ∈ HomR(M′,M′′) (see Definition 2.2).

If we observe that ChCR is the same as the category (modR,Ch(Ab)) of additive functors
from modR to Ch(Ab), it follows that the enriched functor F gives rise to an object in ChCR.
We denote this object by the same letter.

II. Now let α : F ⇒ G be a V -map in [modR,Ch(ModR)]. It consists of giving a chain map

αM : (0→ R→ 0)−→ V (F(M),G(M)) = Hom(F(M),G(M)),
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which is equivalent to giving a chain map αM(r) : F(M)→ G(M) for all r ∈ R, such that the
following diagram commutes

(0→ HomR(M,M′)→ 0)

l−1
V (M,M′)

{{

r−1
V (M,M′)

$$
(0→ R→ 0)⊗ (0→ HomR(M,M′)→ 0)

αM⊗GMM′

��

(0→ HomR(M,M′)→ 0)⊗ (0→ R→ 0)

FMM′ ⊗αM′

��
V (F(M),G(M))⊗V (G(M),G(M′))

cF(M)G(M)G(M′)

$$

V (F(M),F(M′))⊗V (F(M′),G(M′))

cF(M)F(M′)G(M′)

{{
V (F(M),G(M′))

The diagram implies the following:
(a) For all r∈R and f ∈HomR(M,M′) the chain map c(αM(r)⊗GMM′( f )) : F(M)→G(M′)

equals the chain map GMM′( f )◦αM(r).
(b) For all r ∈R and f ∈HomR(M,M′) the chain map c(FMM′( f )⊗αM(r)) : F(M)→G(M′)

equals αM′(r)◦FMM′( f ).
So we get a commutative diagram

F(M)
αM(r) //

FMM′ ( f )
��

G(M)

GMM′ ( f )
��

F(M′)
αM′ (r)

// G(M′)

Thus αM(r) : F(M)→ G(M) gives rise to a morphism in (modR,Ch(Ab)) = ChCR.
We shall associate to the enriched map α : F ⇒ G in [modR,Ch(ModR)] the map F → G in

ChCR given by the chain maps αM(1) : F(M)→ G(M), M ∈ modR. We denote the associated
chain map by the same letter α .

III. By Theorem 6.1 the category Ch[modR,ModR] is identified with ChCR. Let F• ∈
Ch[modR,ModR], so we have a chain complex

F• = · · · // Fn+1
∂n+1 // Fn

∂n // Fn−1
∂n−1 // · · ·

with each Fn ∈ [modR,ModR] and each ∂n being a V -natural transformation from modR to
ModR. We have to associate a V -functor in [modR,Ch(ModR)] to F•.

If M ∈modR then

F•(M) = · · · // F(M)n+1
∂n+1,M(1)

// F(M)n
∂n,M(1)

// F(M)n−1
∂n−1,M(1)

// · · · ∈ Ch(ModR)
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Also, for any map f : M→M′ ∈ modR we have that F•( f ) : F•(M)→ F•(M′) is a chain map,
because each square of the following diagram is commutative

· · · // Fn+1(M)
∂n+1 //

FMM′ ( f )
��

Fn(M)
∂n //

FMM′ ( f )
��

Fn−1(M) //

FMM′ ( f )
��

· · ·

· · · // Fn+1(M′)
∂n+1

// Fn(M′)n
∂n

// F(M′)n−1, // · · ·

Thus FMM′( f ) is a chain map, and hence one gets a chain map

FMM′ : (· · · → 0→ HomR(M,M′)→ 0→ · · ·)−→ Hom(F•(M),F•(M′)).

Since FMM(idM) = idF•(M) and FMM′′(g f ) = FM′M′′(g)FMM′( f ) for all g ∈ HomR(M′,M′′), F•
yields a V -functor in [modR,Ch(ModR)] denoted by the same letter.

IV. Next let β : F• → G• be a chain map in Ch[modR,ModR], then we have the following
commutative diagram

· · · // Fn+1
∂n+1 //

βn+1
��

Fn
∂n //

βn
��

Fn−1 //

βn−1
��

· · ·

· · · // Gn+1
∂n+1

// Gn
∂n

// Gn−1 // · · ·

Note that each βn,M : R→ HomR(Fn(M),Gn(M)) is such that diagram (5) is commutative for it.
So we are given maps βn,M(r) : Fn(M)→ Gn(M) for all r ∈ R.

One has a commutative diagram for all r ∈ R

· · · // Fn+1(M)
∂n+1,M(1)

//

βn+1,M(r)

��

Fn(M)
∂n,M(1)

//

βn,M(r)

��

Fn−1(M) //

βn,M(r)

��

· · ·

· · · // Gn+1(M)
∂n+1,M(1)

// Gn(M)
∂n,M(1)

// Gn−1(M)) // · · ·

In particular, βM(r) : F•(M)→ G•(M) is a chain map.
Now we want to show that the diagram

F•(M)
βM(r) //

F•( f )

��

G•(M)

G•( f )

��
F•(M′)

βM′ (r)
// G•(M′)

(14)
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commutes. Commutativity of diagram (5) implies commutativity of the following diagram for
all n ∈ Z:

Fn(M)
βn,M(r)

//

Fn( f )

��

Gn(M)

Gn( f )

��
Fn(M′)

βn,M′ (r)
// Gn(M′)

Commutativity of the latter together with the facts that βM(r),G•( f ),F•( f ) are all chain maps
is enough to check commutativity of (14) as shown in the diagram below

Fn+1(M)
dn+1 //

βn+1,M(r)

��

Fn+1( f )

xx

Fn(M)

βn,M(r)

��

Fn( f )

zz
Fn+1(M′)

dn+1 //

βn+1,M′ (r)

��

Fn(M′)

βn,M′(r)

��

Gn+1(M)
dn+1 //

Gn+1( f )

xx

Gn(M)

Gn( f )zz
Gn+1(M′) dn+1

// Gn(M′)

Thus we have constructed a V -natural map β : F•→ G•.
It is now easily verified that associations given in steps I–IV yield the desired isomorphisms

of categories [modR,Ch(ModR)] and ChCR. �

We are now in a position to prove the main result of this section.

Theorem 6.3. Let R be a commutative ring, then Ch(CR) is a left and right proper closed
symmetric monoidal V -model category, where V = Ch(ModR), and the monoid axiom in the
sense of Schwede–Shipley [23] is satisfied. The tensor product of two complexes F•,G• ∈Ch(CR)
is given by

F•�G• =
∫ (M,N)∈modR⊗modR

F•(M)⊗R G•(N)⊗R HomR(M⊗R N,−). (15)

Here HomR(M⊗R N,−) is regarded as a complex concentrated in zeroth degree. The internal
Hom-object is defined as

Hom(F•,G•)(M) =
∫

N∈modR
HomCh(ModR)(F•(N),G•(M⊗R N)). (16)

Proof. By Theorem 6.2 we know that ChCR can be identified with the category [modR,Ch(ModR)].
Note that modR is symmetric monoidal category enriched over Ch(ModR). Now formulas (15)-
(16) as well as the fact that ChCR is closed symmetric monoidal follow from Theorem 2.11.

It remains to show that ChCR is a left and right proper closed symmetric monoidal V -model
category, and the monoid axiom is satisfied. Since ChCR can be identified with [modR,Ch(ModR)]
by Theorem 6.2, it is enough to verify this for [modR,Ch(ModR)]. The category Ch(ModR) is a
closed symmetric monoidal cofibrantly generated model category, where the weak equivalences
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are quasi-isomorphisms and the fibrations are surjective chain morphisms (see [13, 2.3.11]
and [13, 4.2.13]). Moreover, Ch(ModR) is weakly finitely generated in the sense of [5, Section
3.1]. Also, Ch(ModR) satisfies the monoid axiom in the sense of [23]. It follows from [5, 4.2]
that [modR,Ch(ModR)] is a weakly finitely generated model category, where fibrations and
weak equivalences are defined objectwise. Furthermore, [modR,Ch(ModR)] is a monoidal V -
enriched model category satisfying the monoid axiom by [5, 4.4], because modR is a symmetric
monoidal category enriched over Ch(ModR). Finally, [5, 4.8] implies [modR,Ch(ModR)] is
both left and right proper. �

Corollary 6.4. Let R be a ring object in Ch(CR). Then the category of left R-modules is a
cofibrantly generated model Grothendieck category. If R is a commutative ring object, then
the category of R-modules is a cofibrantly generated, monoidal model category satisfying the
monoid axiom, and the category of R-algebras is a cofibrantly generated model category.

Proof. This is a consequence of Lemma 5.6, Theorem 6.3 and [23, 4.1]. �

Example 6.5. A typical example of a ring object in Ch(CR) is constructed as follows. Let C be
a finitely presented R-module. We regard the representable functor (C,−) ∈ CR as a complex in
zeroth degree. Lemma 2.12 implies a natural isomorphism of representable functors

(C,−)� (C,−)∼= (C⊗R C,−).

It follows that (C,−) is a ring object of Ch(CR) if and only if C is an R-coalgebra. It is a
commutative ring object if and only if C is a cocommutative R-coalgebra. By the previous
corollary we have a Grothendieck model category of (C,−)-modules inside Ch(CR).

7. ALMOST STABLE HOMOTOPY CATEGORY STRUCTURE FOR D(CR)

In this section we give an application of Theorem 6.3. Namely, we prove that the derived
category D(CR) of the Grothendieck category of generalized modules is a closed symmetric
monoidal compactly generated triangulated category with duality on compact objects. How-
ever, compact objects are not strongly dualizable as it will be shown below. Thus D(CR) is
an example of a category which satisfies all the axioms of a unital algebraic stable homotopy
theory in the sense of Hovey–Palmieri–Strickland [14] except the property that compact objects
are strongly dualizable. We refer to these as unital algebraic almost stable homotopy categories.
A basic example of this class of categories is D(CR).

Definition 7.1. Let C be a triangulated category in which all set indexed direct sums exist. An
object A of C is called compact if the canonial map⊕

i∈I

Hom(A,Ei)→ Hom(A,
⊕
i∈I

Ei)

is an isomorphism for any set of objects Ei in C and i ∈ I. A triangulated category C is com-
pactly generated if there is a set S of compact objects with the following property, if for every
object E ∈ C we have

Hom(A,E) = 0 for all A ∈ S implies E = 0.

Recall that the derived tensor product F• �L G• of two complexes in ChCR is defined as
Fc
• �Gc

•, where Fc
• ,G

c
• are cofibrant replacements of F• and G• respectively in the monoidal

model category ChCR. We start with the following
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Theorem 7.2. Let R be a commutative ring. Then the derived category D(CR) of the Grothendieck
category CR is a compactly generated triangulated closed symmetric monoidal category, where
formulas (15) and (16) yield the derived tensor product F•�L G• and derived internal Hom-
object RHom(F•,G•). The compact objects of D(CR) are the complexes isomorphic to bounded
complexes of coherent functors in cohCR.

Proof. By Theorem 6.3 Ch(CR) is a left and right proper closed symmetric monoidal V -model
category with V = Ch(ModR) and the weak equivalences quasi-isomorphisms. Hence the de-
rived category D(CR) is identified with the homotopy category Ho(Ch(CR)), because both cat-
egories are obtained from Ch(CR) by inverting the quiasi-isomorphisms (see [13, §1.2] and [25,
§10.4]). But the latter category is a closed symmetric monoidal category by [13, 4.3.2] with
derived tensor product and internal interal Hom-functors induced by (15) and (16) from Theo-
rem 6.3.

Since CR is a Grothendieck category with finitely generated projective generators {(M,−)}M∈modR,
then its derived category D(CR) is a compactly generated triangulated category. The com-
pact objects are those complexes which are isomorphic in D(CR) to bounded complexes of
representable functors. They are also called perfect complexes. Since every coherent functor
C ∈ cohCR has a resolution (see, e.g., [12, 2.1])

0 // (L,−) // (K,−) // (M,−) // C // 0,

where K,L,M ∈ modR, then every bounded complex of coherent functors is quasi-isomorphic
to a bounded complex of representable functors. It follows that every bounded complex of
coherent functors is quasi-isomorphic to a perfect complex. This finishes the proof. �

Remark 7.3. A monoidal unit in ChCR and D(CR) is (R,−)∼=−⊗R R regarded as a complex
concentrated in zeroth degree.

Definition 7.4. Let V be a closed symmetric monoidal additive category, with monoidal product
x⊗ y, unit e, and internal function objects V (x,y). An object x ∈ V is strongly dualizable if the
natural map V (x,e)⊗ y→ V (x,y) is an isomorphism for all y. We shall also write x∨ to denote
V (x,e).

It follows from [17, Theorem 7.1.6] that the functor

x ∈ V 7→ x∨ ∈ V

puts the full subcategory of strongly dualizable objects of V in duality.

We want to show below that D(CR) has a duality on compact objects but these are not strongly
dualizable in general. To this end we shall need the categorical duality

D : (cohCR)
op→ coh RC

of Auslander [1] and Gruson–Jensen [10] (see [12] as well) defined over any non-commutative
ring R as follows. Given RN ∈ Rmod, we have

(DC)(RN) := HomCR(C,−⊗R N).

If η : B→C is a morphism in cohCR, then

D(η)N : D(C)(RN)→ D(B)(RN)

is defined to be HomCR(η ,−⊗R N). For MR ∈modR and RN ∈ Rmod we have that

D(MR,−)∼= M⊗R− and D(−⊗R N)∼= (RN,−).
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We shall refer to this duality as the Auslander–Gruson–Jensen Duality.
Suppose now R is commutative. Then the category CR is closed symmetric monoidal for the

same reasons that ChCR is. The monoidal product C�C′ and internal Hom-object Hom(C,C′)
are computed by formulas, which are similar to (15)-(16). It can also be shown that the Auslander–
Gruson–Jensen Duality D defined above is isomorphic to the internal Hom-functor

Hom(−,(R,−))∼= Hom(−,−⊗R R)

(we refer the reader to [3] for further details).
The following example shows that compact objects of D(CR) are not strongly dualizable in

general.

Example 7.5. There are objects C ∈D(CR)
c and X ∈D(CR) such that the natural arrow

C∨�L X → RHom(C,X) (17)

is not an isomorphism, where

C∨ := RHom(C,−⊗R R) = RHom(C,(R,−)).

Let R = Z and M = N = Z2 ∈modZ. We have an exact sequence

0 // Z 2 // Z // Z2 // 0.

We want to compute (−⊗M)∨�L−⊗N = (−⊗Z2)
∨�L−⊗Z2.

To compute (−⊗Z2)
∨, consider a projective resolution for −⊗Z2 in CZ

0 // (Z2,−) // (Z,−)
(2,−) // (Z,−) // −⊗Z2 // 0.

Then (−⊗Z2)
∨ is the value of Hom(−,(Z,−)) at the projective resolution of −⊗Z2. Since

Hom(−,(Z,−)) puts the category of coherent objects cohCZ in duality and takes representable
functors (L,−) to −⊗L, then (−⊗Z2)

∨ is the complex

· · · → 0→−⊗Z→−⊗Z→−⊗Z2→ 0→ ···

This complex has only one non-zero homology group (Z2,−), which we place in zeroth degree
as a complex. We see that (−⊗Z2)

∨ ∼= (Z2,−).
We take a projective resolution for −⊗N in cohCZ as above

0 // (Z2,−) // (Z,−)
(2,−) // (Z,−) // −⊗Z2 // 0.

Tensoring it with (M,−) = (Z2,−) we get (M,−)�L−⊗N which is the complex

· · · → 0→ (Z2,−)� (Z2,−)→ (Z2,−)� (Z,−)→ (Z2,−)� (Z,−)→ 0→ ···

By Lemma 2.12 it equals the complex

· · · // 0 // (Z2,−) // (Z2,−)
0 // (Z2,−) // 0 // · · ·

Note that evaluation of this complex at Z is zero.
Now compute RHom(−⊗M,−⊗N). It is the value of Hom(−,−⊗N) at the projective

resolution of −⊗M

0 // (Z2,−) // (Z,−)
(2,−) // (Z,−) // −⊗M // 0.

26



Applying Hom(−,−⊗N) to the complex

0 // (Z2,−) // (Z,−)
(2,−) // (Z,−) // 0

we get a complex

0→ Hom((Z,−),−⊗Z2)→ Hom((Z,−),−⊗Z2)→ Hom((Z2,−),−⊗Z2)→ 0

Using The Enriched Yoneda Lemma 2.8, it is equal to

0 // −⊗Z2
0 // −⊗Z2

∼= // −⊗Z2 // 0.

The value of this complex at Z has non-trivial homology. We conclude that (17) cannot be an
isomorphism in general. We conclude that compact objects of D(CR) are not strongly dualiz-
able.

Lemma 7.6. The triangulated category D(CR)
c of compact objects of D(CR) is triangle equiv-

alent to the derived category Db(cohCR) of bounded complexes in cohCR.

Proof. By the proof of Theorem 7.2 D(CR)
c is triangle equivalent to the full subcategory

D̃(CR)
c of bounded complexes in cohCR. Let

X
v

~~ ��
M N

be a morphism in D(CR) with M,N ∈ D̃(CR)
c. Let P→M be a projective resolution of M. Then

P is in D̃(CR)
c and P is isomorphic to X in D(CR). But P is a bounded complex of projectives

in CR. Therefore there is a quasi-isomorphism P→ X . Then we get a diagram in D̃(CR)
c

P

v
��

X
v

~~ ��
M N

By [16, 9.1] the natural functor

Db(cohCR)→ D̃(CR)
c

is fully faithful. But the objects are the same, and therefore these subcategories of D(CR)
coincide. �

Lemma 7.7. There is a triangle equivalence of triangulated categories Db(cohCR) and Db((cohCR)
op)

taking X ∈Db(cohCR) to Hom(X ,−⊗R).

Proof. By [3] Hom(−,−⊗R) : cohCR → (cohCR)
op is an equivalence of abelian categories.

Moreover, this functor is isomorphic to the Auslander–Gruson–Jensen duality (see [3, 4.6]). The
fact that equivalent abelian categories have equivalent derived categories finishes the proof. �

Corollary 7.8. Db(cohCR) is triangle equivalent to (Db(cohCR))
op.

Proof. This follows from the previous lemma and the fact that Db(A op) is triangle equivalent
to (Dc(A ))op for any abelian category A . �
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We are now in a position to prove the following

Theorem 7.9 (Auslander–Gruson–Jensen Duality for compact objects). Let D(CR)
c be the full

triangulated subcategory of D(CR) of compact objects. Then there is a duality

D : (D(CR)
c)op→D(CR)

c

that takes a compact object C• to

DC• := RHom(C•,−⊗R R).

Proof. By Lemma 7.6 D(CR)
c 'Db(cohCR). Let Db(projCR) be a full subcategory of D(CR)

c

consisting of bounded complexes of representable coherent functors. The composition

Db(projCR) // D(CR)
c ' // Db(cohCR)

is an equivalence of triangulated categories.
Lemma 7.7 and Corollary 7.8 imply Hom(−,−⊗R) is an equivalence of triangulated cate-

gories D(cohCR)' (Db(cohCR))
op.

Now the composite of equivalences

Db(projCR)→D(CR)
c→Db(cohCR)→ (Db(cohCR))

op→ (D(CR)
c)op

computes the desired equivalence RHom(−,−⊗R) of triangulated categories. �

Definition 7.10 (Hovey–Palmieri–Strickland [14]). A stable homotopy category is a category
C with the following extra structure:

(1) A triangulation.
(2) A closed symmetric monoidal structure, compatible with the triangulation.
(3) A set G of strongly dualizable objects of C , such that the only localizing subcategory

of C containing G is C itself.
We also assume that C satisfies the following:

(4) Arbitrary coproducts of objects of C exist.
(5) Every cohomology functor on C is representable.

We shall say that such a category C is algebraic if the objects of G are compact. If, in
addition, the unit object e is compact, we say that C is unital algebraic.

Definition 7.11. An almost stable homotopy category is a category C which satisfies axioms
(1)-(2) and (4)-(5) for a stable homotopy category and the following axiom:

(3′) There is a full small subcategory G of C with duality D : G op→ G , such that the only
localizing subcategory of C containing G is C itself.

Algebraic and unital algebraic almost stable homotopy categories are defined as in Defini-
tion 7.10.

Remark 7.12. Every stable homotopy category C with generating set of strongly dualizable
objects G is an almost stable homotopy category. Indeed, we can assume without loss of gener-
ality that x∨ ∈ G for every x ∈ G , and then the full subcategory of C whose objects are those of
G has a duality x 7→ x∨ and generates C . The following theorem shows that there are algebraic
almost stable homotopy categories which are not stable homotopy categories.

Theorem 7.13. Let R be a commutative ring. Then D(CR) is a unital algebraic almost stable
homotopy category, which is not an algebraic stable homotopy category in the sense of Defini-
tion 7.10.
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Proof. Let G be the full subcategory of compact objects of D(CR). The fact that D(CR) is a
unital algebraic almost stable homotopy category follows from Theorems 7.2 and 7.9. We also
use here the fact that every cohomology functor on a compactly generated triangulated category
is representable by a theorem of Neeman [19, Theorem 3.1].

Suppose D(CR) is generated by compact strongly dualizable objects G as required for an
algebraic stable homotopy category. By [14, Theorem A.2.5] we may assume without loss of
generality that G is a thick subcategory in the triangulated category of compact objects. If
G generated D(CR), then another theorem of Neeman [19, Theorem 2.1] would imply that G
contains all compact objects. But Example 7.5 shows that compact objects of D(CR) are not
strongly dualizable in general. This contradiction finishes the proof. �
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