
Relative Homological Algebra for the Proper Class xf
#

Grigory Garkusha*

International Centre for Theoretical Physics, Trieste, Italy

ABSTRACT

Homological algebra based on fp-injective and fp-flat modules is studied. It can

be realized as relative homological algebra corresponding to the proper class of
monomorphisms

of ¼ fm jRI � m is a monomorphism for any power RI of a ring Rg:

Also, the corresponding homological functors Extf and Torf as well as various
homological dimensions are investigated.

Key Words: Relative homological algebra; Homological dimensions;
Homological functors on modules.

2000 Mathematics Subject Classification: Primary 18G25; Secondary 16E10,
16E30.

#Communicated by R. Wisbauer.

*Correspondence: Grigory Garkusha, International Centre for Theoretical Physics, Strada
Costiera 11, I-34014 Trieste, Italy; Fax: +39-040-2240490; E-mail: ggarkusha@mail.ru.

COMMUNICATIONS IN ALGEBRA�

Vol. 32, No. 10, pp. 4043–4072, 2004

4043

DOI: 10.1081/AGB-200028236 0092-7872 (Print); 1532-4125 (Online)

Copyright # 2004 by Marcel Dekker, Inc. www.dekker.com



ORDER                        REPRINTS

The main object of this paper is to study homological aspects as well as further
properties of fp-injective and fp-flat modules. These were introduced in Garkusha
and Generalov (1999) to characterize FP-injective and weakly quasi-Frobenius rings.
Both classes of modules are definable (¼elementary) in the first order language of
modules and naturally generalize the corresponding classes of FP-injective and flat
modules.

Homological algebra based on FP-injective and flat modules is well studied and
was developed in the 1970s (see e.g., Jain, 1973; Sklyarenko, 1978b; Stenström, 1970).
One would like to construct homological algebra based on fp-injective and fp-flat
modules. In this paper, we shall show that such homological algebra can be realized
as relative homological algebra corresponding to the proper class of monomorphisms

of ¼ fm jRI � m is a monomorphism for any power RI of a ring Rg:

The corresponding relative injective and relative flat modules, we call them f-injective
and f-flat modules respectively, correspond to fp-injective pure-injective modules and
fp-flat modules.

There are many results of a homological nature which may be generalized from
Noetherian rings to coherent rings. In this direction, finitely generated modules are
replaced by finitely presented modules and injective modules should be replaced by
FP-injective modules (see Sklyarenko, 1978b; Stenström, 1970). In our situation ana-
logous results, which are related to the relative homological algebra we construct in
this paper, are valid for all rings. This phenomenon can be explained as follows. The
classical Chase theorem (see Stenström, 1975) states that a ring R is left coherent iff
each power RI of I copies of the ring R is a flat right R-module. But if we consider
only those exact sequences under which the functor RI �R � is exact, we shall arrive
at the proper class of .

Relative homological algebra is a classical subject, thanks to works by
Eilenberg–Moore (1965) and Butler–Horrocks (1961). However these give us little
information for our case. The idea is to use some localization of the category of
generalized modules

RC ¼ ðmodR;AbÞ

to turn the relative homological algebra with respect to of into an absolute one.
Every time we deal with definable subcategories the category RC is of great

utility in this context as well as torsion theories of finite type of RC (consult e.g.,
the works Herzog, 1997; Krause, 2001). For this reason the majority of statements
of the paper is proved by using the technique of torsion=localizing functors in RC.

The paper is organized as follows. The first two sections are preliminary. There
we present the necessary category-theoretic background and introduce the proper
class of as a class of monomorphisms of a certain quotient category in RC. In
Sec. 3 the classes of f-injective and f-flat modules are investigated. In Sec. 4 we study
basic properties for the functors Extf and Torf which are related to f-injective and
f-flat resolutions. Also, certain homological dimensions are discussed in this section.
In Sec. 5 we describe the relative derived category DfðRÞ and the functor Extf as
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Hom-sets in DfðRÞ. In the remaining section we study the relationship of the
G-theory of a ring with the K-theory of some abelian subcategories of RC.

Throughout the paper R denotes a ring with identity. The category of left
(respectively right) R-modules is denoted by RMod (respectively ModR) and
the category of finitely presented left (respectively right) R-modules by Rmod
(respectively modR).

1. THE CATEGORY OF GENERALIZED MODULES

The category of generalized left R-modules

RC ¼ ðmodR;AbÞ

consists of additive covariant functors defined on the category of finitely presented
right R-modules mod R with values in the category of abelian groups Ab. In this
section we collect basic facts about the category RC. For details and proofs we refer
the reader to Herzog (1997) and Krause (2001), for example. All subcategories
considered are assumed to be full.

We say that a subcategory S of an abelian category C is a Serre subcategory if
for any short exact sequence

0�!X�! Y �!Z�! 0

in C an object Y 2 S if and only if X, Z 2 S. A Serre subcategory S of a
Grothendieck category C is localizing if it is closed under taking direct limits.
Equivalently, the inclusion functor i : S! C admits the right adjoint t ¼
tS : C!S which takes every object X 2 C to the maximal subobject tðXÞ of X

belonging to S (Krause, 1997). The functor t we call the torsion functor. An object
C of RC is said to be S-torsionfree if tðCÞ ¼ 0. Given a localizing subcategory S of

RC the quotient category RC=S consists of C 2 RC such that tðCÞ ¼ t1ðCÞ ¼ 0. The
objects from RC=S we call S-closed objects. Given C 2 RC there exists a canonical
exact sequence

0�!A0 �!C �!lC CS�!A00 �! 0

with A0 ¼ tðCÞ, A00 2S, and where CS 2 RC=S is the maximal essential extension ofeCC ¼ C=tðCÞ such that CS=eCC 2 S. The object CS is uniquely defined and is called the
S-envelope of C. Moreover, the inclusion functor i : RC=S! RC has the left
adjoint localizing functor ð�ÞS : RC! RC=S, which is also exact. It takes each
C 2 RC to CS 2 RC=S. Then,

Hom
RCðX; Y Þ ’ Hom

RC=SðXS; Y Þ

for all X 2 RC and Y 2 RC=S.
An object X of a Grothendieck category C is finitely generated if whenever there

are subobjects Xi � X with i 2 I satisfying X ¼P
i2I Xi, then there is a finite subset

J � I such that X ¼P
i2J Xi. The subcategory of finitely generated objects is denoted
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by fg C. A finitely generated object X is said to be finitely presented if every
epimorphism g : Y ! X with Y 2 fgC has the finitely generated kernel Ker g. By
fpC we denote the subcategory consisting of finitely presented objects. Finally, we
refer to a finitely presented object X 2 C as coherent if every finitely generated
subobject of X is finitely presented. The corresponding subcategory of coherent
objects will be denoted by cohC.

The category RC is a locally coherent Grothendieck category, i.e., every object
C 2 RC is a direct limit C ¼ lim

�! I
Ci of coherent objects Ci 2 coh RC. The category

coh RC is abelian. Moreover, RC has enough coherent projective generators
fðM;�ÞgM2modR. Thus, every coherent objectC 2 coh RChas a projective presentation

ðN ;�Þ�!ðM;�Þ�!C�! 0;

where M, N 2 modR.
A localizing subcategory S of RC is of finite type if the inclusion functor

i : RC=S! RC commutes with direct limits. Then the quotient category RC=S is
locally coherent and coh RC=S ¼ fCS jC 2 coh RCg.

Proposition 1.1. For a localizing subcategoryS of RC the following are equivalent:

(1) S is of finite type.
(2) The inclusion functor i : RC=S! RC commutes with direct unions.
(3) The torsion functor tS commutes with direct limits.

Proof. The equivalence ð1Þ()ð2Þ is a consequence of Garkusha (2001a, Theorem
5.14); ð1Þ()ð3Þ follows from Krause (1997, Lemma 2.4). &

By a result of Herzog and Krause (Herzog, 1997; Krause, 1997) a localizing sub-
category in RC is of finite type iff it has the form ~SS with S some Serre subcategory
of coh RC and

~SS ¼
n
lim
�! i2I

Ci jCi 2S
o
:

We say that M 2 RC is a coh-injective object if Ext1
RC
ðC;MÞ ¼ 0 for any

C 2 cohRC. The fully faithful functor ��R? : RMod! RC, M 7!��R M, identifies
RMod with the subcategory of coh-injective objects of RC. Moreover, the functor
��R M 2 coh RC iff M 2 Rmod. Given C 2 coh RC there is an exact sequence

0�!C�!��R M�!��R N

in coh RC with M, N 2 Rmod.
A monomorphism m : M ! N in RMod is a pure monomorphim if for any

K 2ModR the morphism K � m is a monomorphism. Equivalently, the RC-morph-
ism �� m is a monomorphism. A module Q is pure-injective if the functor
HomRð�;QÞ takes the pure monomorphisms to epimorphisms. The injective objects
of RC are precisely the objects of the form ��R Q with Q a pure-injective module.
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Let M be a left module; then

SM ¼ fC 2 coh RC j ðC;��R MÞ ¼ 0g

is Serre. Furthermore, every Serre subcategory of coh RC arises in this fashion.

Proposition 1.2. Let SM be the Serre subcategory of coh RC cogenerated by a left
R-module M. Denote by X the subcategory of RMod consisting of the modules
of the form lim

�! k2K
MIk with some sets of indices K and Ik; k 2 K, and MIk the

product of Ik copies of M. Then an object F of RC is SM-torsionfree iff it is a
subobject of ��R L with L 2 X. Moreover,

~SSM ¼ fF 2 RC j ðF ;��R LÞ ¼ 0 for all L 2 Xg:

Proof. The proof is like that of Krause (2001, Theorem 2.1). Let C 2 coh RC and IC
denote the set ðC;��R MÞ. We have an exact sequence

0�!X�!C �!r ��R MIC : ð1:1Þ

Here we use the relation ð��R MÞIC ¼ ��R MIC . We claim that X ¼ tðCÞ. Indeed,
if we apply the left exact SM-torsion functor to (1.1), we shall obtain

0�! tðXÞ�! tðCÞ�! tð��R MICÞ ¼ 0:

Therefore tðCÞ ¼ tðXÞ � X. Let Y be a finitely generated subobject of X such that
there exists a non-zero morphism j : Y ! ��R M. Since ��R M is coh-injective,
j can be extended to a non-zero morphism c : C ! ��R M. But c factors through
r. Hence j ¼ 0, a contradiction to our assumption. Thus X ¼ tðCÞ.

Consider a direct limit of coherent objects C ¼ lim
�! k2K

Ck. Then the sequence

0�! lim�! tðCkÞ ¼ tðCÞ�!C�! lim�! Ck=tðCkÞ ¼ C=tðCÞ�! 0

is exact. Given k 2 K fix the monomorphism Ck=tðCkÞ ! ��R MICk constructed as
above. Let Jk ¼ fj 2 K j k � jg and Ik ¼ ICk

� Jk. The canonically defined mono-
morphisms Ck=tðCkÞ ! ��R MIk , k 2 K, induce a monomorphism C=tðCÞ !
��R L with L ¼ lim

�! k2K
MIk 2 X. Thus the SM-torsionfree objects of RC are

precisely the subobjects of the functors ��R L with L 2 X.

Next, it is easy to see that ðC;��R LÞ ¼ 0 for C 2 ~SSM and L 2 X. Given an
object F 2 RC the relation ðF ;��R LÞ ¼ 0, for all L 2 X, implies the relation
ðF=tðFÞ;��R LÞ ¼ 0. Therefore F ¼ tðFÞ, as claimed. &

We refer to the subcategory

Z ¼ fN 2 R Mod j ��R N is SM-torsionfreeg

as a definable subcategory.
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Corollary 1.3. A left R-module belongs to Z iff it is a pure submodule of a module
L from X.

In the sequel, we use the following Serre subcategories of coh RC:

SR ¼ fC 2 coh RC jCðRÞ ¼ 0g
SR ¼ fC 2 coh RC j ðC;��R RÞ ¼ 0g;

as well as the localizing subcategories of finite type ~SSR and ~SSR

~SSR ¼ fC 2 RC jC ¼ lim�! Ci;Ci 2SRg
~SSR ¼ fC 2 RC jC ¼ lim�! Ci;Ci 2SRg:

The corresponding ~SSR-torsion and ~SSR-torsion functors will be denoted by tSR and
tSR

respectively.

2. PROPER CLASSES

Let T denote the functor that takes a left R-module M to the object ð��R MÞSR

in RC=~SS
R.

Lemma 2.1. The functor T is fully faithful, right exact and preserves direct limits.

Proof. Let PR denote the localizing subcategory fF 2 RC jFðRÞ ¼ 0g in RC. Then
the functor M 7!PðMÞ ¼ ð��R MÞPR induces an equivalence between RMod and

RC=P
R (Garkusha and Generalov, 2001). A quasi-inverse functor to P is induced

by the functor RC!ModR taking an object F of RC to FðRÞ. Since ~SSR � PR

the functor P factors as P ¼ L � T , where L : RC=~SS
R ! RC=P

R is the localization
functor with respect to the localizing subcategory PR=~SSR. It follows that T is
faithful.

To show that T is full, it suffices to prove that the map LðmÞ : LTðMÞ ! LTðNÞ
with 0 6¼ m : TðMÞ ! TðNÞ is non-zero. Assume the converse. Then mðRÞ ¼ 0 and,
hence, D ¼ Coker

RCm belongs to PR.
Let l : TðNÞ ! LTðNÞ denote the PR-envelope of TðNÞ in RC. Then lm ¼ 0 and

therefore l factors through D. Since LTðNÞ is PR-torsionfree, wee see that l ¼ 0.
This implies that TðNÞ belongs to PR and thus N ¼ 0. It follows that TðNÞ ¼ 0,
a contradiction.

Since both the tensor functor and the localizing functor preserve direct limits
(right exact), then so does T . &

A class of monomorphisms o of RMod is proper if it satisfies the following
axioms:

(P0) o contains all split monomorphisms.
ðP1) The composition of two monomorphisms in o, if defined, is also in o.
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ðP2Þ If a pushout diagram

A �!s B

m   m
0

A0 �!
s0

B0
ð2:1Þ

has s 2 o, then s0 2 o.
ðP3Þ If st 2 o, then t 2 o.

Proposition 2.2. The class of R-monomorphisms

of ¼ fm jTm is a monomorphismg

satisfies the axioms P0�P3.

Proof. The axioms P0�P1 and P3 are obvious. If the square (2.1) is pushout, then
the sequence

A !ð�m;sÞT
A0 � B !ðs0;m0Þ

B0 �! 0 with ðs0; m0Þ ¼ cokerð�m; sÞT is exact:

By Lemma 2.1 the sequence

TA !ð�Tm;TsÞT
TA0 � TB !ðTs0;Tm0Þ

TB0 �! 0

is exact. Thus TB0 ¼ TA0
‘

TA TB. Since Ts is a monomorphism, it follows that Ts0 is
a monomorphism. This implies the claim. &

By Lemma 2.1 the proper class of is inductively closed, i.e., given any
direct system fmigi2I of monomorphisms from of the morphism lim�! mi is in of .
Below we shall show (see Proposition 3.10) that

of ¼ fm jRI � m is a monomorphism for any power RIof Rg:

The most obvious example of a monomorphism in of is a pure monomorphism,
because it is a direct limit of split monomorphisms (Sklyarenko, 1978a, Theorem
6.2). We say that a module M is coinjective if any extension of M belongs to of .
As an example, every extension m : M ! E of a finitely presented module
M 2 Rmod belongs to of . Indeed, if X is a finitely generated subobject of
Kerð�� mÞ, it is coherent and XðRÞ ¼ 0. Hence Kerð�� mÞ 2 ~SSR. Therefore the
morphism Tm is a monomorphism, i.e., m 2 of .

Proposition 2.3. A ring R is left coherent iff every left R-module is coinjective.
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Proof. Let R be left coherent. Then any monomorphism m : M ! N is a direct limit
m ¼ lim

�! I
mi of monomorphisms mi in Rmod (Krause, 1998, Lemma 5.9). Since each

mi 2 of , it follows that m ¼ lim�! mi is also in of . Therefore M is coinjective.

Assume the converse. Since m 2 of iff Kerð�� mÞ 2 ~SSR and since any mono-
morphism belongs to of , our assertion follows from Garkusha and Generalov
(2001, Theorem 2.5). &

A module M 2 RMod is a f-submodule of N 2 RMod (respectively f-quotient
module) if there is a monomorphism m : M ! N with m 2 of (respectively if there is
an epimorphism m : N ! M with ker m 2 of ). A short exact sequence

0�!M�!N �!L�! 0 ð2:2Þ
is f-exact if M is a f-submodule of N . Equivalently, if L is a f-quotient module of N .
Clearly, the exact sequence (2.2) is f-exact iff the sequence

0�!TM �! TN �!TL�! 0

is exact in RC=~SS
R.

We refer to amorphism m : M ! N as an f-epimorphism ifN is a f-quotient ofM.
The class of f-epimorphisms will be denoted by of . A morphism m : M ! N is an
f-homomorphism if m ¼ st with s 2 of and t 2 of .

3. f -INJECTIVE AND f -FLAT MODULES

In this section we study relative injective and relative flat modules for the proper
class of .

Definitions. ð1Þ A left R-moduleM is said to be FP-injective (or absolutely pure) if
every monomorphism m : M ! N is pure. Equivalently, for all F 2 Rmod we have:
Ext1RðF ;MÞ ¼ 0 (Stenström, 1970). A ring R is left FP-injective if the module RR

is FP-injective.

ð2Þ M is an fp-injective module if for every monomorphism m : K! L in
Rmod the morphism ðm;MÞ is an epimorphism. Clearly, FP-injective modules are
fp-injective and every finitely presented fp-injective module is FP-injective.

ð3Þ M is said to be fp-flat if for every monomorphism m : K! L in modR the
morphism m�M is a monomorphism. Clearly, every flat left R-module is fp-flat.
The converse holds iff the ring R is right coherent (Garkusha and Generalov, 1999,
Theorem 2.4).

Let the functor S take a module M 2 RMod to the functor SM ¼ ð��R MÞSR
.

Proposition 3.1. The following statements are true:

(1) A module M is fp-injective iff ��R M ¼ TM.
(2) A module M is fp-flat iff ��R M ¼ SM.
(3) The subcategory of fp-injective (fp-flat) modules is definible.
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Moreover, every object TM (SM) with M fp-injective (fp-flat) is coh-injective
in RC=~SS

R (RC=~SSR).

Proof. By Garkusha and Generalov (1999, Proposition 2.2) M is fp-injective
(fp-flat) iff ��R M is SR-torsionfree (SR-torsionfree). This implies (3). The rest
of the proof is a consequence of Herzog (1997, Proposition 3.10). &

TheAuslander–Gruson–JensendualityD (seeAuslander, 1986;GrusonandJensen,
1981) takes each object C 2 coh RC to the object DC 2 cohCR defined as follows:

ðDCÞðRNÞ ¼ Hom
RCðC;��R NÞ

and a morphism a of coh RC to the morphism Da of cohCR defined by the rule:

ðDaÞðRNÞ ¼ Hom
RCða;��R NÞ:

Proposition 3.2 (Herzog, 1997, Proposition 5.6; Zimmermann-Huisgen and
Zimmermann, 1990, Lemma 2). Let SMR be an ðS;RÞ-bimodule and let SE be an
injective S-module. Then for each C 2 cohCR there is an isomorphism

HomSðSðC;M �R �Þ; SEÞ ’ Hom
RCðDC;��R ðSMR; SEÞÞ

natural in C.

Throughout the paper the character module HomZðM;Q=ZÞ of a module M is
denoted by bMM.

Since

DSR ¼ RS ¼ fC 2 cohCR j ðC;R�R �Þ ¼ 0g

and

DSR ¼ RS ¼ fC 2 cohCR jCðRÞ ¼ 0g

it follows from Garkusha and Generalov (1999, Proposition 2.2) the following.

Corollary 3.3. A left R-module M is fp-injective (fp-flat) iff its character modulebMM is fp-flat (fp-injective).

Observe that the Serre subcategory SR of coh RC is cogenerated by any injective
cogenerator, say bRR, of RMod.

Proposition 3.4. A left R-module is fp-injective (fp-flat) iff it is a pure submodule
of lim

�! k2K
bRRIk

(lim
�! k2K

RIk) for some sets of indices K and Ik, k 2 K.

Proof. This follows from Proposition 1.2 and Corollary 1.3. &
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A left R-module Q is said to be f-injective (respectively f-projective) if the
functor HomRð�;QÞ (respectively HomRðQ;�Þ) takes the monomorphisms of of

(respectively the epimorphisms of of ) to epimorphisms.

Proposition 3.5. An R-module Q is f-injective iff it is a fp-injective pure-injective
module.

Proof. Since an injective object ��R Q of RC is injective in RC=~SS
R iff it is

SR-closed, Proposition 3.1 implies that the RC=~SS
R-injective objects are precisely

the fp-injective pure-injective modules.
Suppose that M is f-injective; then the RC=~SS

R-monomorphism TM !
��R Q ¼ TQ with ��R Q ¼ EðTMÞ splits. Therefore, M is a pure-injective
fp-injective module. The converse is easy. &

A f-monomorphism m : M ! E ¼ Ef ðMÞ with E a f-injective module is called
a f-injective envelope of M if any endomorphism j of E such that jm ¼ m is an
isomorphism.

Lemma 3.6. A f-monomorphism m : N ! E is a f-injective envelope iff
Tm : TN ! TE is an injective envelope of TN in RC=~SS

R. If m0 : N ! E0 is another
f-injective envelope, then there exists an isomorphism c : E! E0 such that cm ¼ m0.

Proof. Straightforward. &

The existence of injective envelopes in RC=~SS
R implies the following.

Corollary 3.7. A f-injective envelope of a module always exists.

So we obtain that the proper class of is injective, that is, every module is a
f-submodule of a f-injective module. The projective proper classes are dually defined.

We refer to a right R-module M as a f-flat module if the tensor functor M�R�
preserves f-exact sequences.

Theorem 3.8. A right R-module M is f-flat iff it is fp-flat. Moreover, the class of
f-flat R-modules is closed under taking products and direct limits.

Proof. Since every monomorphism m in Rmod belongs to of , it follows that the
f-flat R-modules are fp-flat R-modules.

Consider a fp-flat right R-module M and a f-monomorphism m : K! L. We
want to show that 1� m : M �R K ! M �R L is a monomorphism. From Herzog
(1997, Proposition 4.3) it follows that the character module bMM is pure-injective.
On the other hand, bMM is fp-injective by Corollary 3.3. Proposition 3.5 implies thatbMM is f-injective. We see that the map

HomRðL; bMMÞ�!HomRðK; bMMÞ ð3:1Þ

is an epimorphism. This map is isomorphic to the map

HomZðM �R L;Q=ZÞ�!HomZðM �R K;Q=ZÞ:
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Since Q=Z is an injective cogenerator in Ab, it follows that 1� m : M �R K!
M �R L is a monomorphism.

The fact that f-flat modules are closed under products and direct limits follows
from Garkusha and Generalov (1999, Proposition 2.3). &

Corollary 3.9. A module M is fp-flat iff its character module bMM is an fp-injective
pure-injective module. In other words, a module is f-flat iff its character module is
a f-injective module.

As for the class of flat R-modules by the Chase theorem (Stenström, 1975,
Proposition I.13.3) every product of flat right R-modules is flat iff the ring R is left
coherent.

The class of is flatly generated by fp-flat modules, that is, m 2 of iff M � m is a
monomorphism for any fp-flat module M. Indeed, if m 2 of and M is fp-flat,
Theorem 3.8 implies that M � m is a monomorphism.

On the other hand, if M � m with m : K ! L is a monomorphism for each fp-flat
module M, the map (3.1) is an epimorphism. In particular, it is an epimorphism for
M ¼ bQQ with Q a f-injective module and, hence, Hom

RC=~SS
RðKerTm;��R QbbÞ ¼ 0.

Since Q is a pure submodule of Qbb, it follows that Hom
RC=~SS

RðKerTm;��R QÞ ¼ 0.
As f-injectives cogenerate RC=~SS

R this implies KerTm ¼ 0, and, hence, m 2 of .

Proposition 3.10. of is flatly generated by modules RI with I a set of indices, RI the
product of I copies of R.

Proof. Let F be a fp-flat module. By Proposition 3.4 it is a pure submodule of
lim
�! k2K

RIk with K, Ik, k 2 K, some sets of indices. Let 0! M �!m N ! L! 0 be

an exact sequence and the map RI � m is a monomorphism for any set I. By the
above arguments it suffices to show that F �M is a monomorphism. One has the
following commutative diagram with exact rows:

F �R M !F�m
F �R N �! F �R L �! 0

   

0 �! lim
�!k

RIk �R M �! lim
�!k

RIk �R N �! lim
�!k

RIk �R L �! 0:

Since the vertical arrows are monomorphisms, F � m is a monomorphism. Thus
m 2 of , as claimed. &

Below we discuss some properties of fp-injective and fp-flat modules we shall
use later.

Proposition 3.11. For a left R-module M the following statements are equivalent:

(1) M is fp-injective.
(2) Any f-exact sequence 0! M ! M 0 ! M 00 ! 0 is pure.
(3) There is a pure-exact sequence 0! M ! M 0 ! M 00 ! 0 with M 0 a

fp-injective module.
(4) Ext1

RC=~SS
RðTF ;TMÞ ¼ 0 for all F 2 Rmod.
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Moreover, any product and any direct limit of fp-injective modules is also a
fp-injective module.

Proof. ð1Þ¼)ð2Þ. Let F 2 Rmod then TF 2 cohRC=~SS
R. Since TM is coh-injective

in RC=~SS
R by Proposition 3.1, it follows that the sequence

0�!ðTF ;TMÞ�!ðTF ;TM 0Þ �!ðTF ;TM 00Þ �! 0

is exact. By Lemma 2.1 the sequence

0�!ðF ;MÞ�!ðF ;M 0Þ �!ðF ;M 00Þ �! 0

is exact. So 0! M ! M 0 ! M 00 ! 0 is pure-exact.

ð2Þ¼)ð3Þ. We may take M 0 to be a f-injective envelope of M.

ð3Þ¼)ð4Þ. Since ��R M is a subobject of the SR-torsionfree object ��R M 0,
it is also SR-torsionfree. From Herzog (1997, Proposition 3.10) it follows that
TM ¼ ��R M is a coh-injective object for RC=~SS

R.

ð4Þ¼)ð1Þ. Let m be a monomorphism in Rmod; then Tm is a monomorphism.
By assumption, ðTm;TMÞ is an epimorphism. Since T is full and faithful by
Lemma 2.1, the morphism ðm;MÞ is a monomorphism.

The fact that the class of fp-injective modules is closed under taking products
and direct limits follows from Garkusha and Generalov (1999, Proposition 2.3).

&

It is well known that a direct limit of FP-injective left R-modules is FP-injective
iff the ring R is left coherent (see, e.g., Stenström, 1970).

Corollary 3.12. If in a short f-exact sequence 0! M ! M 0 ! M 00 ! 0 modules M
and M 0 are fp-injective, then so is M 00.

Proof. By the preceding proposition the sequence of the corollary is pure-exact.
If we apply the right exact SR-torsion functor t ¼ tSR to the RC-exact sequence

0�!��R M�!��R M 0 �!��R M 00 �! 0

we shall get an exact sequence

0 ¼ tð��R M 0Þ �! tð��R M 00Þ �! t1ð��R MÞ ¼ 0:

Hence M 00 is fp-injective by Garkusha and Generalov (1999, Proposition 2.2). &

The following two propositions extend the list of properties characterizing the
coherent and Noetherian rings respectively (cf. Sklyarenko, 1978b).
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Proposition 3.13. The following assertions are equivalent for a ring R:

(1) R is left coherent.
(2) The character module of a fp-injective left module is a flat module.
(3) A left module is fp-injective iff its character module is a flat module.
(4) A pure-injective envelope of a right f-flat module is a flat module.

Proof. ð1Þ¼)ð2Þ. Over a left coherent ring every fp-flat right module is flat
Garkusha and Generalov (1999, Theorem 2.4). Now our implication follows from
Corollary 3.3.

ð2Þ¼)ð3Þ. This follows from Corollary 3.3.

ð3Þ¼)ð1Þ. Suppose that the character module of an fp-injective left module M
is flat. Then M is a pure submodule of the injective module Mbb. Hence M is a
FP-injective module. Now our assertion follows from Garkusha and Generalov
(1999, Theorem 2.4).

ð1Þ¼)ð4Þ. A pure-injective envelope Q of a f-flat module M is always a f-flat
module. Indeed, the CR-injective functor Q�R� is an injective invelope ofM �R� in
CR. Since M �R� is SR-torsionfree, then so is Q�R�. Proposition 3.1 implies that
Q is f-flat. By assumption, R is left coherent and therefore Q is flat by Garkusha and
Generalov (1999, Theorem 2.4).

ð4Þ¼)ð1Þ. It is directly verified that given a pure-exact sequence

0�!M�!Q�!N �! 0

with Q flat, the module M is also flat.
Suppose that a right R-module M is f-flat. Then its pure-injective envelope Q is

flat by assumption. Hence M is so. Therefore R is left coherent by Garkusha and
Generalov (1999, Theorem 2.4). &

Remark. By a recent result of Rothmaler (2002) there are non-coherent rings over
which pure-injective envelopes of flat modules are flat.

Proposition 3.14. The following assertions are equivalent for a ring R:

(1) R is left Noetherian.
(2) Every left fp-injective module is an injective module.
(3) A left module is f-injective iff its character module is a flat module.

Proof. ð1Þ¼)ð2Þ. Since every left ideal I of R is finitely presented, then the
representable functor HomRð�;MÞ takes the inclusion I � R to an epimorphism
whenever M is fp-injective. Therefore M is an injective module by the Baer criterion.

ð2Þ¼)ð1Þ. It suffices to observe that every direct limit of fp-injective modules
is a fp-injective module.

ð1Þ; ð2Þ¼)ð3Þ. This implication follows from Proposition 3.13.
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ð3Þ¼)ð2Þ. Let E be a f-injective envelope of a fp-injective module M.
By Proposition 3.11 M is a pure submodule of E. Therefore bMM is a direct summand
of the flat module bEE. Then M is f-injective by assumption. By the preceding
proposition the ring R is left coherent. Now our assertion follows from the fact that
over the left coherent rings the classes of f-injective and injective left modules
coincide (see Garkusha and Generalov, 1999, Theorem 2.4). &

We conclude the section by characterizing the class of FP-injective rings. We give
the most interesting criteria for this class of rings in terms of f-flat and f-injective
modules. For details and proofs we refer the reader to Garkusha (1999) and
Garkusha and Generalov (1999).

Recall that M 2 RMod is a FP-cogenerator if for any non-zero homomorphism
r : K ! L with K a finitely generated R-module and L a finitely presented module
there exists a homomorphism m : L! M such that mr 6¼ 0. Equivalently, every
finitely presented left R-module is a submodule of a product MI of some copies of
the module M (Garkusha, 1999).

Lemma 3.15. M is a FP-cogenerator iff for any non-zero morphism r : K ! L in
Rmod there exists a morphism m : L! M such that mr 6¼ 0.

Proof. The necessary condition is trivial. Assume the converse. Let r : K ! L be
anon-zero homomorphism fromafinitely generatedR-moduleK to a finitely presented
module L. Then there exists an epimorphism p : Rn ! K. By assumption, there exists
a homomorphism m : L! M such that mðrpÞ ¼ ðmrÞp 6¼ 0. Hence mr 6¼ 0. &

Theorem 3.16 (Garkusha, 1999; Garkusha and Generalov, 1999). For a ring R the
following conditions are equivalent:

(1) The module RR is FP-injective.
(2) The module RR is a FP-cogenerator.
(3) There is a f-flat cogenerator in RMod.
(4) Every left R-module is a (f-)submodule of a f-flat module.
(5) Every fp-injective left R-module is a f-flat module.
(6) Every f-injective left R-module is a f-flat module.
(7) Every f-flat right R-module is a fp-injective module.
(8) Every pure-injective f-flat right R-module is an f-injective module.

Remark. The most difficult statements for FP-injective rings are proved inside of
the category RC and use localization theory in RC. It would be interesting to have
a proof (especially of the equivalence ð1Þ()ð4Þ) by using usual module-theoretic
technique. The author does not know such a proof.

Rings over which any module is embedded into a projective module are
quasi-Frobenius. This is the classical Faith–Walker theorem. Rings over
which any module is embedded into a flat module, the IF-rings, were inves-
tigated in the early 1970s (see, e.g., Colby, 1975; Jain, 1973; Stenström, 1970).
The equivalent statements of the preceding theorem are, in a certain sense,
similar to properties both for QF-rings and for IF-rings. We have thus the
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following proper inclusions:

QF-rings
modules are submodules
of projective modules

( )
 

IF-rings
modules are submodules

of flat modules

( )
 

FP-injective rings
modules are submodules

of f-flat modules

( )
:

The class of FP-injective rings is big enough. For example, given an arbitrary
left self-injective ring R and a locally finite group G, the group ring RðGÞ is left
FP-injective (Garkusha, 1999, Theorem 3.2). Moreover, if jGj ¼ 1, the group ring
RðGÞ is left FP-injective but not left self-injective (Garkusha, 1999, Corollary 3.3).

4. THE FUNCTORS Extf AND Torf

Definitions. Let N be a left R-module.

(1) The f-injective dimension inj: dimf N is the minimum integer n (if it exists)
such that there is a f-exact sequence

0! N ! E0 ! E1 ! 	 	 	 ! En ! 0

with E0; . . . ;En being f-injective modules. We call such a sequence a f-resolution of
N by f-injective modules.

(2) The left global f-dimension l: gl: dimf R of a ring R is sup
finj: dimf N jN 2 RModg.

(3) The fp-injective dimension fp-inj: dimM is the minimum integer n (if it
exists) such that there is a f-resolution

0! N ! E0 ! E1 ! 	 	 	 ! En ! 0

of N by fp-injective modules E0; . . . ;En.
If no finite resolution exists, we set inj: dimfN , fp-inj: dimN equal to 1.

(4) The left global fp-dimension l: gl: fp-dimR of a ring R is supffp-
inj: dimN jN 2 RModg.

(5) Let

0! N ! E0 ! E1 ! 	 	 	

be a f-injective f-resolution for N . Then ExtnfðM;NÞ, M 2 RMod, n 
 0, denote the
cohomology groups for the complex

0! HomRðM;E0Þ ! HomRðM;E1Þ ! 	 	 	
Note that

0! TN ! TE0 ! TE1 ! 	 	 	
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is an injective resolution in RC=~SS
R for TN by TEi ¼ ��R Ei and the cohomology

groups for the complex

0! ðTM;TE0Þ ! ðTM;TE1Þ ! 	 	 	

are the ExtnfðM;NÞ, n 
 0. It follows that

ExtnfðM;NÞ ¼ Extn
RC=~SS

RðTM;TNÞ:

Let us remark that any f-exact sequence

0�!L�!M�!N �! 0

yields a long exact sequence for any F 2 RMod

	 	 	 ! Extn�1f ðF ;NÞ ! Extnf ðF ;LÞ ! ExtnfðF ;MÞ ! Extnf ðF ;NÞ ! 	 	 	

Lemma 4.1. The following are equivalent for a left R-module N:

(1) inj:dimf N � n.
(2) ExtpfðM;NÞ ¼ 0 for all p > n and all R-modules M.
(3) Extnþ1f ðM;NÞ ¼ 0 for all R-modules M.
(4) If 0! N ! E0 ! 	 	 	 ! En�1 ! Ln ! 0 is a f-resolution of N by

f-injective modules Ei, then Ln is also f-injective.

Proof. Easy. &

Corollary 4.2. l:gl:dimf R¼ supfn jExtnfðM;NÞ 6¼ 0 for some R-modules M and Ng.

An acyclic complex M� ¼ ðMn;dnÞ is said to be f-acyclic if each dn, n 2 Z, is an
f-homomorphism. Similarly to the absolute case, the elements of ExtnfðM;NÞ, n 
 1,
are represented by f-acyclic complexes of the form (see Generalov, 1992):

0! N ! Mn�1 ! Mn�2 ! 	 	 	 ! M0 ! M ! 0:

The proof of the following lemma is straightforward (cf. Stenström, 1970,
Lemma 3.1).

Lemma 4.3. The following are equivalent for a left R-module N:

(1) fp-inj: dimN � n.
(2) ExtpfðM;NÞ ¼ 0 for all p > n and all finitely presented R-modules M.

(3) Extnþ1f ðM;NÞ ¼ 0 for all finitely presented R-modules M.

(4) If 0! N ! E0 ! 	 	 	 ! En�1 ! Ln ! 0 is a f-resolution of N by
fp-injective modules Ei, then Ln is also fp-injective.
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It is well known that a ring R is left Noetherian iff every direct limit of left mod-
ules of injective dimension �n has injective dimension �n. In turn, let FP-inj: dimN

denote the smallest integer n 
 0 such that there is a resolution

0! N ! E0 ! E1 ! 	 	 	 ! En ! 0

of N by FP-injective modules Ei. Then R is left coherent iff every direct limit of left
modules of FP-injective dimension �n has FP-injective dimension �n (Stenström,
1970, Theorem 3.2).

Corollary 4.4. Let R be an arbitrary ring. Then every direct limit of left modules of
fp-injective dimension �n has fp-injective dimension �n.

Proof. Let fMigI be a direct system of left modules of fp-injective dimension �n
and let

0! Mi ! E0
i ! E1

i ! 	 	 	

be the f-injective f-resolution for Mi, i 2 I, constructed as follows. Choose a direct
system of f-injective modules E0

i � Mi in the following way. Let Q be a f-injective
cogenerator. Such a module exists: we can take an injective cogenerator ��R Q

in RC=~SS
R and then Q is a f-injective cogenerator. For every i 2 I, we set Qi

equal to QHomðMi;QÞ, Ji ¼ fj 2 I j i � jg and E0
i ¼

Q
j2Ji Qj. The canonically defined

f-monomorphisms Mi ! E0
i , i 2 I, induce a f-monomorphism M ! lim�! E0

i . The
modules Ek
1

i are similarly constructed.
By Lemma 4.3

0! Mi ! E0
i ! 	 	 	 ! En�1

i ! Ln
i ! 0

is a f-resolution ofMi by fp-injective modules. Since every direct limit of fp-injective
modules is fp-injective, M has a f-resolution

0! M ! lim�! E0
i ! 	 	 	 ! lim�! En�1

i ! lim�! Ln
i ! 0

by fp-injective modules. Hence fp-inj: dimM � n. &

For a left finitely presented module F and a direct system fMigI of left modules,
we consider the canonical homomorphism

xn : lim
�! I

ExtnfðF ;MiÞ�!Extnf ðF ; lim�! I
MiÞ:

Recall that finite presentation of F is equivalent to x0 being an isomorphism for
every fMigI (Stenström, 1975, Proposition V.3.4).

Theorem 4.5. xn : lim�! I
ExtnfðF ;MiÞ�!ExtnfðF ; lim�! I

MiÞ are isomorphisms for all

n 
 0, for every finitely presented module F and direct system fMigI .
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Proof. x0 is an isomorphim. First we shall show that x1 is an isomorphism. Let us
consider the f-injective f-resolution

0! Mi ! E0
i !

d0
i
E1
i !

d1
i 	 	 	

for each Mi constructed above.
Let L0

i ¼ E0
i =Mi. The module lim

�! I
E0
i is fp-injective and, hence,

Ext1fðF ; lim�! I
E0
i Þ ¼ 0.We get then the following commutative diagramwith exact rows:

lim�! ðF ;E
0
i Þ �! lim�! ðF ;L

0
i Þ �! lim�! Ext1fðF ;MiÞ �! 0

x0   x0  x1
ðF ; lim�! E0

i Þ �! ðF ; lim�! L0
i Þ �! Ext1fðF ; lim�! MiÞ �! 0:

Since the first two arrows of the diagram are isomorphisms, x1 is an isomorphism as
well.

Let Ln
i ¼ Imdn

i . Then Extnf ðF ;MiÞ ¼ Ext1fðF ;Ln�2
i Þ, n 
 2. The sequence

0! lim�! Mi ! lim�! E0
i ! lim�! E1

i ! 	 	 	

is a f-resolution of lim�! Mi by fp-injective modules. Then

lim�! ExtnfðF ;MiÞ ¼ lim�! Ext1fðF ;Ln�2
i Þ �!

x1
Ext1fðF ; lim�! Ln�2

i Þ ¼ ExtnfðF ; lim�! MiÞ:

Since x1 is an isomorphism, it follows that xn is an isomorphism. &

Stenström (1970) showed that xn : lim�! I
ExtnRðF ;MiÞ�!ExtnRðF ; lim�! I

MiÞ are

isomorphisms for all n 
 0, for every finitely presented module F and direct
system fMigI iff a ring R is left coherent.

Corollary 4.6. Let M be a left module and M ¼ lim
�! I

Mi with Mi 2 Rmod.

Then ExtnfðF ;MÞ ¼ lim
�! I

ExtnfðF ;MiÞ for any finitely presented left module F .

The following is an immediate consequence of the preceding statements.

Corollary 4.7. The following numbers are the same for any ring R:

(1) l: gl: fp-dimR.
(2) supfn jExtnfðF ;MÞ 6¼ 0 for some F 2 Rmod and M 2 RModg.
(3) supffp-inj: dimM jM 2 Rmodg.

A ring R is said to be almost regular if every (both left and right) module is
fp-injective; equivalently, f-flat (see Garkusha and Generalov, 1999). Since every
(both left and right) module is fp-injective, every f-exact sequence is pure by
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Proposition 3.11. An almost regular ring is (von Neumann) regular iff it is left or
right coherent (Garkusha and Generalov, 1999). Let l: gl:FP-dimR denote
supfFP-inj: dimM jM 2 RModg.

Obviously, l: gl:FP-dimR ¼ l: gl: fp-dimR when R is left coherent. Also,
l: gl: fp-dimR ¼ l: gl: dimR when R is left Noetherian. By Stenström (1970,
Proposition 3.6) l: gl:FP-dimR ¼ 0 iff R is (von Neumann) regular. In turn, it
follows that l: gl: fp-dimR ¼ r: gl: fp-dimR ¼ 0 iff R is almost regular. The class of
non-regular almost regular rings is big enough. Simple almost regular rings we call
indiscrete rings (Garkusha and Generalov, 1999; Prest et al., 1995). Given a non-
regular finite dimensional algebra of finite representation type one can construct a
non-regular indiscrete ring as a twisted limit of matrix rings (Prest et al., 1995,
Sec. 2.4). In turn, if R is a non-regular almost regular ring, G a non-trivial locally
finite group and the order jHj of every finite subgroup H of G is invertible in R, then
the group ring RðGÞ is a non-regular non-indiscrete almost regular ring (Garkusha,
2001b).

There is an interesting problem in our context. A f-flat precover of a right
module M is a f-epimorphism j : F ! M with F a f-flat module such that the
induced map j� : HomRðF 0;FÞ ! HomRðF 0;MÞ is an epimorphism for any f-flat
module F 0. We refer to j as a f-cover if for every endomorphism c : F ! F the
relation jc ¼ j implies c is an isomorphism.

Question. Every right R-module has a f-flat (pre-)cover.

Rings over which every module has a f-flat cover exist. For example, over an
almost regular ring every module is f-flat. This is the easiest case. In the absolute
case, every module has a flat cover. This has recently been proved by Bican et al.
(2001).

Proposition 4.8. For a ring R the following conditions are equivalent:

(1) l: gl: fp-dimR � 1.
(2) Every f-quotient module of a f-injective module is fp-injective.
(3) Every f-quotient module of a fp-injective module is fp-injective.
(4) If in a short exact sequence 0! M ! E! N ! 0 with M a finitely

presented module a module E is (FP-)injective, then N is fp-injective.

Proof. Apply Corollary 4.7. &

A ring R is left f-semihereditary if it satisfies the equivalent conditions of the
preceding proposition.

Corollary 4.9. A left f-semihereditary ring R is left semihereditary iff it is left
coherent.

Proof. Any left semihereditary ring is left coherent. Conversely, over a left coherent
ring the functors Ext�R and Ext�f coincide. Now our assertion follows from
Sklyarenko (1978b, Proposition 1.22). &
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If M ¼ lim
�! a2I

Ma with Ma finitely presented modules, then there exists a spectral

sequence for each module N

E
pq

2 ¼ lim �
p
IExt

q
RðMa;NÞ¼)ExtnRðM;NÞ:

In Jensen (1972, Théorème 4.2), the spectral sequence is constructed from a double
complex. Precisely, we construct the pure-exact resolution of M

	 	 	 �!@3 R2 �!@2 R1 �!@1 R0 �!@0 M;

where

Rn ¼
M

a0�a1�			�an
Ma0;a1;...;an

and Ma0;a1;...;an is a copy of Ma0 .
Let

N �!E0 �!@
0

E1 �!@
1

E2 �!@
2

	 	 	

be an injective resolution of N . Then the bicomplex is

E
pq

0 ¼ HomRðRp;E
qÞ;

where the vertical and horizontal differentials are

d
pq

0 ¼ ð�1Þp HomRðRp; @
qÞ : Epq

0 �!E
p;qþ1
0

and

d
pq

1 ¼ ð�1Þp HomRð@pþ1;EqÞ : Epq

0 �!E
pþ1;q
0 ;

respectively.
If we replace the injective resolution N ! E� by an f-injective f-resolution of N

and also apply Corollary 4.6, we shall get the following result expressing Extf in
terms of abelian groups Ext�f ðMa;NbÞ with Ma;Nb finitely presented.

Theorem 4.10. Let M and N be two modules, M ¼ lim�! a
Ma and N ¼ lim

�!b
Nb with

Ma and Nb finitely presented modules. Then the following relation is valid:

lim �
p
I lim
�! J

Extqf ðMa;NbÞ ¼ lim �
p
IExt

q

f ðMa;NÞ¼)ExtnfðM;NÞ:

Suppose M has a f-resolution by f-flat modules F� ! M. Given a left module N
we put

Torf�ðM;NÞ ¼ H�ðF��RNÞ:
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Any f-exact sequence of left R-modules

0�!L�!M�!N �! 0

yields a long exact sequence for any G 2ModR having a f-flat f-resolution

	 	 	 ! Torfnþ1ðG;NÞ ! TorfnðG;LÞ ! TorfnðG;MÞ ! TorfnðG;NÞ ! 	 	 	

Remark. The definition of the functor Torf depends on the choice of a f-flat
f-resolution. In the absolute case, the groups TorR do not depend on the choice
of a flat resolution (see e.g., Weibel, 1995) since every module admits a projective
resolution. It is not clear, however, whether the class of is projective. The case of
almost regular rings is trivial, because Torfn 
 0 for all n 
 1.

We consider the duality homomorphisms

r : ExtnRðM; bNNÞ�!TorRn ðM;NÞb
and

s : TorRn ðbNN ;FÞ�!ExtnRðF ;NÞb
where M 2ModR, F ;N 2 RMod. The first homomorphism is always an iso-
morphism (Cartan, 1956, Proposition VI.5.1) whereas s is an isomorphism for
every finitely generated module F whenever R is a left Noetherian (Cartan, 1956,
Proposition VI.5.3) or for every finitely presented module F whenever R is a left
coherent (Sklyarenko, 1978b, Lemma 1.12).

It is not clear, however, whether a homomorphism bmm is a f-homomorphism if m
is a f-homomorphism. Therefore we specify some classes of modules to construct the
analogous duality homomorphisms corresponding to the functors Extf and Torf .
Precisely, let FðRÞ (FðRopÞ) denote the subcategory of right (left) modules M that
have a f-flat f-resolution F� ! M such that bMM ! bFF� is a f-injective f-resolution
for the character module bMM. The class FðRÞ is non-empty, because every fp-flat
module belongs to FðRÞ. In a similar way, IðRopÞ (IðRÞ) is the subcategory of left
right modules M that have f-injective f-resolution M ! E� such that bEE� ! bMM is a
f-flat f-resolution for the character module bMM. Obviously the fp-injective left
modules belong to IðRopÞ.

Proposition 4.11. For a right FP-injective ring R andM 2 IðRopÞ the following are
equivalent:

(1) fp-inj: dimM ¼ 0.
(2) fp-inj: dimM � n.

Proof. The implication ð1Þ¼)ð2Þ is trivial. Let us show ð2Þ¼)ð1Þ. Let M ! E� be
a f-injective f-resolution for M such that bEE� ! bMM is a f-flat f-resolution for bMM.
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Then the module Kn ¼ Imdn�1 in the exact sequence

0! M ! E0 ! 	 	 	 ! En�1 �!d
n�1
! Kn ! 0

is fp-injective. It is enough to show that Ln�1 ¼ Kerdn�1 is fp-injective. By assump-
tion, the sequence

0! bKKn ! bEEn�1 ! 	 	 	 ! bEE0 ! bMM ! 0

is a f-flat f-resolution of bMM. By Theorem 3.16 all the Ei, i < n, and the Kn are f-flat

modules. Therefore bKKn
is a direct summand of bEEn�1

by Corollary 3.9. Hence bLLn�1
is a

direct summand of bEEn�1
as well. This implies bLLn�1 is f-flat, and Ln�1 is fp-injective

by Corollary 3.3. &

Given modules M 2ModR and N 2FðRopÞ we consider the duality
homomorphism

r : ExtnfðM; bNNÞ�!TorfnðM;NÞb:
Similar to the absolute case (Cartan, 1956, Proposition VI.5.1) r is an isomorphism.
It follows that given two f-flat f-resolutions for N we obtain the same functors
Torfnð�;NÞb: This follows from the fact that the functors Extnfð�; bNNÞ do not depend
on the choice of a f-injective f-resolution for bNN and that r is an isomorphism.

Let F 2 RMod and N 2 IðRopÞ. There is a f-injective f-resolution N ! E� for
N such that bEE� ! bNN is a f-flat f-resolution for the character module bNN . In this
case we consider the groups TorfnðbNN ;FÞ relative to this resolution. There is a duality
homomorphism

s : TorfnðbNN ;FÞ�!ExtnfðF ;NÞb :

If F is finitely presented, then each natural homomorphism bEEi �R F!HomRðF ;EiÞb
with Ei the ith component of the complex E�, i 
 0, is an isomorphism. We see that s
is an isomorphism whenever F is finitely presented.

Now let F be a finitely generated left module without finite presentations,
0! H ! P!j F ! 0 an exact sequence with P a finitely generated free module.
Then F ¼ lim�! Fa where Fa ¼ P=Ha, Ha are finitely generated submodules of H.
Moreover, j ¼ lim�! ja where ja are epimorphisms P ! Fa. Let G denote the

kernel Ker Tj, Ga the kernel KerTja and Da ¼ G=Ga.

Lemma 4.12. If a left module F is finitely generated without finite presentations
and N is a f-injective module, then the kernel of the natural homomorphismbNN�RF!HomRðF ;NÞb is lim�!Hom

RC=~SS
RðDa;TNÞb¼ lim�!Hom

RC=~SS
RðDa;��RNÞb.

Proof. Indeed, for each a we have an exact sequence 0! Da ! TFa ! TF ! 0.
If N is a f-injective module, then the sequence

0�!ðDa;TNÞb�!ðTFa;TNÞb�!ðTF ;TNÞb�! 0
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is exact. Since the functor T is fully faithful and the functor of direct limit is exact, we
get the exact sequence

0�! lim�!ðDa;TNÞb�! lim�! HomRðFa;NÞb�!HomRðF ;NÞb�! 0:

All the modules Fa are finitely presented, and so all the groups HomRðFa;NÞb are
isomorphic to bNN �R Fa. It remains to observe that lim�!

bNN �R Fa ¼ bNN �R F . &

Theorem 4.13 (The Sklyarenko exact sequence). If F is a finitely generated left
module, then for any module N 2 IðRopÞ the duality homomorphism s fits into
the exact sequence

	 	 	!s Extnþ1f ðF ;NÞb!d lim�! Extn
RC=~SS

RðDa;TNÞb! TorfnðbNN ;FÞ !

!s Extnf ðF ;NÞb! 		 	!d lim�! Hom
RC=~SS

RðDa;TNÞb! bNN �R F!s HomRðF ;NÞb! 0:

Proof. Let N ! E� be the chosen f-injective f-resolution of N . By the preceding
lemma the sequence of complexes

0�! lim�! ðDa;TE
�Þb�! bEE� �R F �!HomRðF ;E�Þb�! 0 ð4:1Þ

is exact. The sequence of the theorem is the homological sequence that corresponds
to (4.1). Indeed, the homology groups of the complex HomRðF ;E�Þb are obviously
the groups Ext�fðF ;NÞb , the homology groups of the complex bEE� �R F are
Torf�ðbNN ;FÞ. Finally,

Hnðlim�! ðDa;TE
�Þb Þ ¼ lim�! HnððDa;TE

�Þb Þ ¼ lim�! HnððDa;TE
�ÞÞb

¼ lim�! Extn
RC=~SS

RðDa;TNÞb
because the homology functor Hn commutes with the exact functors lim�! and
X! bXX. &

Now we suppose that R is a left coherent ring, and let F be a finitely gene-
rated left module and 0! G! P ! F ! 0 an exact sequence with P a finitely
generated free module. Then F ¼ lim�! Fa where Fa ¼ P=Ga and Ga are finitely
presented submodules of P. As above, let Da denote G=Ga.

Corollary 4.14 (Sklyarenko, 1978b). If R is a left coherent ring, F is a finitely
generated left module, then for any module N 2 RMod the duality homomorphism
s fits into an exact sequence

	 	 	!s Extnþ1R ðF ;NÞb!d lim�! ExtnRðDa;NÞb ! TorRn ðbNN ;FÞ !

!s ExtnRðF ;NÞb ! 	 	 	!d lim�! HomRðDa;NÞb ! bNN �R F!s HomRðF ;NÞb ! 0:
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Proof. Since over a left coherent ring the character module of any injective module
is flat, the proof is similar to that of Theorem 4.13. &

5. THE DERIVED CATEGORIES Df (R) AND D(RC=~SS
R)

In this section we use Generalov’s construction of the relative derived category
(see Generalov, 1992) to describe the derived category of the locally coherent
Grothendieck category RC=~SS

R.
Let KðRÞ and KðRC=~SSRÞ denote the corresponding homotopy categories of

RMod and RC=~SS
R, i.e., the quotient categories of KomðRÞ and KomðRC=~SSRÞ

respectively modulo homotopy equivalence. The functor T induces the fully faithful
embeddings

KomðRÞ�!KomðRC=~SSRÞ

and

KðRÞ�!KðRC=~SSRÞ

that take a complex M� ¼ ðMn;dnÞ to TM� ¼ ðTMn;TdnÞ. We recall that a mapping
cone of a morphism m : M� ! N� in KomðRÞ is defined as the complex

CðmÞ ¼ ðMnþ1 � Nn;dCðmÞÞ; dCðmÞ¼
�dM 0
m dN

� �

We have the following sequence of complexes

M �!m N �!n CðmÞ �!r M½1�

where ðM½1�Þn ¼ Mnþ1, nn : Nn ! CðmÞn and rn : CðmÞn ! Mnþ1 are the canonical
injection and projection respectively. The family of such sequences (up to isomorph-
ism the so-called ‘‘distinguish triangles’’) defines the structure of a triangulated
category on the homotopy category KðRÞ (see Gelfand and Manin, 1988; Verdier,
1977; Weibel, 1995).

A morphism m : X� ! Y � in KðRÞ is called a f-quasi-isomorphism if its mapping
cone CðmÞ is f-acyclic. Obviously, if m is a f-quasi-isomorphism then Tm is a quasi-
isomorphism in KðRC=~SSRÞ. We denote by Sf the class of all f-quasi-isomorphisms
in KðRÞ. By Generalov (1992) it is localising in KðRÞ. One can thus construct the
localization of KðRÞ with respect to Sf , and we define the relative derived category
Df ðRÞ of RMod as this localization: DfðRÞ ¼ KðRÞ½Sf � (see Generalov, 1992). The
category DfðRÞ inherits the structure of a triangulated category from KðRÞ. It is easy
to see that the functor T induces a map from DfðRÞ to the derived category
DðRC=~SSRÞ of RC=~SS

R. If we start with the homotopy category KþðRÞ (respectively
K�ðRÞ or KbðRÞ) of complexes bounded from below (respectively bounded from
above or bounded complexes), then we get in a similar way the derived categories
Dþf ðRÞ (respectively D�f ðRÞ or Db

fðRÞ).
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Theorem 5.1. The triangulated functor T : Dþf ðRÞ�!DþðRC=~SSRÞ is an equiva-
lence of categories.

Proof. Let KþðIfÞ denote the homotopy category of complexes bounded from
below over the full subcategory If of RMod consisting of f-injectives. It is shown
in Generalov (1992) that the natural functor F : KþðIfÞ ! Dþf ðRÞ taking E�2
KþðIf Þ to its image in Dþf ðRÞ is an equivalence of categories. Obviously, the functor

T : KþðIfÞ�!KþðIÞ; E� 7!TE�

is an equivalence of KþðIfÞ and the homotopy category of complexes bounded from
below over the full subcategoryI of RC=~SS

R consisting of RC=~SS
R-injectives. Consider

the following commutative diagram

KþðIfÞ �!T KþðIÞ
F   ~FF

Dþf ðRÞ �!T DþðRC=~SSRÞ
in which the natural functor eFF : KþðIÞ ! DþðRC=~SSRÞ is an equivalence of categories
(Gelfand andManin, 1988, Theorem 3.5.21). It follows that the required functor is an
equivalence as well. &

Let the functor If send a module M 2 RMod to the complex 	 	 	 0! M ! 0 	 	 	
concentrated at zero degree. Then the following relation holds:

ExtnfðM;NÞ ¼ HomDf ðRÞðIfðMÞ; IfðNÞ½n�Þ

where M;N 2 RMod Generalov (1992). The groups ExtnfðM;NÞ can also be defined
Generalov (1992) by using f-acyclic complexes of the form:

0! N ! Mn�1 ! 	 	 	 ! M0 ! M ! 0:

On the other hand, let the functor I take every M 2 RMod to the complex
	 	 	 0! TM ! 0 	 	 	 Then

ExtnfðM;NÞ ¼ Hom
DðRC=~SSRÞðIðMÞ; IðNÞ½n�Þ:

6. K-GROUPS FOR THE CATEGORY ccohRC=~SSR

An exact category C is a full subcategory of an abelian category A which is
closed under extensions and which contains a zero object of A. A sequence
0! E0 ! E! E00 ! 0 in C is called exact if it is exact in A. We say that a map
i : M ! N in an exact category C is an admissible monomorphism if there is a short
exact sequence 0! M ! N ! L! 0 in C. Similarly j : M ! N in an exact category
C is an admissible epimorphism if there is a short exact sequence 0! L!
M ! N ! 0 in C.
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If M is an exact category define QM to be the category with the same objects as
M and with morphisms defined as follows. A morphism from M to N in QM is an
equivalence class of diagrams of the form

M�X�N

in M. Here � denotes an admissible epimorphism and � denotes an admissible
monomorphism. We say that M�X�N and M� Y �N are equivalent if there
is an isomorphism X ’ Y making

M  � X �! N

k  ’ k
M  � Y �! N

commutative (see Quillen, 1973; Swan, 1995). The Quillen K-theory space (Quillen,
1973) of M is the pointed space

KðMÞ ¼ OjQMj

with jQMj standing for the geometric realization of the category QM. Its homotopy
groups are, by definition, the K-groups KnðMÞ; n 
 0.

Theorem 6.1 (Resolution). Let C be an exact category and let M � C be a full
subcategory of C closed under extensions. Assume

(1) If 0! M 0 ! M ! M 00 ! 0 is a short exact sequence in C with M 0 and M in
M, then M 00 is in M.

(2) For every object C in C there is a finite resolution

0�!C�!M0�!M1�! 	 	 	 �!Mn�! 0

with Mi in M.

Then KðMÞ�!KðCÞ is a homotopy equivalence (and thus KnðMÞ �!’ KnðCÞ).

Lemma 6.2. For any C 2 coh RC=~SS
R there is an exact sequence

0�!C �!i TM �!Tm TN �!TL�! 0

with M, N and L finitely presented modules.

Proof. By Herzog (1997, Theorem 2.16) there exists a coherent object D of coh RC
such that C ¼ DSR . The object D fits into an exact sequence

0�!D�!��R M !��m �R � N �! ��RL�! 0

with M;N ;L 2 Rmod. If we apply the exact functor of SR-localization to this
sequence, we shall obtain the exact sequence of lemma. &
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Lemma 6.3. Let M ¼ fTM jM 2 Rmodg. Then M is closed under extensions in
coh RC=~SS

R.

Proof. Let

0�!TM �!C�!TN �! 0

be an exact sequence in coh RC=~SS
R with M and N finitely presented. Then the

module K ¼ CðRÞ is finitely presented. By the preceding lemma there is an exact
sequence

0�!C �!i TL �!Tm TE

with L and E finitely presented modules. Then K ¼ Kerm and there is a unique
morphism j : TK! C such that Tr ¼ ij with r ¼ Kerm. We claim that j is an
isomorphism.

The module F ¼ L=K is finitely presented and the exact sequence

0�!K�!L�!F �! 0

is f-exact. We have a commutative diagram with exact rows:

0 �! TK �!Tr TL �!Tn TF �! 0

j  

���  Ta
0 �! C �!

i
TL �!

Tm
TE:

Since F is a finitely presented submodule of E, it follows that Ta is a monomorphism.
By the snake lemma j is an isomorphism and, hence, C 2M. &

G-theory of a ring R is, by definition, the K-theory of the exact category of
finitely presented modules Rmod. The preceding two lemmas imply the following.

Proposition 6.4. The subcategory M ¼ TðRmodÞ of C satisfies all the hypotheses
of the Resolution Theorem. In particular, the functor T induces an isomorphism
of K-groups GnðRÞ �!’ Knðcoh RC=~SS

RÞ, n 
 0.

Let RS ¼ fC 2 cohCR jCðRÞ ¼ 0g. The Auslander–Gruson–Jensen duality D

takes the category RS to SR. By Herzog (1997, Theorem 5.5) D induces a duality

D : cohCR=
R~SS�! coh RC=~SSR:

Then the classifying spaces for the categories Q cohCR=
R~SS and Q coh RC=~SSR are

homeomorphic.
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Proposition 6.5. The functors T and D induce an isomorphism of K-groups
GnðRopÞ �!’ Knðcoh RC=~SSRÞ, n 
 0.

Corollary 6.6. If R is a left and right FP-injective ring, then the functors T and D

induce an isomorphism of K-groups GnðRopÞ �!’ GnðRÞ, n 
 0.

Proof. A ring R is left and right FP-injective iff SR ¼SR (Garkusha and
Generalov, 1999, Theorem 2.5). Therefore our assertion follows from the preceding
two propositions. &

The duality D yields isomorophisms of K-groups Kiðcoh RCÞ �!’ KiðcohCRÞ.
Since every coherent object C 2 coh RC fits into an exact sequence

0! C ! ��R M ! ��R N ! ��R L! 0

the Resolution theorem implies that the K-theory of coh RC is equivalent to the
K-theory of Rmod�. Here Rmod� denotes the exact category of finitely presented left
R-modules where only short exact sequences are used. Let RS denote the Serre
subcategory DSR ¼ fC 2 cohCR j ðC;R�R �Þ ¼ 0g of cohCR.

Proposition 6.7. The functors T and D induce two isomorphic long exact sequences

	 	 	Gnþ1ðRÞ!d KnðSRÞ ! KnðRmod�Þ ! GnðRÞ !
	 	 	!d K0ðSRÞ ! K0ðRmod�Þ ! G0ðRÞ ! 0

and

	 	 	Gnþ1ðRÞ!d KnðRSÞ ! Knðmod�RÞ ! GnðRÞ !
	 	 	!d K0ðRSÞ ! K0ðmod�RÞ ! G0ðRÞ ! 0:

Proof. Since SR is a Serre subcategory of coh RC, there is a long exact sequence
Quillen (1973, Theorem 5.5)

	 	 	 ! K1ðcoh RC=~SS
RÞ �!d K0ðSRÞ ! K0ðRmod�Þ ! K0ðcoh RC=~SS

RÞ ! 0:

By Proposition 6.4 GnðRÞ is isomorphic to Knðcoh RC=~SS
RÞ for all n 
 0. We obtain

then the first long exact sequence. Proposition 6.5 implies the second long exact
sequence. &
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