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be realized as relative homological algebra corresponding to the proper class of
monomorphisms

wr={u] R’ ® p is a monomorphism for any power R’ of a ring R}.

Also, the corresponding homological functors Ext; and Tor/ as well as various
homological dimensions are investigated.

Key Words: Relative homological algebra; Homological dimensions;
Homological functors on modules.

2000 Mathematics Subject Classification: Primary 18G25; Secondary 16E10,
16E30.

#Communicated by R. Wisbauer.
*Correspondence: Grigory Garkusha, International Centre for Theoretical Physics, Strada
Costiera 11, 1-34014 Trieste, Italy; Fax: +39-040-2240490; E-mail: ggarkusha@mail.ru.

4043

DOI: 10.1081/AGB-200028236 0092-7872 (Print); 1532-4125 (Online)
Copyright © 2004 by Marcel Dekker, Inc. www.dekker.com



ORDER | _=*_[Il REPRINTS

4044 Garkusha

The main object of this paper is to study homological aspects as well as further
properties of fp-injective and fp-flat modules. These were introduced in Garkusha
and Generalov (1999) to characterize FP-injective and weakly quasi-Frobenius rings.
Both classes of modules are definable (=elementary) in the first order language of
modules and naturally generalize the corresponding classes of FP-injective and flat
modules.

Homological algebra based on FP-injective and flat modules is well studied and
was developed in the 1970s (see e.g., Jain, 1973; Sklyarenko, 1978b; Stenstrom, 1970).
One would like to construct homological algebra based on fp-injective and fp-flat
modules. In this paper, we shall show that such homological algebra can be realized
as relative homological algebra corresponding to the proper class of monomorphisms

oy = {u|R" ® p is a monomorphism for any power R’ of a ring R}.

The corresponding relative injective and relative flat modules, we call them f-injective
and f-flat modules respectively, correspond to fp-injective pure-injective modules and
fp-flat modules.

There are many results of a homological nature which may be generalized from
Noetherian rings to coherent rings. In this direction, finitely generated modules are
replaced by finitely presented modules and injective modules should be replaced by
FP-injective modules (see Sklyarenko, 1978b; Stenstrom, 1970). In our situation ana-
logous results, which are related to the relative homological algebra we construct in
this paper, are valid for all rings. This phenomenon can be explained as follows. The
classical Chase theorem (see Stenstrom, 1975) states that a ring R is left coherent iff
each power R of I copies of the ring R is a flat right R-module. But if we consider
only those exact sequences under which the functor R’ ®z — is exact, we shall arrive
at the proper class wy.

Relative homological algebra is a classical subject, thanks to works by
Eilenberg-Moore (1965) and Butler—Horrocks (1961). However these give us little
information for our case. The idea is to use some localization of the category of
generalized modules

r% = (mod R, Ab)

to turn the relative homological algebra with respect to w, into an absolute one.
Every time we deal with definable subcategories the category % is of great
utility in this context as well as torsion theories of finite type of % (consult e.g.,
the works Herzog, 1997; Krause, 2001). For this reason the majority of statements
of the paper is proved by using the technique of torsion/localizing functors in z%.
The paper is organized as follows. The first two sections are preliminary. There
we present the necessary category-theoretic background and introduce the proper
class wy as a class of monomorphisms of a certain quotient category in z%. In
Sec. 3 the classes of f-injective and f-flat modules are investigated. In Sec. 4 we study
basic properties for the functors Ext; and Tor/ which are related to f-injective and
f-flat resolutions. Also, certain homological dimensions are discussed in this section.
In Sec. 5 we describe the relative derived category Df(R) and the functor Ext; as
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Hom-sets in Df(R). In the remaining section we study the relationship of the
G-theory of a ring with the K-theory of some abelian subcategories of z%.

Throughout the paper R denotes a ring with identity. The category of left
(respectively right) R-modules is denoted by R Mod (respectively Mod R) and
the category of finitely presented left (respectively right) R-modules by R mod
(respectively mod R).

1. THE CATEGORY OF GENERALIZED MODULES
The category of generalized left R-modules
r% = (mod R, AD)

consists of additive covariant functors defined on the category of finitely presented
right R-modules mod R with values in the category of abelian groups Ab. In this
section we collect basic facts about the category z%. For details and proofs we refer
the reader to Herzog (1997) and Krause (2001), for example. All subcategories
considered are assumed to be full.

We say that a subcategory % of an abelian category % is a Serre subcategory if
for any short exact sequence

0—X—Y—Z—0

in ¥ an object Y € ¥ if and only if X, Z€ &%. A Serre subcategory ¥ of a
Grothendieck category € is localizing if it is closed under taking direct limits.
Equivalently, the inclusion functor i:.% — % admits the right adjoint =
ty : € — & which takes every object X € € to the maximal subobject #(X) of X
belonging to .% (Krause, 1997). The functor ¢t we call the rorsion functor. An object
C of g% is said to be S-torsion free if t(C) = 0. Given a localizing subcategory ¥ of
r@ the quotient category g%/ consists of C € g% such that t(C) = '(C) = 0. The
objects from g%/ we call &-closed objects. Given C € % there exists a canonical
exact sequence

0—>A/—>Ci> Cy—A"—0

with A’ = 1(C), A” € &, and where Cy € %/ is the maximal essential extension of
C = C/1(C) such that C»/C € . The object Cy is uniquely defined and is called the
F-envelope of C. Moreover, the inclusion functor i: x4/ — g% has the left
adjoint localizing functor (=), : g€ — g%/, which is also exact. It takes each
Cerbto Cy € g%/Y. Then,

Hom,(X,Y) ~ Hom 4/4(Xs,Y)

for all X € x% and Y € r%/7.

An object X of a Grothendieck category ¥ is finitely generated if whenever there
are subobjects X; C X with i € I satisfying X = }",, X;, then there is a finite subset
J C I'suchthat X = ), , X;. The subcategory of finitely generated objects is denoted
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by fg €. A finitely generated object X is said to be finitely presented if every
epimorphism y: Y — X with Y € fg% has the finitely generated kernel Kery. By
fp € we denote the subcategory consisting of finitely presented objects. Finally, we
refer to a finitely presented object X € € as coherent if every finitely generated
subobject of X is finitely presented. The corresponding subcategory of coherent
objects will be denoted by coh @.

The category g% is a locally coherent Grothendieck category, i.e., every object
C € g% is a direct limit C =1lim C; of coherent objects C; € coh z%. The category
coh g% is abelian. Moreover‘,”R‘g has enough coherent projective generators
{(M, =)} yremod r- Thus, every coherent object C € coh g% has a projective presentation

(N,=)—(M,—) — C—0,

where M, N € mod R.

A localizing subcategory & of g% is of finite type if the inclusion functor
i: g€/ — r%€ commutes with direct limits. Then the quotient category x% /¥ is
locally coherent and coh z€¢/% = {Cy | C € coh z€}.

Proposition 1.1. Fora localizing subcategory & of r% the following are equivalent:

(1) & is of finite type.
(2) The inclusion functori: g€/ — r€ commutes with direct unions.
(3) The torsion functor ty commutes with direct limits.

Proof. The equivalence (1)<=>(2) is a consequence of Garkusha (2001a, Theorem
5.14); (1)<=(3) follows from Krause (1997, Lemma 2.4). ]

By a result of Herzog and Krause (Herzog, 1997; Krause, 1997) a localizing sub-
category in g% is of finite type iff it has the form &% with % some Serre subcategory
of coh % and

7 = {thieI Ci|Cie y}.

We say that M € g% is a coh-injective object if Extl%;(C, M) =0 for any
C € cohg%. The fully faithful functor —®z? : RMod — %, M — —®r M, identifies
R Mod with the subcategory of coh-injective objects of z%. Moreover, the functor
—®pg M € coh g% iff M € Rmod. Given C € coh zx% there is an exact sequence

0—C— —QrM— —®g N

in coh R% with M, N € Rmod.

A monomorphism g: M — N in RMod is a pure monomorphim if for any
K € Mod R the morphism K ® u is a monomorphism. Equivalently, the z4-morph-
ism —®u is a monomorphism. A module Q is pure-injective if the functor
Homg(—, Q) takes the pure monomorphisms to epimorphisms. The injective objects
of g% are precisely the objects of the form —®g Q with Q a pure-injective module.

Copyright © Marcel Dekker, Inc. All rights reserved.
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Let M be a left module; then
Sy ={C € cohr?|(C,—@r M) =0}

is Serre. Furthermore, every Serre subcategory of coh g% arises in this fashion.

Proposition 1.2. Let &y be the Serre subcategory of coh g€ cogenerated by a left
R-module M. Denote by % the subcategory of RMod consisting of the modules
of the form limk M with some sets of indices K and I,k € K, and M the

— keK
product of I copies of M. Then an object F of r% is S y-torsionfree iff it is a
subobject of —®g L with L € Z'. Moreover,

Fu=A{F € x%|(F,—~@x L) =0 for all L € Z}.

Proof. The proof is like that of Krause (2001, Theorem 2.1). Let C € coh % and I¢
denote the set (C, —®g M). We have an exact sequence

0—X—C -5 —gg M. (1.1)

Here we use the relation (—®g M)"® = —@x M'c. We claim that X = #(C). Indeed,
if we apply the left exact & y-torsion functor to (1.1), we shall obtain

0— t(X) — t(C) — t(—®@x M'¢) = 0.

Therefore #(C) = #(X) C X. Let Y be a finitely generated subobject of X such that
there exists a non-zero morphism ¢ : ¥ — —®g M. Since —®z M is coh-injective,
¢ can be extended to a non-zero morphism y : C — —®x M. But s factors through
p. Hence ¢ = 0, a contradiction to our assumption. Thus X = #(C).

Consider a direct limit of coherent objects C = li—n>lkeK Cy. Then the sequence

0—>lii>nt(Ck) = t(C)—>C—>lii>an/t(Ck) =C/t(C)—0

is exact. Given k € K fix the monomorphism C;/t(C;) — —®g M’ constructed as
above. Let Jy = {j € K|k <j} and Iy = Ic, X J;. The canonically defined mono-
morphisms Ci/#(Cy) — —®g M, k € K, induce a monomorphism C/t(C) —
—®r L with L = liglkEK M’ ¢ . Thus the & y-torsionfree objects of % are
precisely the subobjects of the functors —®z L with L € 2.

Next, it is easy to see that (C,—®g L) =0 for C € #y and L € Z. Given an
object F € g% the relation (F,—®g L) =0, for all L € Z, implies the relation
(F/t(F),—®g L) = 0. Therefore F = t(F), as claimed. O

We refer to the subcategory

% ={N € R Mod|—®g N is & y-torsionfree}

as a definable subcategory.

Marcer DekkER, Inc.
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Corollary 1.3. A left R-module belongs to & iff it is a pure submodule of a module
L from Z.

In the sequel, we use the following Serre subcategories of coh g%

SR ={C € cohg%|C(R) =0}
SR = {C € COhR(€| (C, —Q®R R) = 0},

as well as the localizing subcategories of finite type PR and Py
FR={Cer¥|C=1limC;, C; € 7%}
9}? = {C S R(g

C=1lm¢C;,C; e yk}

The corresponding FR_torsion and F-torsion functors will be denoted by tyr and
ts, respectively.

2. PROPER CLASSES

Let T denote the functor that takes a left R-module M to the object (—®g M) gr
in x4/ FX.

Lemma 2.1. The functor T is fully faithful, right exact and preserves direct limits.

Proof. Let 2% denote the localizing subcategory {F € x% | F(R) = 0} in 4. Then
the functor M+— P(M) = (—®g M)« induces an equivalence between R Mod and
8% /2" (Garkusha and Generalov, 2001). A quasi-inverse functor to P is induced
by the functor x4 — Mod R taking an object F of % to F(R). Since #% C 2%
the functor P factors as P = Lo T, where L : ;4 /9% — p%/2" is the localization
functor with respect to the localizing subcategory 2% /QR. It follows that T is
faithful.

To show that T is full, it suffices to prove that the map L(u) : LT(M) — LT(N)
with 0 # p: T(M) — T(N) is non-zero. Assume the converse. Then u(R) =0 and,
hence, D = Coker ,4u belongs to PR,

Let A : T(N) — LT(N) denote the 2%-envelope of T(N) in z%. Then iu = 0 and
therefore A factors through D. Since LT(N) is #®-torsionfree, wee see that A = 0.
This implies that T(N) belongs to 2% and thus N = 0. It follows that T(N) = 0,
a contradiction.

Since both the tensor functor and the localizing functor preserve direct limits
(right exact), then so does T. O

A class of monomorphisms w of RMod is proper if it satisfies the following
axioms:

(PO) o contains all split monomorphisms.
(P1) The composition of two monomorphisms in o, if defined, is also in w.

Copyright © Marcel Dekker, Inc. All rights reserved.
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(P2) 1If a pushout diagram
A - B
u | w (2.1)
A/ N B/

has ¢ € w, then ¢’ € w.
(P3) If ot € w, then 7 € w.

Proposition 2.2. The class of R-monomorphisms
wr ={u|Tu is a monomorphism}

satisfies the axioms PO—P3.

Proof. The axioms PO—P1 and P3 are obvious. If the square (2.1) is pushout, then
the sequence

)T o . :
AL) A/EBB (o' 1) B/—>0 with (G/,,u/) :COkeI‘(—,U,U)T 1S exact.

By Lemma 2.1 the sequence

(—Tu,To)"

, (To',Ti)
TA —— TA' 9 TB —

TB' —0

is exact. Thus 7B’ = TA' [ [, TB. Since T is a monomorphism, it follows that T'¢’ is
a monomorphism. This implies the claim. O

By Lemma 2.1 the proper class w; is inductively closed, i.e., given any
direct system {;};,.; of monomorphisms from o, the morphism limy; is in ;.
Below we shall show (see Proposition 3.10) that -

oy = {u|R" ® p is a monomorphism for any power R'of R}.

The most obvious example of a monomorphism in wy is a pure monomorphism,
because it is a direct limit of split monomorphisms (Sklyarenko, 1978a, Theorem
6.2). We say that a module M is coinjective if any extension of M belongs to wy.
As an example, every extension u:M — E of a finitely presented module
M € Rmod belongs to wy. Indeed, if X is a finitely generated subobject of
Ker(—® u), it is coherent and X(R) = 0. Hence Ker(—® u) € #®. Therefore the
morphism 7u is a monomorphism, i.e., i € wy.

Proposition 2.3. A ring R is left coherent iff every left R-module is coinjective.

Marcer DekkER, Inc.
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Proof. Let R be left coherent. Then any monomorphism p : M — N is a direct limit
u = lim yu; of monomorphisms y; in Rmod (Krause, 1998, Lemma 5.9). Since each
u; € wj it follows that u = lim y; is also in w;. Therefore M is coinjective.

Assume the converse. Since u € oy ift Ker(—® p) € R and since any mono-
morphism belongs to wy, our assertion follows from Garkusha and Generalov
(2001, Theorem 2.5). O

A module M € RMod is a f-submodule of N € RMod (respectively f-quotient
module) if there is a monomorphism u : M — N with u € o, (respectively if there is
an epimorphism u : N — M with ker u € wy). A short exact sequence

0—M—N—L—0 (2.2)

is f-exact if M is a f-submodule of N. Equivalently, if L is a f-quotient module of N.
Clearly, the exact sequence (2.2) is f-exact iff the sequence

0—TM—TN —TL—0

is exact in z%/FF.

We refer to a morphism p : M — N as an f-epimorphismif Nis a f-quotient of M.
The class of f-epimorphisms will be denoted by w/. A morphism p: M — N is an
f-homomorphism if u = gt with ¢ € w; and 7 € w/.

3. f-INJECTIVE AND f-FLAT MODULES

In this section we study relative injective and relative flat modules for the proper
class wy.

Definitions. (1) A left R-module M is said to be FP-injective (or absolutely pure) if
every monomorphism u : M — N is pure. Equivalently, for all F € Rmod we have:
Ext}e(F7 M) = 0 (Stenstrom, 1970). A ring R is left FP-injective if the module xR
is FP-injective.

(2) M is an fp-injective module if for every monomorphism p: K — L in
Rmod the morphism (u, M) is an epimorphism. Clearly, FP-injective modules are
fp-injective and every finitely presented fp-injective module is FP-injective.

(3) M is said to be fp-flat if for every monomorphism p : K — L in mod R the
morphism g ® M is a monomorphism. Clearly, every flat left R-module is fp-flat.
The converse holds iff the ring R is right coherent (Garkusha and Generalov, 1999,
Theorem 2.4).

Let the functor S take a module M € R Mod to the functor SM = (—®g M), .

Proposition 3.1. The following statements are true:

(1) A module M is fp-injective iff —Qr M = TM.
(2) A module M is fp-flat iff —®r M = SM.
(3) The subcategory of fp-injective (fp-flat) modules is definible.

Copyright © Marcel Dekker, Inc. All rights reserved.
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Moreover, every object TM (SM) with M fp-injective (fp-flat) is coh-injective
in g6/ S* (€| Fp).
Proof. By Garkusha and Generalov (1999, Proposition 2.2) M is fp-injective
(fp-flat) iff —®@x M is SR-torsionfree (¥ g-torsionfree). This implies (3). The rest
of the proof is a consequence of Herzog (1997, Proposition 3.10). O

The Auslander—-Gruson—Jensen duality D (see Auslander, 1986; Gruson and Jensen,
1981) takes each object C € coh g% to the object DC € coh ' defined as follows:

(DC)(rN) = Hom,4(C,—®g N)
and a morphism « of coh 3% to the morphism Do of coh € defined by the rule:
(Da)(rN) = Hom, 4 (o, —®g N).
Proposition 3.2 (Herzog, 1997, Proposition 5.6; Zimmermann-Huisgen and
Zimmermann, 1990, Lemma 2). Ler sMg be an (S, R)-bimodule and let sE be an
injective S-module. Then for each C € coh%g there is an isomorphism
Homg(s(C, M ®g —), sE) ~ Hom,4(DC, —®g (sMg, sE))
natural in C.
Throughout the paper the character module Homz(M, Q/Z) of a module M is

denoted by M.
Since

DYR =9 ={Cccohbr|(C,R®r—) =0}
and
DY g =R% = {C € coh % | C(R) = 0}
it follows from Garkusha and Generalov (1999, Proposition 2.2) the following.

Corollary 3.3. A left R-module M is fp-injective (fp-flat) iff its character module
M is fp-flat (fp-injective).

Observe that the Serre subcategory & R of coh g% is cogenerated by any injective
cogenerator, say R, of R Mod.

Propositior/l\l.’)A. A left R-module is fp-injective (fp-flat) iff it is a pure submodule
of limk KR ‘ (limk Kle) for some sets of indices K and Iy, k € K.
— KE —KE

Proof. This follows from Proposition 1.2 and Corollary 1.3. O

Marcer DekkER, Inc.
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A left R-module Q is said to be f-injective (respectively f-projective) if the
functor Homg(—, Q) (respectively Homg(Q, —)) takes the monomorphisms of w;
(respectively the epimorphisms of w/) to epimorphisms.

Proposition 3.5. An R-module Q is f-injective iff it is a fp-injective pure-injective
module.

Proof. Since an injective object —®z Q of g% is injective in R%/QR iff it is
SK_closed, Proposition 3.1 implies that the R%/QR—injective objects are precisely
the fp-injective pure-injective modules.

Suppose that M is f-injective; then the R%/,?R—monomorphism ™ —
—®rQ=TQ with —®g Q = E(TM) splits. Therefore, M is a pure-injective
fp-injective module. The converse is easy. O

A f-monomorphism pu: M — E = E;(M) with E a f-injective module is called
a f-injective envelope of M if any endomorphism ¢ of E such that ¢u = u is an
isomorphism.

Lemma 3.6. A f-monomorphism p:N — E is a f-injective envelope iff
Tu:TN — TE is an injective envelope of TN in g6/F®. If ) : N — E' is another
[f-injective envelope, then there exists an isomorphismy : E — E' such that yu = l'.

Proof. Straightforward. ]
The existence of injective envelopes in g%/ FR implies the following.

Corollary 3.7. A f-injective envelope of a module always exists.

So we obtain that the proper class wy is injective, that is, every module is a
f-submodule of a f-injective module. The projective proper classes are dually defined.

We refer to a right R-module M as a f-flat module if the tensor functor M®g—
preserves f-exact sequences.

Theorem 3.8. A right R-module M is f-flat iff it is fp-flat. Moreover, the class of
f-flat R-modules is closed under taking products and direct limits.

Proof. Since every monomorphism x in Rmod belongs to wy, it follows that the
f-flat R-modules are fp-flat R-modules.

Consider a fp-flat right R-module M and a f-monomorphism pu: K — L. We
want to show that 1@ pu: M ®g K — M ®g L is a monomorphism. From Herzog
(1997, Proposition 4.3) it follows that the character module M is pure-injective.
On the other hand, M is fp-injective by Corollary 3.3. Proposition 3.5 implies that
M is f-injective. We see that the map

Homg (L, M) — Homg(K, M) (3.1)
is an epimorphism. This map is isomorphic to the map

Homz(M @ L,Q/Z) — Homz(M Qr K,Q/Z).

Copyright © Marcel Dekker, Inc. All rights reserved.
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Since Q/Z is an injective cogenerator in Ab, it follows that 1@ u: M Qg K —
M ®g L is a monomorphism.

The fact that f-flat modules are closed under products and direct limits follows
from Garkusha and Generalov (1999, Proposition 2.3). O

Corollary 3.9. A module M is fp-flat iff its character module M is an fp-injective
pure-injective module. In other words, a module is f-flat iff its character module is
a f-injective module.

As for the class of flat R-modules by the Chase theorem (Stenstréom, 1975,
Proposition 1.13.3) every product of flat right R-modules is flat iff the ring R is left
coherent.

The class wy is flatly generated by fp-flat modules, thatis, p € o, ift M ® pis a
monomorphism for any fp-flat module M. Indeed, if u € wy and M is fp-flat,
Theorem 3.8 implies that M ® p is a monomorphism.

On the other hand, if M ® u with p : K — L is a monomorphism for each fp-flat
module M, the map (3.1) is an epimorphism. In particular, it is an epimorphism for
M = Q with Q a f-injective module and, hence, Hom / gr(KerTu, —®r 077) = 0.
Since Q is a pure submodule of QM, it follows that HomR%,/g,R (Ker T, —®z Q) = 0.
As f-injectives cogenerate %/ this implies Ker Tu = 0, and, hence, u € w;.

Proposition 3.10. «y is flatly generated by modules R' with I a set of indices, R' the
product of I copies of R.

Proof. Let F be a fp-flat module. By Proposition 3.4 it is a pure submodule of

limk KR’k with K, I, k € K, some sets of indices. Let 0 — M 2 N—>L—0be
— ke . .
an exact sequence and the map R’ ® u is a monomorphism for any set 1. By the

above arguments it suffices to show that F ® M is a monomorphism. One has the
following commutative diagram with exact rows:

ForM 2%  FegN — FopL — 0

l l I

0 — limkR’k®RM — limkR1k®RN — limkR’k®RL — 0.

Since the vertical arrows are monomorphisms, F ® p is a monomorphism. Thus
K € oy, as claimed. O

Below we discuss some properties of fp-injective and fp-flat modules we shall
use later.

Proposition 3.11. For a left R-module M the following statements are equivalent:

(1) M is fp-injective.

(2) Any f-exact sequence 0 — M — M’ — M" — 0 is pure.

(3) There is a pure-exact sequence 0 = M — M — M" — 0 with M a
fp-injective module.

(4) Ext, 5.(TF,TM) =0 for all F € Rmod.
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Moreover, any product and any direct limit of fp-injective modules is also a
fp-injective module.

Proof. (1)=>(2). Let F € Rmod then TF € coh g%/ . Since TM is coh-injective
in x4/ %" by Proposition 3.1, it follows that the sequence

0— (TF,TM) — (TF,TM') — (TF, TM") — 0
is exact. By Lemma 2.1 the sequence
0_)(F7M)_)(F7M/)_)(F7M”)_>O

is exact. So 0 - M — M’ — M"” — 0 is pure-exact.
(2)=(3). We may take M’ to be a f-injective envelope of M.

(3)= (4). Since —®z M is a subobject of the R torsionfree object —®x M,
it is also .#%-torsionfree. From Herzog (1997, Proposition 3.10) it follows that
TM = —®g M is a coh-injective object for ch/yR_

(4)=(1). Let u be a monomorphism in R mod; then Ty is a monomorphism.
By assumption, (Tu,TM) is an epimorphism. Since 7 is full and faithful by
Lemma 2.1, the morphism (u, M) is a monomorphism.
The fact that the class of fp-injective modules is closed under taking products
and direct limits follows from Garkusha and Generalov (1999, Proposition 2.3).
L

It is well known that a direct limit of FP-injective left R-modules is FP-injective
iff the ring R is left coherent (see, e.g., Stenstrom, 1970).

Corollary 3.12. Ifin a short f-exact sequence 0 — M — M' — M" — 0 modules M
and M' are fp-injective, then so is M".

Proof. By the preceding proposition the sequence of the corollary is pure-exact.
If we apply the right exact &’%-torsion functor t =t to the z%é-exact sequence

0— R M— —Rxg M — —@r M" —0
we shall get an exact sequence
0=1t(—2xg M') — t(—@r M") — t'(—@r M) = 0.
Hence M" is fp-injective by Garkusha and Generalov (1999, Proposition 2.2). []

The following two propositions extend the list of properties characterizing the
coherent and Noetherian rings respectively (cf. Sklyarenko, 1978b).
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Proposition 3.13. The following assertions are equivalent for a ring R:

(1) R is left coherent.

(2) The character module of a fp-injective left module is a flat module.
(3) A left module is fp-injective iff its character module is a flat module.
(4) A pure-injective envelope of a right f-flat module is a flat module.

Proof. (1)=(2). Over a left coherent ring every fp-flat right module is flat
Garkusha and Generalov (1999, Theorem 2.4). Now our implication follows from
Corollary 3.3.

(2)=>(3). This follows from Corollary 3.3.

(3)=(1). Suppose that the character module of an fp-injective left module M
is flat. Then M is a pure submodule of the injective module M~ ". Hence M is a
FP-injective module. Now our assertion follows from Garkusha and Generalov
(1999, Theorem 2.4).

(1)=(4). A pure-injective envelope Q of a f-flat module M is always a f-flat
module. Indeed, the @z-injective functor Q ®g — is an injective invelope of M @z — in
%r. Since M ®g— is S g-torsionfree, then so is Q ®g—. Proposition 3.1 implies that
Q is f-flat. By assumption, R is left coherent and therefore Q is flat by Garkusha and
Generalov (1999, Theorem 2.4).

(4)=>(1). It is directly verified that given a pure-exact sequence
0—M-—Q—N—0

with Q flat, the module M is also flat.

Suppose that a right R-module M is f-flat. Then its pure-injective envelope Q is
flat by assumption. Hence M is so. Therefore R is left coherent by Garkusha and
Generalov (1999, Theorem 2.4). O

Remark. By a recent result of Rothmaler (2002) there are non-coherent rings over
which pure-injective envelopes of flat modules are flat.

Proposition 3.14. The following assertions are equivalent for a ring R:

(1) R is left Noetherian.
(2) Every left fp-injective module is an injective module.
(3) A left module is f-injective iff its character module is a flat module.

Proof. (1)==(2). Since every left ideal I of R is finitely presented, then the
representable functor Homg(—, M) takes the inclusion I C R to an epimorphism
whenever M is fp-injective. Therefore M is an injective module by the Baer criterion.

(2)= (1). Tt suffices to observe that every direct limit of fp-injective modules
is a fp-injective module.

(1),(2)=(3). This implication follows from Proposition 3.13.
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(3)=(2). Let E be a f-injective envelope of a fp-injective module M.
By Proposition 3.11 M is a pure submodule of E. Therefore M is a direct summand
of the flat module E. Then M is f-injective by assumption. By the preceding
proposition the ring R is left coherent. Now our assertion follows from the fact that
over the left coherent rings the classes of f-injective and injective left modules
coincide (see Garkusha and Generalov, 1999, Theorem 2.4). O

We conclude the section by characterizing the class of FP-injective rings. We give
the most interesting criteria for this class of rings in terms of f-flat and f-injective
modules. For details and proofs we refer the reader to Garkusha (1999) and
Garkusha and Generalov (1999).

Recall that M € R Mod is a FP-cogenerator if for any non-zero homomorphism
p: K — L with K a finitely generated R-module and L a finitely presented module
there exists a homomorphism u: L — M such that pup # 0. Equivalently, every
finitely presented left R-module is a submodule of a product M’ of some copies of
the module M (Garkusha, 1999).

Lemma 3.15. M is a FP-cogenerator iff for any non-zero morphism p : K — L in
Rmod there exists a morphism p: L — M such that up # 0.

Proof. The necessary condition is trivial. Assume the converse. Let p: K — L be
anon-zero homomorphism from a finitely generated R-module K to a finitely presented
module L. Then there exists an epimorphism 7 : R* — K. By assumption, there exists
a homomorphism p : L — M such that u(pn) = (up)m # 0. Hence pp # 0. ]

Theorem 3.16 (Garkusha, 1999; Garkusha and Generalov, 1999). For a ring R the
following conditions are equivalent:

(1) The module Ry is FP-injective.

(2) The module gR is a FP-cogenerator.

(3) There is a f-flat cogenerator in R Mod.

(4) Every left R-module is a (f-)submodule of a f-flat module.

(5) Every fp-injective left R-module is a f-flat module.

(6) Every f-injective left R-module is a f-flat module.

(7) Every f-flat right R-module is a fp-injective module.

(8) Every pure-injective f-flat right R-module is an f-injective module.

Remark. The most difficult statements for FP-injective rings are proved inside of
the category g% and use localization theory in z%. It would be interesting to have
a proof (especially of the equivalence (1) <= (4)) by using usual module-theoretic
technique. The author does not know such a proof.

Rings over which any module is embedded into a projective module are
quasi-Frobenius. This is the classical Faith-Walker theorem. Rings over
which any module is embedded into a flat module, the IF-rings, were inves-
tigated in the early 1970s (see, e.g., Colby, 1975; Jain, 1973; Stenstrom, 1970).
The equivalent statements of the preceding theorem are, in a certain sense,
similar to properties both for QF-rings and for IF-rings. We have thus the
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following proper inclusions:

QF-rings IF-rings FP-injective rings
modules are submodules 9 modules are submodules ; modules are submodules o *

of projective modules of flat modules of f-flat modules

The class of FP-injective rings is big enough. For example, given an arbitrary
left self-injective ring R and a locally finite group G, the group ring R(G) is left
FP-injective (Garkusha, 1999, Theorem 3.2). Moreover, if |G| = oo, the group ring
R(G) is left FP-injective but not left self-injective (Garkusha, 1999, Corollary 3.3).

4. THE FUNCTORS Ext; AND Tor/

Definitions. Let N be a left R-module.
(1) The f-injective dimension inj.dim, N is the minimum integer n (if it exists)
such that there is a f-exact sequence

0—-N—-E -E' ... 5 E">0

with E° ... E" being f-injective modules. We call such a sequence a f-resolution of
N by f-injective modules.

2) The left global f-dimension l.gl.dim.R of a ring R 1is sup
f
{inj.dim, N|N € RMod}.

(3) The fp-injective dimension fp-inj.dim M is the minimum integer n (if it
exists) such that there is a f-resolution

0-N—-E —-E' —-... 5 E" =0

of N by fp-injective modules E°, ... E".
If no finite resolution exists, we set inj. dim /N, fp-inj. dim N equal to oo.

(4) The lefr global fp-dimension 1.gl.fp-dimR of a ring R is sup{fp-
inj.dim N | N € RMod}.

(5) Let
0—-N—->E —SE' —...

be a f-injective f-resolution for N. Then Ext}(M, N), M € RMod, n > 0, denote the
cohomology groups for the complex '

0 — Homg (M, EO) — Homg (M, E]) —
Note that

0— TN — TE® - TE' — ...
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is an injective resolution in %/~ for TN by TE' = —@g E' and the cohomology
groups for the complex

0 — (TM,TE®) — (TM,TE") — - -
are the Ext}(M, N), n > 0. It follows that

Ext}(M,N) = Ext", -.(TM, TN).

fg‘/ﬁ"(
Let us remark that any f-exact sequence
0—L—M—N—0

yields a long exact sequence for any F € R Mod

-+ — Ext}"!(F,N) — Ext}(F,L) — Ext}(F, M) — Ext}(F,N) — - -

Lemma 4.1. The following are equivalent for a left R-module N:

(1) mnj.dim;N < n.

2) Ext’]'i(M7 N) =0 for all p > n and all R-modules M.

3) Ext‘;’f“(M, N) =0 for all R-modules M.

@4 If 0-N—E —... -E"' - L" -0 is a f-resolution of N by
f-injective modules E', then L" is also f-injective.

Proof. Easy. O
Corollary 4.2. 1.gl.dim; R = sup{n|Ext}(M,N) # 0 for some R-modules M and N}.

An acyclic complex M* = (M",d") is said to be f-acyclic if each d", n € Z, is an
f-homomorphism. Similarly to the absolute case, the elements of Ext;i(M ,N),n>1,
are represented by f-acyclic complexes of the form (see Generalov, 1992):

0-N-M"'oM2-... M - M—0.

The proof of the following lemma is straightforward (cf. Stenstrom, 1970,
Lemma 3.1).

Lemma 4.3. The following are equivalent for a left R-module N:

(1) fp-inj.dim N < n.

2) Ext;'i(M7 N) =0 for all p > n and all finitely presented R-modules M.

3) Ext;ﬁ“(M, N) =0 for all finitely presented R-modules M.

@) If 0-N—E —...E"' S L" -0 is a f-resolution of N by
fp-injective modules E', then L" is also fp-injective.
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It is well known that a ring R is left Noetherian iff every direct limit of left mod-
ules of injective dimension < has injective dimension <n. In turn, let FP-inj. dim N
denote the smallest integer n > 0 such that there is a resolution

0>N—->E SE' ... 5E"50

of N by FP-injective modules E'. Then R is left coherent iff every direct limit of left
modules of FP-injective dimension <n has FP-injective dimension <n (Stenstrom,
1970, Theorem 3.2).

Corollary 4.4. Let R be an arbitrary ring. Then every direct limit of left modules of
fp-injective dimension <n has fp-injective dimension <n.

Proof. Let {M;}, be a direct system of left modules of fp-injective dimension <n
and let

0—>M,»—>E?—>Eil—>--~

be the f-injective f-resolution for M;, i € I, constructed as follows. Choose a direct
system of f-injective modules EY D M; in the following way. Let Q be a f-injective
cogenerator. Such a module exists: we can take an injective cogenerator —®g Q
in R(g/QR and then Q is a f-injective cogenerator. For every i € I, we set Q;
equal to QHomM0), J, — {j e I|i < j} and E} =], Q;. The canonically defined
f-monomorphisms M; — E?, i € I, induce a f-monomorphism M — lim EY. The
modules E¥=! are similarly constructed. -
By Lemma 4.3

0—>Mi—>E?—>~~~—>El'.171—>L;'—>O

is a f-resolution of M; by fp-injective modules. Since every direct limit of fp-injective
modules is fp-injective, M has a f-resolution

0—>M—>limE?—>--~—>limE?71 —IlimL! — 0

by fp-injective modules. Hence fp-inj. dim M < n. O

For a left finitely presented module F and a direct system {M;}, of left modules,
we consider the canonical homomorphism

& lim EXU(F, M;) — ExU)(F, lim M,).

Recall that finite presentation of F is equivalent to &, being an isomorphism for
every {M;}, (Stenstrom, 1975, Proposition V.3.4).

Theorem 4.5. ¢, :limIExt;?(F, M;) — Ext}(F, limIM,-) are isomorphisms for all
n >0, for every finitely presented module F and direct system {M;},.
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Proof. &, is an isomorphim. First we shall show that &; is an isomorphism. Let us
consider the f-injective f-resolution

0 1
o4 14
0— M —ESE 2.

for each M; constructed above.
Let L?=E?/M;. The module limIE? is fp-injective and, hence,
Ext}(F , lirnl E?) = 0. We get then the following commutative diagram with exact rows:

lim(F,E{) — lim(F,L}) — lmExtj(F,M;) — 0

&) | & |

(F,limE% — (F,limL}) — Ext}(F,limM,«) — 0.

Since the first two arrows of the diagram are isomorphisms, &; is an isomorphism as
well.
Let L} = Imd}. Then Ext}(F, M;) = Ext}(F, L?%), n > 2. The sequence

is a f-resolution of lim M; by fp-injective modules. Then

M n M n— 5 1 n— n 1

lin Ext}(F, M;) = lin Ext}(F, L2 = Ext}(F, lim Z; 2 = Ext}(F, lim M;).
Since £ is an isomorphism, it follows that &, is an isomorphism. O

Stenstrom (1970) showed that &, : limIExt}Q(F, M;) — Exty(F, limlMi) are
isomorphisms for all n >0, for every finitely presented module F and direct
system {M;}, iff a ring R is left coherent.

Corollary 4.6. Let M be a left module and M = limIM,- with M; € Rmod.
Then Ext}(F, M) = liml Ext}(F, M;) for any finitely presented left module F.

The following is an immediate consequence of the preceding statements.
Corollary 4.7. The following numbers are the same for any ring R:

(1) lglfp-dimR.

(2) sup{n|Ext}(F,M) # 0 for some F € Rmod and M € R Mod}.

(3) sup{fp-inj.dim M | M € Rmod}.

A ring R is said to be almost regular if every (both left and right) module is

fp-injective; equivalently, f-flat (see Garkusha and Generalov, 1999). Since every
(both left and right) module is fp-injective, every f-exact sequence is pure by
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Proposition 3.11. An almost regular ring is (von Neumann) regular iff it is left or
right coherent (Garkusha and Generalov, 1999). Let 1. gl. FP-dimR denote
sup{FP-inj. dimM | M € RMod}.

Obviously, l.gl. FP-dimR =1.gl.fp-dimR when R 1is left coherent. Also,
l.gl.fp-dimR =1.gl.dimR when R is left Noetherian. By Stenstrom (1970,
Proposition 3.6) 1.gl. FP-dimR = 0 iff R is (von Neumann) regular. In turn, it
follows that 1. gl. fp-dim R = r. gl. fp-dim R = 0 iff R is almost regular. The class of
non-regular almost regular rings is big enough. Simple almost regular rings we call
indiscrete rings (Garkusha and Generalov, 1999; Prest et al., 1995). Given a non-
regular finite dimensional algebra of finite representation type one can construct a
non-regular indiscrete ring as a twisted limit of matrix rings (Prest et al., 1995,
Sec. 2.4). In turn, if R is a non-regular almost regular ring, G a non-trivial locally
finite group and the order |H| of every finite subgroup H of G is invertible in R, then
the group ring R(G) is a non-regular non-indiscrete almost regular ring (Garkusha,
2001b).

There is an interesting problem in our context. A f-flat precover of a right
module M is a f-epimorphism ¢ : F — M with F a f-flat module such that the
induced map ¢* : Homg(F', F) — Homg(F', M) is an epimorphism for any f-flat
module F'. We refer to ¢ as a f-cover if for every endomorphism  : F — F the
relation @iy = ¢ implies i is an isomorphism.

Question. Every right R-module has a f-flat (pre-)cover.

Rings over which every module has a f-flat cover exist. For example, over an
almost regular ring every module is f-flat. This is the easiest case. In the absolute
case, every module has a flat cover. This has recently been proved by Bican et al.
(2001).

Proposition 4.8. For a ring R the following conditions are equivalent:

(1) lLglfp-dimR < 1.

(2) Every f-quotient module of a f-injective module is fp-injective.

(3) Every f-quotient module of a fp-injective module is fp-injective.

(4) If in a short exact sequence 0 = M — E — N — 0 with M a finitely
presented module a module E is (FP-)injective, then N is fp-injective.

Proof. Apply Corollary 4.7. O

A ring R is left f-semihereditary if it satisfies the equivalent conditions of the
preceding proposition.

Corollary 4.9. A left f-semihereditary ring R is left semihereditary iff it is left
coherent.

Proof. Any left semihereditary ring is left coherent. Conversely, over a left coherent
ring the functors Extp and Ext; coincide. Now our assertion follows from
Sklyarenko (1978b, Proposition 1.22). O
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If M = lim IM“ with M, finitely presented modules, then there exists a spectral
— o

sequence for each module N
EN = lglext%(Ma, N) = Exti(M,N).

In Jensen (1972, Théoreme 4.2), the spectral sequence is constructed from a double
complex. Precisely, we construct the pure-exact resolution of M

) ) d )
- =5 Ry — R — Ry — M,
where
Rn = @ Mxo,otl,“..,z,,
o <ot <+ <oty
and My, 4, .4, 1s @ copy of M,,.
Let

r)(] A)] ‘)2
N—pgt 2 gt 22 2,0

be an injective resolution of N. Then the bicomplex is
El? = Homg(R,, E?),
where the vertical and horizontal differentials are
dh = (—1)" Homg(R,, d7) : E0? — ED7*!
and
dy! = (—1)" Hompg (8,1, ET) : Ef* — EFTM,
respectively.
If we replace the injective resolution N — E* by an f-injective f-resolution of N

and also apply Corollary 4.6, we shall get the following result expressing Ext; in
terms of abelian groups Ext}(M,, Ng) with M,, N finitely presented.

Theorem 4.10. Let M and N be two modules, M = lim M, and N = limﬂ Ng with
—s 0 —
M, and Ny finitely presented modules. Then the following relation is valid:
l{iinf hI_l')l]EXt;]p(Mx,Nﬂ) = lglext?(Ma,N) = Ext}(M, N).

Suppose M has a f-resolution by f-flat modules F, — M. Given a left module N
we put

Tor/(M,N) = H,(F,®&N).

Copyright © Marcel Dekker, Inc. All rights reserved.
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Any f-exact sequence of left R-modules
0—L—M-—N—0

yields a long exact sequence for any G € Mod R having a f-flat f-resolution

. — Tor!

! 1(G,N) — Tor)(G,L) — Tor)(G,M) — Tor/(G,N) — - --

Remark. The definition of the functor Tor/ depends on the choice of a f-flat
f-resolution. In the absolute case, the groups Tor® do not depend on the choice
of a flat resolution (see e.g., Weibel, 1995) since every module admits a projective
resolution. It is not clear, however, whether the class wy is projective. The case of
almost regular rings is trivial, because Torj: =0 foralln>1.

We consider the duality homomorphisms
p : Exti(M,N) — Tor®(M, N)™

and
o : Tor®(N, F) — Ext’y(F, N)~

where M € ModR, F,N € RMod. The first homomorphism is always an iso-
morphism (Cartan, 1956, Proposition VI.5.1) whereas ¢ is an isomorphism for
every finitely generated module F whenever R is a left Noetherian (Cartan, 1956,
Proposition VI.5.3) or for every finitely presented module F whenever R is a left
coherent (Sklyarenko, 1978b, Lemma 1.12).

It is not clear, however, whether a homomorphism i is a f-homomorphism if u
is a f-homomorphism. Therefore we specify some classes of modules to construct the
analogous duality homomorphisms corresponding to the functors Ext; and Tor/.
Precisely, let #(R) (% (R°P)) denote the subcategory of right (left) modules M that
have a f-flat f-resolution F, — M such that M—Fisa f-injective f-resolution
for the character module M. The class Z# (R) is non-empty, because every fp-flat
module belongs to # (R). In a similar way, .#(R°P) (#(R)) is the subcategory of left
right modules M that have f-injective f-resolution M — E* such that E, — M is a
f-flat f-resolution for the character module M. Obviously the fp-injective left
modules belong to .#(R°P).

Proposition 4.11.  For a right FP-injective ring R and M € (R°P) the following are
equivalent:

(1) fp-inj.dimM = 0.
(2) fp-inj.dimM < n.

Proof. The implication (1) =>(2) is trivial. Let us show (2) =>(1). Let M — E” be
a f-injective f-resolution for M such that E, — M is a f-flat f-resolution for M.
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Then the module K” = Imd"~! in the exact sequence

el
O—>M—>E0—>---—>En_ld—>—>[("—>0

is fp-injective. It is enough to show that L"~! = Ker d"! is fp-injective. By assump-
tion, the sequence

0-K'—E"'5...5E->M—-0

is a f-flat f-resolution of M. By Theorem 3.16 all Ehe E', i < n, and the K" are ]I—ﬂat
modules. Therefore K~ is a direct summand of E by Corollary 3.9. Hence L" isa

. ~n—1 .. . ~ . . .. .
direct summand of E  as well. This implies L"~! is f-flat, and L"~! is fp-injective
by Corollary 3.3. O

Given modules M € ModR and N € #(R°®) we consider the duality
homomorphism

p : Ext}(M,N) — Tor](M,N)".

Similar to the absolute case (Cartan, 1956, Proposition VI.5.1) p is an isomorphism.
It follows that given two f-flat f-resolutions for N we obtain the same functors
Tor/(—, N)™. This follows from the fact that the functors Ext}(—, N) do not depend
on the ch01ce of a f-injective f-resolution for N and that p 1s an isomorphism.

Let F € RMod and N € .#(R°P). There is a f-injective f-resolution N — E* for
N such that E, — N is a f-flat f-resolution for the character module N. In this
case we consider the groups Tor,’: (N , F) relative to this resolution. There is a duality
homomorphism

o : Tor/(N,F) — Ext}(F,N)~

If F is finitely presented, then each natural homomorphism E' @ F — Homg(F, E')™
with E the ith component of the complex E*, i > 0, is an isomorphism. We see that ¢
is an isomorphism whenever F is finitely presented.

Now let F be a finitely generated left module without finite presentations,
0—H—P5F—0 an exact sequence with P a finitely generated free module.
Then F =limF, where F, = P/H,, H, are finitely generated submodules of H.
Moreover, ¢ = lim@, where ¢, are epimorphisms P — F,. Let G denote the

kernel Ker To, Gjthe kernel Ker T, and D, = G/G,.

Lemma 4.12. If a left module F is finitely generated without finite presentations
and N is a f-injective module, then the kernel of the natural homomorphism
N@gF—Homg(F,N) is limHomR(g,/g,R(Dx,TN)’\: limHom, ;5 (D,,—®grNY-

Proof. Indeed, for each o we have an exact sequence 0 — D, — TF, — TF — 0.
If N is a f-injective module, then the sequence

0— (Dy, TN)"™ — (TF,, TN)™ — (TF, TN)™ —0
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is exact. Since the functor 7 is fully faithful and the functor of direct limit is exact, we
get the exact sequence

0 — lim(D,, TN)™ — lim Homg(F,, N)” — Homg(F,N)” — 0.

All the modules F, are finitely presented, and so all the groups Homg(F,, N)™ are
isomorphic to N ®gr F,. It remains to observe that th ®Qr F, = N ®gr F. O

Theorem 4.13 (The Sklyarenko exact sequence). If F is a finitely generated left
module, then for any module N € #(R°P) the duality homomorphism o fits into
the exact sequence

2 Ext (R, NS hm Ext"_ _.(D,, TN)Y"~ — Tor/ (N,F) —

x| PR

L Ext}(F,N)™— - KA limHom, ;5 (Dy,, TN)™ — N @g F = Homg(F,N)~ — 0.

Proof. Let N — E* be the chosen f-injective f-resolution of N. By the preceding
lemma the sequence of complexes

0 — lim(D,, TE*)™ —E, ®r F — Homg(F,E*)” —0 (4.1)

is exact. The sequence of the theorem is the homological sequence that corresponds
to (4.1). Indeed, the homology groups of the complex Homg(F, E*)” are obviously
the groups Exty(F,N)”, the homology groups of the complex E.®z F are
Tor/ (N, F). Finally,

H,(lim(D,,TE*)" ) = liran((Dm7 TE*)" ) =limH"((D,, TE"))™

= hm Ext" D,,TN)”

G/ FR (

because the homology functor H, commutes with the exact functors lim and

—

X — X. O

Now we suppose that R is a left coherent ring, and let F be a finitely gene-
rated left module and 0 - G — P — F — 0 an exact sequence with P a finitely
generated free module. Then F =limF, where F, = P/G, and G, are finitely
presented submodules of P. As above, let D, denote G/G,.

Corollary 4.14 (Sklyarenko, 1978b). If R is a left coherent ring, F is a finitely
generated left module, then for any module N € RMod the duality homomorphism
o fits into an exact sequence

5 Exty (F, NY™ 5 lim Exty(D,, N)™ — Tor®(N, F) —

2 EXtL(F,N)™ — - lim Homg (D, N}~ — N @x F 2 Homg(F, N)™~ — 0.
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Proof. Since over a left coherent ring the character module of any injective module
is flat, the proof is similar to that of Theorem 4.13. O

5. THE DERIVED CATEGORIES D/(R) AND D(z%/%%)

In this section we use Generalov’s construction of the relative derived category
(see Generalov, 1992) to describe the derived category of the locally coherent
Grothendieck category g%/ R

Let K(R) and K(z%/9") denote the corresponding homotopy categories of
RMod and ;%/%%, ie., the quotient categories of Kom(R) and Kom(z%/F¥)
respectively modulo homotopy equivalence. The functor T induces the fully faithful
embeddings

Kom(R) — Kom(z%/F%)
and
K(R) — K(x€/ %)

that take a complex M* = (M",d") to TM* = (TM",Td"). We recall that a mapping
cone of a morphism p : M* — N* in Kom(R) is defined as the complex

—d 0
_ n+1 n M
C(u) = (M"" @ N",dc(y), dC(,u)—( u dN)

We have the following sequence of complexes

0

M5 NS o) L M)

where (M[1])" = M™!, v" : N" — C(u)" and p" : C(u)" — M"*! are the canonical
injection and projection respectively. The family of such sequences (up to isomorph-
ism the so-called “distinguish triangles’’) defines the structure of a triangulated
category on the homotopy category K(R) (see Gelfand and Manin, 1988; Verdier,
1977; Weibel, 1995).

A morphism g : X* — Y* in K(R) is called a f-quasi-isomorphism if its mapping
cone C(u) is f-acyclic. Obviously, if p is a f-quasi-isomorphism then Ty is a quasi-
isomorphism in K(z%/%%). We denote by % # the class of all f-quasi-isomorphisms
in K(R). By Generalov (1992) it is localising in K(R). One can thus construct the
localization of K(R) with respect to &/, and we define the relative derived category
D¢ (R) of RMod as this localization: D;(R) = K(R)[¥;] (see Generalov, 1992). The
category Ds(R) inherits the structure of a triangulated category from K(R). It is easy
to see that the functor 7 induces a map from D(R) to the derived category
D(z6)FR) of g%/ PR If we start with the homotopy category K*(R) (respectively
K~ (R) or K’(R)) of complexes bounded from below (respectively bounded from
above or bounded complexes), then we get in a similar way the derived categories
Dj (R) (respectively D (R) or D(R)).
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Theorem 5.1. The triangulated functor T : D} (R) — D (%)) is an equiva-
lence of categories.

Proof. Let K*(.#;) denote the homotopy category of complexes bounded from
below over the full subcategory .# , of R Mod consisting of f-injectives. It is shown
in Generalov (1992) that the natural functor @ :K"(#;) — Df(R) taking E*c
K*(7) to its image in D} (R) is an equivalence of categories. Obviously, the functor

T:K"(S;)—K"(#), E'—TE'

is an equivalence of K*(.# ) and the homotopy category of complexes bounded from
below over the full subcategory .# of R4 /#® consisting of z% /S -injectives. Consider
the following commutative diagram

K'(5;) —  K'(S)

<1>l llﬁ
Di(R) —~ D'(z%/F%)

in which the natural functor @ : K*(.#) — D* (3% /%F) is an equivalence of categories
(Gelfand and Manin, 1988, Theorem 3.5.21). It follows that the required functor is an
equivalence as well. O

Let the functor Iy send a module M € R Mod to the complex ---0 — M —0---
concentrated at zero degree. Then the following relation holds:

EXt.};'(M’ N) = HomD/(R) (Ir(M), I;(N)[n])

where M, N € RMod Generalov (1992). The groups Ext}(M, N) can also be defined
Generalov (1992) by using f-acyclic complexes of the form:

0O-N->-M"T1o...oM S M—0.

On the other hand, let the functor / take every M € RMod to the complex
-0 —=TM — 0--- Then

Ext}(M,N) = Homy, s, (1(M), I(N)[n]).

6. K-GROUPS FOR THE CATEGORY cohz%/%®

An exact category € is a full subcategory of an abelian category .o/ which is
closed under extensions and which contains a zero object of .&Z. A sequence
0—E — E— E'"—0in % is called exact if it is exact in .«Z. We say that a map
i: M — N in an exact category % is an admissible monomorphism if there is a short
exact sequence 0 - M — N — L — 0 in %. Similarly j : M — N in an exact category
% is an admissible epimorphism if there is a short exact sequence 0 — L —
M — N—0in 4.
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If .4 is an exact category define Q.4 to be the category with the same objects as
A/ and with morphisms defined as follows. A morphism from M to N in Q.4 is an
equivalence class of diagrams of the form

M«—X—N

in /. Here — denotes an admissible epimorphism and — denotes an admissible
monomorphism. We say that M «- X— N and M « Y — N are equivalent if there
is an isomorphism X ~ Y making

M «— X — N

I l= |

M «— Y — N

commutative (see Quillen, 1973; Swan, 1995). The Quillen K-theory space (Quillen,
1973) of .# is the pointed space

K(4) = 0|0

with |Q.#| standing for the geometric realization of the category Q.#. Its homotopy
groups are, by definition, the K-groups K,(.#),n > 0.

Theorem 6.1 (Resolution). Let % be an exact category and let M C € be a full
subcategory of € closed under extensions. Assume

(1) 1If0 - M — M — M" — 0 is a short exact sequence in € with M' and M in

M, then M" is in M.
(2) For every object C in € there is a finite resolution

0O—C—My— M — -+ —M,—0
with M; in M.
Then K(M) — K(%) is a homotopy equivalence (and thus K,(./) — K,(%)).

Lemma 6.2. For any C € coh R(g/g’R there is an exact sequence

0—C LN ™ 2» TN — TL —0
with M, N and L finitely presented modules.

Proof. By Herzog (1997, Theorem 2.16) there exists a coherent object D of coh x4
such that C = Dx. The object D fits into an exact sequence

O—>D—>—®RM;®”>®R—N—> —®grL—0

with M,N,L € Rmod. If we apply the exact functor of #®-localization to this
sequence, we shall obtain the exact sequence of lemma. O
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Lemma 6.3. Let .// = {TM|M € Rmod}. Then ./ is closed under extensions in
coh %/ K.

Proof. Let
0—TM —C— TN —0
be an exact sequence in coh z%/F® with M and N finitely presented. Then the

module K = C(R) is finitely presented. By the preceding lemma there is an exact
sequence

0—C 1L ™ TE

with L and FE finitely presented modules. Then K = Keru and there is a unique
morphism ¢ : TK — C such that Tp = i¢p with p = Keru. We claim that ¢ is an
isomorphism.

The module F = L/K is finitely presented and the exact sequence

0—K—L—F—0
is f-exact. We have a commutative diagram with exact rows:

0 — Tk 5 1 ™ 17— 0

o H |

0O — C — TL — TE.
i Tu

Since F is a finitely presented submodule of E, it follows that T is a monomorphism.
By the snake lemma ¢ is an isomorphism and, hence, C € ./Z. O

G-theory of a ring R is, by definition, the K-theory of the exact category of
finitely presented modules R mod. The preceding two lemmas imply the following.

Proposition 6.4. The subcategory # = T(Rmod) of € satisfies all the hypotheses
of the Resolution Theorem. In particular, the functor T induces an isomorphism

of K-groups G,(R) = K,,(cohR(g/g?R)y n>0.

Let *9 = {C € coh@r | C(R) = 0}. The Auslander-Gruson-Jensen duality D
takes the category X% to #. By Herzog (1997, Theorem 5.5) D induces a duality

D: coh%R/R<5”—>c0hR(€/9R.

Then the classifying spaces for the categories Q coh % /R% and Qcoh z%/Fx are
homeomorphic.
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Proposition 6.5. The functors T and D induce an isomorphism of K-groups
Gn(ROp) — Kn(COhR(g/yR), n> 0.

Corollary 6.6. If R is a left and right FP-injective ring, then the functors T and D
induce an isomorphism of K-groups G,(R°?) — G,(R), n > 0.

Proof. A ring R is left and right FP-injective iff % = %, (Garkusha and
Generalov, 1999, Theorem 2.5). Therefore our assertion follows from the preceding

two propositions. O

The duality D yields isomorophisms of K-groups K;(coh z%) = K;(coh @R).
Since every coherent object C € coh zx% fits into an exact sequence

0—-C— —®rM——-—®rN——-QrL—0
the Resolution theorem implies that the K-theory of coh z% is equivalent to the
K-theory of Rmod®. Here Rmod® denotes the exact category of finitely presented left

R-modules where only short exact sequences are used. Let % denote the Serre
subcategory D.¥® = {C € coh @ | (C,R ®g —) = 0} of coh %x.

Proposition 6.7. The functors T and D induce two isomorphic long exact sequences
Gt (R) 2 Ky (9F) — Ky(Rmod®) — G,(R) —
2 Ko(PR) = Ko(Rmod®) — Go(R) — 0
and

Gt (R) 2 Kn(F) — Kn(mod®R) — G, (R) —
% Ko(rY) — Ko(mod®R) — Go(R) — 0.

Proof. Since &K is a Serre subcategory of coh z%, there is a long exact sequence
Quillen (1973, Theorem 5.5)

- = K1 (coh g8/ FR) < Ko(9R) — Ko(Rmod®) — Ko(coh z%/FF) — 0.
By Proposition 6.4 G,(R) is isomorphic to K,(coh z&/%F) for all n > 0. We obtain
then the first long exact sequence. Proposition 6.5 implies the second long exact
sequence. O
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