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Abstract. The relationship between the Ziegler spectrum of (the category of modules over) a ring
and the Ziegler spectrum of its derived category is investigated. Over von Neumann regular rings and
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1. Introduction

The Ziegler spectrum of a ring is a topological space defined in terms of its category
of modules. The points are certain indecomposable modules and the topology,
originally defined in model-theoretic terms [Zie], can be defined in a number of
alternative but equivalent ways, see [He2, Kr1] for example. In particular it may
be defined as a topology on the set of indecomposable injective objects in an asso-
ciated functor category. In [Kr4] Krause used this approach in order to define the
Ziegler spectrum for any compactly generated triangulated category.

To any ring R there is associated the triangulated category, D(R), of unbounded
complexes of R-modules. One may ask what is the relation between the Ziegler
spectrum of R and that of D(R). We are able to give a complete answer when R

is right hereditary or von Neumann regular. For general rings we have that a pure-
injective complex has all cohomology modules pure-injective and that the Ziegler
spectrum of D(R) contains countably many disjoint copies of the Ziegler spectrum
of R, but that in general there are further points in the spectrum of D(R). As for
modules there is a duality which induces an isomorphism between the topologies
on the spectra of D(R) and D(Rop).

We also note the relation between the Ziegler spectrum of a quasi-Frobenius
ring and that of its stable module category.
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We define a notion of absolutely pure relative to a fixed generator in any mono-
genic compactly generated triangulated category. For the case of D(R) with gen-
erator R, we show that all cohomology modules of an absolutely pure complex are
absolutely pure and, in case R is coherent, we show that a complex is absolutely
pure iff it is homologically isomorphic to a coproduct of absolutely pure modules
(regarded as complexes concentrated in a single degree).

We also show that the topology of the Ziegler spectrum of a compactly gen-
erated triangulated category may be defined in the style of [Zie], that is, using
positive primitive formulas. For that we first set up the canonical language of such a
category. We show that the category has elimination of quantifiers in this language.

2. Compactly Generated Triangulated Categories

We fix a triangulated category T with arbitrary direct sums. An object X of T is
said to be compact if for every family {Yi}i∈I of objects from T the canonical map

⊕

i∈I

T (X, Yi) −→ T

(
X,

⊕

i∈I

Yi

)

is an isomorphism. The suspension of any compact object is compact. The cat-
egory T is compactly generated if there exists a set C of compact objects of T
such that T (C, Y ) = 0 (i.e. T (C, Y ) = 0 for all C ∈ C) implies Y = 0 for
every object Y in T . We refer to such a set C as a generating set if it is closed
under suspension, for which we write C = �C. The triangulated subcategory of T
consisting of compact objects will be denoted by T c. We observe that T c is the
smallest triangulated subcategory in T containing any generating set. Also T is
closed under taking direct products.

The following examples of such categories are particularly important for appli-
cations:

(1) the derived category D(R) of unbounded complexes of modules for a ring R;
(2) the stable module category Mod � of a QF-ring �;
(3) the stable homotopy category Ho(S) of CW-spectra.

One can specify in each case generating sets and the compact objects.

(1) The set R = {R[n]}n∈Z generates D(R), where R[n] denotes the complex
concentrated in the −nth degree, and the perfect complexes (i.e. the complexes
isomorphic to bounded complexes of finitely generated projective modules)
are the compact objects in D(R);

(2) If {S1, . . . , Sl} is the set of the simple �-modules, then the set

R = {�nS1}n∈Z

⋃
· · ·

⋃
{�nSl}n∈Z

of suspensions of the simple modules generates Mod �, and the finitely gen-
erated modules are the compact objects in Mod �;
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(3) The set R = {Sn}n∈Z of suspensions of the sphere spectrum S0 generates
Ho(S), and the finite spectra are the compact objects in Ho(S).

Following Hovey, Palmieri and Strickland [HPS], we call a triangulated category T
monogenic if there is an object X in T such that the only localizing subcategory in
T containing X is T itself, where a localising subcategory of T is a triangulated
subcategory which is closed under arbitrary coproducts (and hence under direct
summands). We shall refer to X as a generator. All of the above triangulated
categories are plainly monogenic.

If T is a compactly generated triangulated category then, following Krause

[Kr3], a triangle L
α−→ M

β−→ N −→ �L in T is pure-exact if for every
compact C in T c the induced sequence 0 −→ T (C, L) −→ T (C, M) −→
T (C, N) −→ 0 is exact. We call the map α a pure monomorphism. The object
L of T is pure-injective if every pure-exact triangle L −→ M −→ N −→ �L is
split.

Consider, for a compactly generated triangulated category T , the category
Mod T c of additive contravariant functors from T c to Ab. We have a natural
functor H : T −→ Mod T c sending X to HX = T (−, X)|T c . A T c-module M

(that is, an object of Mod T c) is finitely generated if there exists an exact sequence
HX −→ M −→ 0 for some X in T c, and M is finitely presented if there exists an
exact sequence HY −→ HX −→ M −→ 0 with X and Y in T c. We denote the
full subcategory of finitely presented objects by mod T c. Below we list some basic
facts about the category Mod T c.

• Mod T c is a locally coherent Grothendieck category, because any map Y −→
Z in T c has a weak kernel X −→ Y , i.e. the sequence HX −→ HY −→ HZ

is exact. Equivalently, the category mod T c is Abelian.

• A triangle L −→ M −→ N −→ �L is pure-exact iff the sequence 0 −→
HL −→ HM −→ HN −→ 0 is exact.

• The functor H restricts to an identification of the pure-injective objects of
T with the injective objects of Mod T c [Kr3]. The (iso classes of) indecom-
posable injective objects of Mod T c form a set since every indecomposable
injective T c-module arises as an injective hull of a finitely generated T c-
module. Therefore, the (iso classes of) indecomposable pure-injective objects
of T form a set which we denote by Zsp T .

We say that an object M of Mod T c is absolutely pure if Ext1(F, M) = 0
for all F ∈ mod T c. For example, every functor HX with X an object of T is
absolutely pure [Kr3, 1.6]. Clearly, every absolutely pure object M of Mod T c is a
cohomological functor on T c.

The category of finitely presented T c-modules, mod T c, has enough injectives.
Indeed, every module HX with X compact is injective in mod T c since it is ab-
solutely pure.
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Let F be an arbitrary object of mod T c and let

HX

Hα−→ HY −→ F −→ 0

be a projective presentation of F with X and Y compact. Complete α to a triangle

X
α−→ Y −→ Z −→ �X.

Then,

0 −→ F −→ HZ −→ H�X

is an injective presentation of F in mod T c. Since T c is closed under direct sum-
mands, the functor H identifies compact objects with injectives in mod T c.

The pure-injective objects in a triangulated category have a characterization
similar to that in [JeLe] of pure-injective modules.

THEOREM 2.1 (Krause [Kr3]). An object L in T is pure-injective iff for every set
I the summation map L(I) −→ L factors through the canonical map L(I) −→ LI

from the coproduct to the product.

EXAMPLE. (1) Let Mod � be the stable category of a QF-ring �. An object L in
Mod � is pure-injective iff it is a pure-injective �-module [Kr3, 1.16].

(2) Every endofinite object in T (in the sense of [Kr2, KR]) is pure-injective
[KR]. For example, every perfect complex P in D(�) over an Artin algebra � is
endofinite, because the cohomology Hn(P ) is an endofinite module for each n ∈ Z.

Below we shall show that any complex L[n] concentrated in the −nth degree
with L a pure-injective R-module is a pure-injective object in the derived category
D(R).

We call a map ϕ: X −→ X̂ a pure-injective hull of X if ϕ is a pure monomor-
phism, X̂ is pure-injective and every endomorphism ψ of X̂ satisfying ψϕ = ϕ is
an isomorphism. Every object X in T admits a pure-injective hull ϕ: X −→ X̂

since ϕ: X −→ X̂ is a pure-injective hull iff Hϕ: HX −→ HX̂ is an injective hull
in Mod T c [Kr3, 1.12] and since Mod T c has injective hulls. If ϕ′: X −→ X̂′ is
another injective hull, then there exists an isomorphism ψ : X̂ −→ X̂′ such that
ϕ′ = ψϕ [Kr3].

LEMMA 2.2. A pure-injective object X of T is indecomposable iff the endomor-
phism ring EndT X of X is local.

Proof. By [Kr3, 1.8] EndT X = EndMod T c HX. Since HX is injective in Mod T c

the assertion follows from the fact that an injective object in a functor category is
indecomposable iff its endomorphism ring is local. �
THEOREM 2.3 (as Herzog [He2]). A pure-injective hull M̂ of a compact object
M is indecomposable iff the endomorphism ring EndT M of M is local. If, further-
more, N is another compact object such that N̂ � M̂ then N � M .
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Proof. We repeat Herzog’s arguments for the convenience of the reader. The
mod T c-injective object HM has a local endomorphism ring Endmod T c HM =
EndT M and hence is indecomposable. Because the category mod T c has enough
injectives, HM is, therefore, a uniform mod T c-object. Hence it is uniform in
Mod T c and so its injective hull E(HM) = HM̂ is indecomposable.

On the other hand, if M̂ is indecomposable then the injective T c-module HM̂

is indecomposable. Hence HM � HM̂ is a uniform mod T c-injective. The proof
of [St, V.5.1] then shows that EndT M is a local ring.

If furthermore N is another compact object such that N̂ � M̂ , then both HN and
HM are essential extensions of some finitely generated, hence finitely presented,
subobject F . Then HN � Emod T c (F ) � HM . So N � M , as claimed. �

Below we shall need the following lemma.

LEMMA 2.4. Let X −→ Y −→ Z −→ X[1] be a pure-exact triangle of com-
plexes in the derived category D(R) of a ring R. Then the sequence of R-modules
0 −→ Hn(X) −→ Hn(Y ) −→ Hn(Z) −→ 0 is pure-exact for all n ∈ Z.

Proof. By assumption, the sequence

ε: 0 −→ HX −→ HY −→ HZ −→ 0

is exact in Mod P , where P is the category of perfect (=compact) complexes in
D(R). By [Kr4, 2.8] ε = lim−→ εi is a direct limit of split exact sequences

εi : 0 −→ HXi
−→ HYi

−→ HZi
−→ 0

with Xi, Yi, Zi some complexes in D(R). Since Hn(X) = HX(R[−n]) for any
complex X, we see that the short exact sequence

Hn(ε): 0 −→ Hn(X) −→ Hn(Y ) −→ Hn(Z) −→ 0

is the direct limit Hn(ε) = lim−→ Hn(εi) of split exact sequences

Hn(εi): 0 −→ Hn(Xi) −→ Hn(Yi) −→ Hn(Zi) −→ 0,

so is pure, as required. �
The Ziegler spectrum of the category T has for its points those of the set Zsp T .

The Ziegler topology for Mod R was originally defined in terms of pp formulas,
equivalently in terms of the pp-definable subgroups (= subgroups of finite defin-
ition) that such formulas define. We will show that it may be defined in the same
way for compactly generated triangulated categories. If we are to make sense of pp
formulas in this context we must set up an appropriate language for T : this will be
done below.

Let α: G −→ H be a morphism in T c. Then for any M in T we have the
induced map T (α, M): T (H, M) −→ T (G, M) given by composition with α.
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We write Mα for the image of T (α, M) and refer to this as a subgroup of finite
definition of M of sort G.

Define an order on such functors (M �→ Mα) by setting β � α, where α: G −→
H and β: G −→ K are in T c, if for every M in T we have Mβ � Mα. Taking
M = K we obtain the following.

LEMMA 2.5. Given α: G −→ H and β: G −→ K in T c, we have β � α iff
there is ν: H −→ K with β = να.

We will show that these subgroups of finite definition coincide with the pp-
definable subgroups in the natural language for T .

3. The Language of a Compactly Generated Triangulated Category

Let T be a compactly generated triangulated category and let T c be the subcate-
gory of compact objects. In this section we define a corresponding (multi-sorted)
language for T .

For each object G in T c we introduce a sort and we say, for X in T , that the
elements of X of sort G are the elements of T (G, X). We equip each sort with
a symbol for addition and a symbol for 0. Any given variable ranges over the
elements of a single sort and we use a subscript to denote that sort: thus vG, when
interpreted in X, is a variable for elements of T (G, X).

For each morphism α: G −→ H in T c we introduce a function symbol which,
when interpreted, will be the map which we have seen just above, ‘composition
with α’, from sort H to sort G. We will use the same symbol for the function
symbol as for the function (as usual).

Denote the resulting language by LT . We will call this language the canonical
language of T .

Let Ax(T ) be a set of axioms expressing the positive atomic diagram (the ‘addi-
tion and multiplication tables’) of T c, including the specification that all functions
are additive. For example if α: G −→ H and β: H −→ K are in T c and
if γ = βα then we put the axiom ∀vK(vKγ = vKβα) into Ax(T ). Then it is
easy to see that the category of models for Ax(T ) (where the morphisms are the
LT -structure-preserving maps) is the category of right T c-modules – that is, the
category, Mod T c, of functors. We regard the objects of T as structures for this
language via the functor H which takes X to T (−, X) (recall that H is faithful on
objects, though not on morphisms).

Thus we have a multi-sorted first order language and so all the usual definitions
and theorems of model theory apply. In particular we define pp formulas in the
usual way (as formulas in the closure of the set of equations under conjunction and
existential quantification) and so obtain a notion of ‘pp-definable subgroup’ (the
set of solutions of a pp formula) of an object of T .
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Note that what we termed the subgroups of finite definition are exactly those
which are definable by a pp formula of the form ‘α | vG’ that is, of the form
‘∃vH (vG = vHα)’ where α: G −→ H is in T c.

PROPOSITION 3.1. Every pp formula in the language of T is equivalent to one
of the form α | v.

Proof. First we show that every quantifier-free formula vGβ = 0 is equivalent to
one of the given form (since T c is closed under finite direct sums we may always
suppose that a formula has at most a single free variable). We use the fact that T c

has pseudocokernels.
Suppose that β: K −→ G is in T c. Complete β to a triangle in T c

K
β−→ G

α−→ H −→ �K.

Then α: G −→ H is a pseudocokernel of β in T c. The formula vGβ = 0 is equiv-
alent to α | vG. For if α | vG (read vG now as a typical element of sort T (G, −)),
say vG = vHα, then vGβ = vHαβ = 0 and, conversely, if vGβ = 0 then, by
definition of pseudocokernel, we have that vG factors through α, as required.

Now take a general pp formula with free variable vG: ∃vG′(vGβ + vG′β ′ = 0).
This is equivalent to the formula ∃vG′(vG, vG′)(β, β ′)T = 0 where (vG, vG′) is
regarded as a variable of type G ⊕ G′ and where (β, β ′)T is the obvious map to
G ⊕ G′. By the above (vG, vG′)(β, β ′)T = 0 is equivalent to a formula of the
form α1 | (vG, vG′) for some morphism α1 = (α, α′): G ⊕ G′ −→ H in T c.
So our original formula is equivalent to ∃vG′∃vH (vHα1 = (vG, vG′)) that is, to
∃vH∃vG′(vHα = vG∧vHα′ = vG′) which, in turn, is equivalent to ∃vH (vHα = vG),
as required. �

As a consequence of the preceding proposition we see that pp-definable sub-
groups coincide with what we called subgroups of finite definition.

Since T c has pseudokernels then, as in the first part of the proof above, every
divisibility formula α | v is equivalent to an annihilation formula (one of the form
vβ = 0). Thus one obtains elimination of quantifiers in the canonical language
of T .

PROPOSITION 3.2. Let T be a compactly generated triangulated category. Then
T has elimination of quantifiers in its canonical language.

We could now try to mimick the usual definition of the Ziegler topology on
the set Zsp T of indecomposable pure-injective objects in T by taking as basic
open sets those of the form (α/β) = {N ∈ Zsp T | Nα > Nβ} where α, β are
morphisms in T c with the same domain and with α > β. It is not immediately
clear, however, that we do get a basis for a topology: given N ∈ (α/β) ∩ (α′/β ′) is
there (α′′/β ′′) with N ∈ (α′′/β ′′) ⊆ (α/β) ∩ (α′/β ′)?

We will resolve this indirectly as follows. One can define the Ziegler topology
by using coherent functors on T , as has been done in [Kr4], and one can show
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that the above basis property holds if we use coherent functors. Then we show that
the topologies coincide. We shall show, moreover, that every basic open set (α/β)

coincides with an open set of the form (δ) = {N ∈ Zsp T | δ(N) �= 0} where δ is a
pp formula. Thus the Ziegler topology can be defined by using single pp formulas
rather than pairs of formulas.

4. Coherent Functors

Let T be a compactly generated triangulated category. A functor C: T −→ Ab
to the category of Abelian groups is said to be coherent if there exists an exact
sequence

T (A, −) −→ T (B, −) −→ C −→ 0

where A and B are compact objects. This notion extends that of coherent functor
on the category of modules Mod R [Au]. The collection of all coherent functors
T −→ Ab will be denoted by coh T . The category coh T is Abelian if we take as
maps the natural transformations.

We say that a full subcategory C of T is definable if C = {X ∈ T | Ci(X) = 0
for all i ∈ I } for some family (Ci)i∈I of coherent functors. A subset U in Zsp T is
Ziegler-closed if U = C ∩ Zsp T for some definable subcategory C of T .

THEOREM 4.1 (Krause [Kr4]). There are bijections between

• the set of definable subcategories C of T ,
• the set of Ziegler-closed subsets U of Zsp T ,
• the set of Serre subcategories S of coh T .

These bijections are defined as follows:

C �→
{

U = C ∩ Zsp T

S = {C ∈ coh T | C(X) = 0 for all X ∈ C}

U �→






C = {X ∈ T | there are Yi ∈ U and a pure triangle

X → ∏
i Yi → Z → �X}

S = {C ∈ coh T | C(X) = 0 for all X ∈ U}

S �→
{

C = {X ∈ T | C(X) = 0 for all C ∈ S}
U = {X ∈ Zsp T | C(X) = 0 for all C ∈ S}

The collection of Ziegler-closed subsets of Zsp T satisfies the axioms for the closed
sets of a topology on Zsp T . This topological space is called the Ziegler spectrum
of T .

COROLLARY 4.2. The collection of subsets of Zsp T

O(C) = {N ∈ Zsp T | C(N) �= 0}
with C ∈ coh T is a basis of open subsets of the Ziegler spectrum.
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Proof. Clearly these sets are open. Every open subset in Zsp T is of the form

O(S) = {N ∈ Zsp T | C(N) �= 0 for some C ∈ S}
with S a Serre subcategory in coh T . Then O(S) = ⋃

C∈S O(C), as required. �
The correspondence of Theorem 4.1 is proved by using the category of finitely

presented objects, mod T c, of the category Mod T c and duality. Given a finitely
presented object F in Mod T c we define a coherent functor DF : T −→ Ab by

DF(X) = Hom(F, HX).

The assignment F �−→ DF puts the categories mod T c and coh T in duality
[Kr4, 7.2]. In particular, the functor D sends Serre subcategories of mod T c to
those of coh T .

Let Sp Mod T c denote the set of (iso classes of) indecomposable injective ob-
jects in Mod T c. As we have said already the functor H : T −→ Mod T c restricts
to an identification of the pure-injective objects in T with the injective objects
in Mod T c. In particular, H identifies the set Zsp T with the set, Sp Mod T c, of
indecomposable injectives of Mod T c. The category Mod T c is locally coherent.
Therefore we can introduce the Ziegler topology on Zsp T by applying the de-
finition of the Ziegler topology for locally coherent categories which is due to
Herzog (see [He2, Kr1]). The closed subsets are defined as follows. Given a Serre
subcategory S in mod T c a subset

U(S) = {X ∈ Zsp T | Hom(S, HX) = 0} (1)

is, by definition, a closed subset in Zsp T . The assignment S �−→ U(S) induces a
1-1 correspondence between the set of Serre subcategories of mod T c and the set
of closed subsets of Zsp T (see [He2, Kr1]). Clearly, the set of closed subsets (1)
coincides with the set of Ziegler-closed subsets defined above in terms of coherent
functors.

The following lemma gives a relationship between pp formulas and coherent
functors.

LEMMA 4.3. Suppose that ϕ is a pp formula. Then the assignment M �−→ ϕ(M)

defines a coherent functor T −→ Ab, and any coherent functor arises in this way.
Proof. By Proposition 3.1 every pp formula in the language of T is equivalent

to one of the form α | vG with α: G −→ H a map in T c. Complete α to a triangle

G
α−→ H −→ K −→ �G.

Then the functor M −→ ϕ(M) is the coherent functor M �−→ Coker(T (K, M) →
T (H, M)).

On the other hand, it is easy to see that every coherent functor arises as a functor
M �−→ ϕ(M) with ϕ a pp formula. Indeed, given a coherent functor

T (K, −) −→ T (H, −) −→ F −→ 0
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one can construct a triangle as above. Then the functor F is the coherent functor
M −→ ϕ(M) with ϕ a pp-formula of the form α|vG. �
THEOREM 4.4 (first statement as [Zie] for Mod R). Let T be a compactly gen-
erated triangulated category and suppose that N ∈ (α/β) ∩ (α′/β ′) in Zsp T .
Then there is a basic open set (α′′/β ′′) with N ∈ (α′′/β ′′) ⊆ (α/β) ∩ (α′/β ′).
Moreover, for any subset (α/β) in Zsp T there exists a pp formula δ such that
(α/β) = (δ) = {N ∈ Zsp T | δ(N) �= 0}.

Proof. By Lemma 4.3 we can choose coherent functors C and D such that
O(C) = (α/β) and O(D) = (α′/β ′). By Corollary 4.2 there exists a basic open
subset O(F ) in O(C) ∩ O(D) containing N . Denote by δ a pp formula which
corresponds to the coherent functor F . Then N ∈ O(F ) = (δ), as required. �

Clearly, the Ziegler topology defined by pp formulas coincides with that defined
by coherent functors. Below we shall freely use both definitions of the Ziegler
topology on Zsp T .

We say that T is Krull–Schmidt if every compact object is a (finite) coprod-
uct of objects with local endomorphism ring. For example, the derived category
D(�) of an artin algebra � is Krull–Schmidt because every perfect complex is
endofinite and therefore is a coproduct of complexes with local endomorphism
rings [Kr2, 1.2]. If T is Krull–Schmidt and M is indecomposable compact, then its
pure-injective hull M̂ is a point of Zsp T by Theorem 2.3.

PROPOSITION 4.5 (Herzog [He2]). Let T be Krull–Schmidt. The set of points
having the form M̂ with M a compact indecomposable is a dense subset of the
Ziegler spectrum of T .

Proof. Let C ∈ mod T c. There is a monomorphism in mod T c of the form
µ: C −→ HM with M a compact object. By assumption HM � ∐n

i=1 HMi
with

every HMi
a uniform object in Mod T c. Then Hom(C, HMi

) �= 0 for some i � n

and therefore M̂i ∈ O(DC). �

5. Absolutely Pure Objects

In this section we introduce the class of absolutely pure objects in T . They share a
number of important properties with absolutely pure modules in Mod R. We start
with some definitions.

Let R be a family of compact objects in T closed under suspension. A map
X −→ Y in T is said to be an R-monomorphism if the map T (C, X) −→
T (C, Y ) is a monomorphism for all C in R. An object X in T is called R-injective
if every R-monomorphism ϕ: X −→ Y splits, i.e. there exists a map ψ : Y −→ X

such that ψϕ = 1. For example, if R = T c we have the notions of pure monomor-
phism and pure-injective object. A triangle X −→ Y −→ Z −→ �X is called
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R-exact if the sequence 0 −→ T (C, X) −→ T (C, Y ) −→ T (C, Z) −→ 0 is an
exact sequence for all C ∈ R. We say that X ∈ T is R-absolutely-pure if every R-
monomorphism X −→ Y is a pure monomorphism. That is, if whenever X −→ Y

induces a monomorphism T (C, X) −→ T (C, Y ) for all C ∈ R it does so for all
C ∈ T c. Clearly, a pure-injective object is R-injective iff it is R-absolutely pure.
We also note that any coproduct of R-absolutely pure objects is R-absolutely pure.

Suppose R is a generating set. If there is no likelihood of confusion we re-
fer to the corresponding R-absolutely pure and R-injective objects as well as to
R-monomorphisms and R-exact triangles as absolutely pure and injective objects,
and as monomorphisms and exact triangles respectively, omitting the prefix R.
We call a map ϕ: X −→ Y an injective hull of X if ϕ is a monomorphism, Y is
injective and every endomorphism ψ of Y satisfying ψϕ = ϕ is an isomorphism.
Every object X in T admits an injective hull ϕ: X −→ Y and if ϕ′: X −→ Y ′
is another injective hull, then there exists an isomorphism ψ : Y −→ Y ′ such that
ϕ′ = ψϕ [GaPr]. Therefore, an object X is absolutely pure iff any monomorphism
ϕ: X −→ Y with Y injective is a pure monomorphism.

Below we shall work with monogenic triangulated categories. If X is a gen-
erator of T we consider the generating set R = {�nX}n∈Z. Let S denote the
Z-graded ring T (X, X)∗ = ⊕

n∈Z T (�nX, X). We retain this notation throughout
the section. If E is an injective S-module, then the functor

HomS(T (X, −)∗, E): T −→ Ab

takes triangles to exact sequences and it takes direct sums to products. Brown’s
Representability Theorem in triangulated categories [Ne2] implies that there exists
a representing object �E and a natural isomorphism

HomS(T (X, Y )∗, E) � T (Y, �E)

for Y ∈ T . The assignment E −→ �E yields a fully faithful functor

�: Inj S −→ T .

This � identifies injective S-modules Inj S and (R-)injective objects Inj T in T
(see [GaPr]).

EXAMPLE. (1) Let R = {R[n]}n∈Z be the generating set in D(R), where R[n] is
the complex concentrated in the −nth degree. Since

Hn(X) = D(R)(R[−n], X)

for any complex X, we see that X −→ Y is a (R-)monomorphism in D(R) iff the
induced map of cohomology groups Hn(X) −→ Hn(Y ) is a monomorphism for
all n ∈ Z. A complex X is injective iff it is a complex of the form

∐
n∈Z Qn[−n]

with the Qn injective R-modules. An injective hull of a complex X is constructed
as follows. We take injective hulls Hn(X) −→ Qn of all cohomology groups of
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X. Then there exists a monomorphism X −→ ∐
n∈Z Qn[−n] which is an injective

hull as well (see [GaPr] for details).
(2) A map M −→ N in the stable category Mod � of a QF-ring � is a monomor-

phism (with respect to the generating set described before) iff the induced map

Êxtn�(S, M) −→ Êxtn�(S, N)

is a monomorphism for all simple modules S and n ∈ Z.
(3) Let X be a spectrum in Ho(S) and let πn(X) = Ho(S)(Sn, X) denote its

stable homotopy groups. A morphism of spectra X −→ Y is a monomorphism iff
the induced map πn(X) −→ πn(Y ) is a monomorphism for all n ∈ Z.

A result originally proved by Eklof and Sabbagh for module categories [ES] is
the following.

THEOREM 5.1. Let T be a monogenic triangulated category with a generator X.
Then the class Abs T of absolutely pure objects of T is definable iff the ring S is
right coherent.

Proof. The ring S is right coherent iff the set Sp T of indecomposable injective
objects in T is a closed subset in Zsp T [GaPr]. Since every object X of T admits a
monomorphism X −→ ∏

i Ei with Ei ∈ Sp T (see [GaPr]), our statement follows
from Theorem 4.1. �

Below we describe absolutely pure complexes in the derived category D(R).
The generator X we take to be R[0] as above. So S = T (X, X)∗ � R. Let P be the
category of perfect complexes (=compact objects) in D(R) and let H : D(R) −→
Mod P be the functor sending a complex X to the object D(R)(−, X)|P . We say
that two complexes X and Y are homologically isomorphic and write X �hom Y if
the functors HX and HY are isomorphic in Mod P .

THEOREM 5.2. All cohomology groups Hn(X), n ∈ Z, of an absolutely pure
complex X ∈ D(R) are absolutely pure modules. If, moreover, R is a right coherent
ring, then the following are equivalent:

(1) X is absolutely pure;
(2) X �hom

∐
n∈Z Y n[−n] with the Y n absolutely pure modules.

The equivalent conditions (1)–(2) hold iff X is homologically isomorphic to the
coproduct of its cohomology groups

∐
n∈Z Hn(X)[−n] and each Hn(X) is an

absolutely pure module.

Let X be an absolutely pure complex and let ϕ: X −→ Q = ∐
n∈Z Qn[−n]

be its injective hull. Each Qn is an injective hull of the nth cohomology group
Hn(X). Since ϕ is a pure monomorphism, each Hn(X), n ∈ Z, is an absolutely
pure submodule of Qn by Lemma 2.4, and hence is itself absolutely pure.

To prove the remainder of the theorem we need some preparation.
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Recall that a Serre subcategory S of Mod P is localizing if it is closed under
taking direct limits. Equivalently, the inclusion functor j : S −→ Mod P admits
the right adjoint t = tS : Mod P −→ S which takes every object X ∈ Mod P to
the maximal subobject t (X) of X belonging to S. The functor t we call the torsion
functor. An object C of Mod P is said to be S-torsionfree if t (C) = 0. Given a
localizing subcategory S of Mod P the quotient category, Mod P /S, is the full
subcategory on those C ∈ Mod P such that Hom(S, C) = Ext1(S, C) = 0. The
objects from Mod P /S we call S-closed objects. For any C ∈ Mod P there exists
a canonical exact sequence

0 −→ A′ −→ C
λC−→ CS −→ A′′ −→ 0 (2)

with A′ = t (C), A′′ ∈ S, and where CS ∈ Mod P /S is the maximal essential
extension of C̃ = C/t(C) such that CS/C̃ ∈ S. The object CS is unique up to
isomorphism and the morphism λC : C −→ CS is called the S-hull of C. The S-
hull has the property that given any morphism α: C −→ W with W an S-closed
object, there is a unique morphism αS : CS −→ W such that αSλC = α.

Thus the inclusion functor i: Mod P /S −→ Mod P has the left adjoint lo-
calizing functor (−)S : Mod P −→ Mod P /S which takes each C ∈ Mod P to
CS ∈ Mod P /S. There is an isomorphism

Hom(X, Y ) � Hom(XS, Y )

for all X ∈ Mod P and Y ∈ Mod P /S. The functor (−)S is exact. We say that S
is of finite type if the inclusion functor i: Mod P /S −→ Mod P preserves direct
limits.

Let Mod R denote the category of contravariant functors defined on R =
{R[n]}n∈Z. Then Mod R is equivalent to the quotient category Mod P /S with S
the localizing subcategory {F ∈ Mod P | F(R) = 0} [G].

Since

D(R)(R[n], R[m]) =
{

R, n = m

0, n �= m

the functor

Mod R −→ (Mod R)Z =
∏

Z

Mod R

M �−→ (Mn)n∈Z, Mn = M(R[n])
is an equivalence of categories. Below we shall consider this equivalence as an
identification.

The image of a functor F under the localization functor (−)S : Mod P −→
Mod P /S is isomorphic to the S-localization of the functor HF̃ where F̃ is the
complex with zero differential (F (R[n]), 0). We also notice that for any complex ,
(Mn, 0), with zero differential the following relations hold in D(R):

M =
∐

n∈Z

Mn[−n] =
∏

n∈Z

Mn[−n],



512 GRIGORY GARKUSHA AND MIKE PREST

where Mn[−n] is the complex with Mn in the nth degree and zero in other de-
grees [GaPr]. It follows that an object of Mod P is S-closed injective iff it is
isomorphic to a functor of the form HQ, where Q is a complex with zero differential
(Qn, 0) whose components Qn are injective R-modules. (Note that an object of
(Mod R)Z is injective iff each component if injective.)

LEMMA 5.3. Let X be a complex and let f : HX −→ M be a morphism from HX

to an absolutely pure object M in Mod P . If f (R[n]): H−n(X) −→ M(R[n]) is
an isomorphism of R-modules for all n ∈ Z, then f is an isomorphism.

Proof. Since both HX and M are cohomological functors on P , it follows by
standard arguments that f is still bijective evaluated on any perfect complex, since
P is the thick subcategory generated by R. This means that f is an isomorphism. �

Proof of Theorem 5.2. Suppose that R is right coherent. Then the localizing
subcategory S is of finite type [GaPr]. Let X be an absolutely pure complex and let
ϕ: X −→ Q be its injective hull. The object HQ is S-closed injective in Mod P .
Since ϕ is a pure monomorphism, the object HX is a subobject of HQ and, hence,
is S-torsionfree. Moreover, HX is absolutely pure in Mod P . Since S is of finite
type, it follows from [He2, 3.10] that HX is an S-closed object. We claim that HX

is isomorphic to the object H(Yn,0) with Y n = Hn(X). We have already seen that
each Y n is an absolutely pure module.

Indeed, the S-localization both of the object H(Yn,0) and of the object HX is
(H(Yn,0))S . Since HX is S-closed, it is isomorphic to (H(Yn,0))S . By (2) we obtain
an exact sequence

0 −→ A′ −→ H(Yn,0)
λ−→ HX −→ A′′ −→ 0

with A′ and A′′ in S. The map λ(R[n]) is an isomorphism for all n ∈ Z. From
Lemma 5.3 it follows that λ is an isomorphism in Mod P . Thus X is homologically
isomorphic to the complex

∐
n∈Z Y n[−n], and the implication (1) �⇒ (2) follows.

(2) �⇒ (1). A sequence

0 −→ L −→ M −→ N −→ 0

of Mod P is pure-exact if the sequence

0 −→ Hom(F, L) −→ Hom(F, M) −→ Hom(F, N) −→ 0

is exact for each finitely presented F ∈ mod P . Equivalently, the latter is a direct
limit of split exact sequences.

Let I denote the composed functor Mod R
∼−→ Mod P /S

i−→ Mod P . Since
S is of finite type, I preserves direct limits. Let

ε: 0 −→ X1 −→ X2 −→ X3 −→ 0
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be a pure-exact sequence in Mod R. This sequence is a direct limit ε = lim−→ εk of

split exact sequences

εk: 0 −→ Y k
1 −→ Y k

2 −→ Y k
3 −→ 0.

Hence I (ε) = lim−→ I (εk) is a direct limit of split exact sequences I (εk) and is

therefore pure-exact in Mod P .
Let us consider an object M = (Mn)n∈Z of Mod R with the Mn absolutely pure

modules. Then it is an absolutely pure object in Mod R. Consider the pure-exact
sequence in Mod R

ε: 0 −→ M −→ Q −→ Z −→ 0

with Q = (Qn)n∈Z being an injective hull of M and Z = (Zn = Qn/Mn)n∈Z. It
follows that the sequence

I (ε): 0 −→ I (M) −→ I (Q) −→ I (Z) −→ 0

is pure-exact in Mod P . Since Q is an injective object, it follows that I (Q) =
H(Qn,0). In particular I (Q) is an absolutely pure object in Mod P . So I (M), being
a pure subobject, also is absolutely pure in Mod P . As above we see that H(Mn,0) is
isomorphic to I (M) = (H(Mn,0))S . It follows that H(Mn,0) is a subobject of H(Qn,0)

and therefore the complex M = (Mn, 0) = ∐
n∈Z Mn[−n] is absolutely pure in

D(R).
It remains to check that any complex X homologically isomorphic to an ab-

solutely pure complex Y is absolutely pure. Indeed, let ϕ: Y −→ Q be an injective
hull of Y (it exists by [GaPr]). Then ϕ is a pure monomorphism. The composed
map

HX
∼−→ HY

Hϕ−→ HQ

is represented by a map ψ : X −→ Q [Kr3, 1.8]. This ψ is plainly a pure monomor-
phism. Therefore X is absolutely pure. The proof is complete. �
COROLLARY 5.4. Let R be a right coherent ring. A complex X is absolutely pure
iff all its cohomology groups Hn(X), n ∈ Z, are absolutely pure R-modules.

Proof. By the preceding theorem all cohomology groups Hn(X), n ∈ Z, of an
absolutely pure complex X are absolutely pure modules.

For the converse note that the proof of the implication (2) �⇒ (1) of the
preceding theorem shows that the S-localization of the object HX is isomorphic to
H(Yn,0) where Y n = Hn(X). Then the S-hull λ: HX −→ H(Yn,0) is an isomorphism
by Lemma 5.3. Thus X is homologically equivalent to the absolutely pure complex∐

n∈Z Y n. Theorem 5.2 then yields the claim. �
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6. The Ziegler Spectrum of QF-Rings and the Stable Module Category

In the remaining sections we shall study the relationship between the Ziegler spec-
trum Zsp R of a ring and Ziegler spectra of related triangulated categories. We start
with some definitions.

The Ziegler spectrum Zsp R of a ring R is defined as follows. Let CR =
(R mod, Ab) denote the locally coherent category of additive covariant functors
defined on the category, R mod, of finitely presented left R-modules with values in
the category, Ab, of Abelian groups. The functor

? ⊗R −: Mod R −→ CR, Q �−→ Q ⊗R −,

identifies the pure-injectives in Mod R with the injectives in CR. The collection of
subsets

�(X) = {Q ∈ Zsp R | (X, Q ⊗R −) �= 0},
where X ∈ fp CR is a finitely presented object in CR, forms a basis of open subsets
for the Ziegler topology on Zsp R (see [Zie, He2, Kr1]). This topological space we
call the Ziegler spectrum of the ring R.

This topological space can also be defined by using coherent functors. A functor
C: Mod R −→ Ab is coherent if there exists an exact sequence

(MR, −) −→ (NR, −) −→ C −→ 0

with M and N finitely presented. The collection of subsets

O(C) = {Q ∈ Zsp R | C(Q) �= 0}
with C a coherent functor forms a basis of open subsets for a topology on Zsp R

and this topological space coincides with the Ziegler spectrum defined above. An
open subset O in Zsp R is quasi-compact iff it is one of the basic open subsets
O(C) with C a coherent functor.

Let � be a QF-ring. The relationship between the Ziegler spectra Zsp � and
Zsp Mod � is easily established. For the most part we follow the paper of Benson
and Krause [BK].

The Ziegler spectrum Zsp � is the disjoint union O
⋃

Zsp� of the (finite)
subset of indecomposable projectives (= injectives) O and the subset Zsp� of
nonprojective elements of Zsp �. Since every indecomposable projective has finite
endolength each point P ∈ O is closed. Such a point, being finitely presented and
the injective hull of a simple module, is also open (e.g. [PrPu, 3.7]). Therefore both
O and Zsp� are clopen in Zsp�.

The Ziegler spectrum Zsp Mod � may be identified with Zsp� because by [Kr3]
it consists of nonprojective pure-injective indecomposable �-modules. Let us show
that the Ziegler topology on Zsp Mod � coincides with the subspace topology
induced from Zsp�.
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Given a coherent functor C: Mod � −→ Ab, it follows that O(C) \ O is a
quasi-compact subset of Zsp � since O(C) is quasi-compact and O is finite clopen
in Zsp �. So there exists a coherent functor D such that O(D) = O(C) \ O. By
construction, D vanishes on every projective module. One can show that D has a
presentation of the form

Hom�(Y, −) −→ Hom�(X, −) −→ D −→ 0 (3)

with X and Y finitely generated. So D is a coherent functor on Mod � and we see
that O(D) = O(C) ∩ Zsp Mod �.

On the other hand, each coherent functor (3) gives a coherent functor C = D◦π

vanishing on projectives where π : Mod � −→ Mod � is the natural functor. Then
O(D) = O(C) ∩ Zsp Mod �.

Thus the following statement is true.

PROPOSITION 6.1. The Ziegler spectrum Zsp � of a QF-ring � is homeomor-
phic to the disjoint union Zsp � � O

⊔
Zsp Mod � of the finite clopen subset O

consisting of indecomposable projectives and the Ziegler spectrum, Zsp Mod �, of
the stable category Mod �.

7. The Ziegler Spectra Zsp R and Zsp D(R)

In this section we study the relationship between the Ziegler spectra Zsp R and
Zsp D(R).

Let In: Mod R −→ D(R) be the functor that takes a module M to the com-
plex M[−n] concentrated in the nth degree. The functor In gives an equivalence
between Mod R and the full subcategory of D(R) consisting of those complexes X

such that Hi(X) = 0 for all i �= n. On the other hand, let Hn: D(R) −→ Mod R

denote the functor sending a complex X to its nth cohomology group Hn(X).

PROPOSITION 7.1. Let X be a pure-injective complex in D(R). Then each coho-
mology group Hn(X) is a pure-injective module. On the other hand, every complex
Q[−n] with Q a pure-injective module is pure-injective in D(R).

Proof. A module M is pure-injective iff for every set I the summation map
M(I) −→ M factors through the canonical map M(I) −→ MI . Since the coho-
mology functor Hn preserves both products and coproducts, it sends pure-injective
complexes to pure-injective modules by Theorem 2.1.

On the other hand, the functor In commutes with products and coproducts, as
one easily sees. By Theorem 2.1 we deduce that In transfers pure-injective modules
to pure-injective complexes. �

A compactly generated triangulated category T is pure-semisimple if every
object of T is pure-injective.
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COROLLARY 7.2. If the derived category D(R) of Mod R is pure-semisimple
then R is a right pure-semisimple ring.

Remark. The converse is not true. For example, let � be a representation finite
and of infinite global dimension artin algebra. Then the derived category D(�) is
not pure-semisimple [Bel1, 12.16].

As a consequence of Proposition 7.1 we get that In maps the set Zsp R of inde-
composable pure-injective modules to indecomposable pure-injective complexes
of Zsp D(R). We also denote this map by In. Its image {Q[−n] | Q ∈ Zsp R} will
be denoted by Zspn R. We may view this map In as an identification.

THEOREM 7.3. The following statements are true for a ring R.

(1) Each Zspn R, n ∈ Z, is a closed subset in Zsp D(R);
(2) If R is right coherent and every finitely presented module is of finite projective

dimension, then In induces a homeomorphism between Zsp R and each of its
images, Zspn R, in Zsp D(R);

(3) The disjoint union
⋃

n∈Z Zspn R is a closed subset in Zsp D(R). Its open com-
plement X consists of the indecomposable pure-injective complexes having at
least two nonzero cohomology groups. Thus the following relation between the
Ziegler spectra Zsp R and Zsp D(R) holds:

Zsp D(R) = X ∪
⋃

n∈Z

Zspn R.

Proof. (1). For each i ∈ Z, we consider the closed set

[vi = vi] = (vi = vi)
c = {X ∈ Zsp D(R) | Hi(X) = 0},

where vi denotes a variable of sort R[−i]. The intersection U = ⋂
i �=n[vi = vi] is a

closed subset in Zsp D(R). Clearly, a complex X is in U iff X � Hn(X)[−n]. By
the preceding proposition we see that U = {Q[−n] | Q ∈ Zsp R}. Hence Zspn R

is a closed subset in Zsp D(R).
(2). Suppose now that the ring R is right coherent and that every finitely pre-

sented module is of finite projective dimension. Then every complex M[−n] with
M a finitely presented module is a perfect complex in D(R). We must show that the
Zigler topology on Zspn R = {Q[−n] | Q ∈ Zsp R} coincides with the subspace
topology induced from Zsp D(R).

Let C: Mod R −→ Ab be a coherent functor and let �(C) = {Q ∈ Zsp R |
C(Q) �= 0} be a basic open subset in Zsp R. There exists an exact sequence

(MR, −)
(α,−)−→ (LR, −) −→ C −→ 0
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with M and L finitely presented and α: L −→ M a morphism. We consider the
perfect complexes M[−n] and L[−n] and the coherent functor F : D(R) −→ Ab
defined by the following exact sequence where α∗ is induced by α:

(M[−n], −)
α∗−→ (L[−n], −) −→ F −→ 0.

Then O(F ) = {X ∈ Zsp D(R) | F(X) �= 0} is a basic open subset in Zsp D(R)

and �(C) = O(F ) ∩ Zspn R.
Conversely, suppose that F : D(R) −→ Ab is a coherent functor. We claim that

the restriction, F̃ = F |Mod R, of F to Mod R is a coherent functor Mod R −→ Ab
(here Mod R is viewed as the full subcategory of complexes M[−n] concentrated
in the nth degree). To show this we use the fact that a functor from Mod R to Ab is
coherent iff it commutes with products and direct limits. Obviously, F̃ commutes
with products. Let y: Mod R −→ Mod P , where P is the category of perfect
(=compact) complexes in D(R), be the functor that sends a module M to the
functor D(R)(−, M[−n])|P . The functor y factors through In. By [CKN, 1.3] y
commutes with direct limits. Let {Mi}i∈I be a direct system of modules with limit
M . The complex M[−n] is the homology colimit, in the sense of [Kr4], of the com-
plexes Mi[−n]. By [Kr4, 5.1] F respects homology colimits. It then follows that
F̃ preserves direct limits. So F̃ is a coherent functor and hence O(F ) ∩ Zspn R =
�(F̃ ).

(3). Given m, n ∈ Z let Omn denote the open subset (vm = vm) ∩ (vn = vn).
By definition, a complex X belongs to Omn iff the cohomology groups Hm(X) and
Hn(X) are nonzero. It is clear that

X = Zsp D(R) \
⋃

n∈Z

Zspn R =
⋃

m �=n

Omn,

as required. �
Remark. The disjoint union

⋃
n∈Z Zspn R is a proper subset of Zsp D(R) in

general. The following example shows this.
Consider the finite-dimensional algebra R, over an algebraically closed field k,

which is the path algebra of the quiver A10

1
α1−→ 2

α2−→ 3 −→ · · · −→ 9
α9−→ 10

with the relation α8α7 · · · α1 = 0. The algebra R is a quotient of k[A10] and thus is
of finite representation type.

Let S be the path algebra of the quiver

2 → · · · → 8 → 9 → 10
↓
1

So S is of infinite representation type. Then the derived categories D(R) and D(S)

are triangle equivalent [CKN]. This equivalence induces a homeomorphism of
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Ziegler spectra, Zsp D(R) � Zsp D(S). Since we have finitely many indecom-
posable pure-injective R-modules, we see that

⋃
n∈Z Zspn R is a countable set. On

the other hand, suppose that k is an uncountable field. Then Zsp S is uncountable
and therefore Zsp D(R) � Zsp D(S) ⊃ Zsp0 S is uncountable as well.

By a theorem of Herzog [He1] there is an isomorphism between the topologies,
that is the algebras of open sets, of the Ziegler spectra Zsp R and Zsp Rop. Similarly,
we can construct an isomorphism between the algebras of open sets of the Ziegler
spectra Zsp D(R) and Zsp D(Rop). We do this in the following way.

Consider two compactly generated triangulated categories S and T . Suppose
that there is a duality D: Sc −→ T c between the corresponding subcategories of
compact objects Sc and T c. This induces an equivalence of categories

�: mod Sc ∼−→ T c mod,

where T c mod is the Abelian subcategory of finitely presented objects of the cate-
gory, (T c, Ab), of additive covariant functors on T c.

Let � denote the functor sending an object M of T c mod to an object of mod T c

defined by

�(M)(X) = Hom(M, HX)

with X ∈ T c and HX = T (X, −)|T c . Then � puts the categories T c mod and
mod T c in duality. Indeed, the categories of flat and absolutely pure T c-modules
coincide [Bel2, Kr3]. Therefore � is a duality by [G, 8.14] (every small triangu-
lated category is weakly quasi-Frobenius in the sense of [G]). It follows that the
composite functor � = � ◦ � yields a duality between the categories mod Sc and
mod T c.

Let L be a Serre subcategory in mod Sc. It is clear that the subcategory

�L = {�(M) | M ∈ mod Sc}
of mod T c is also Serre and that the restriction to L of � gives a duality �: L −→
�L. Moreover, the map O(L) −→ O(�L) induced on the open subsets of the
Ziegler spectra Zsp S and Zsp T is an inclusion-preserving bijection (cf. [He2,
3.8]). We summarize all of this as follows.

THEOREM 7.4 (cf. [He2]). Suppose that there is a duality between Sc and T c.
Then the functor � defined above yields an inclusion-preserving bijective corre-
spondence between the Serre subcategories of mod Sc and those of mod T c given
by L −→ �L. The induced map O(L) −→ O(�L) is an isomorphism between
the topologies, that is, the respective algebras of open sets, of the Ziegler spectra
Zsp S and Zsp T .

We apply the preceding theorem to compare the Ziegler spectra Zsp D(R) and
Zsp D(Rop). For this, we consider the equivalence

(proj R)op −→ proj Rop, P �−→ DP = HomR(P, R),
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which induces an equivalence

D: Hb(proj R)op −→ Hb(proj Rop).

Here Hb(proj R) stands for the homotopy category of bounded complexes of ob-
jects in proj R. The duality D induces a duality between the categories of perfect
(=compact) complexes P (R) and P (Rop) in D(R) and D(Rop) respectively, since
Hb(proj R) and P (R) are naturally equivalent. By the above D induces a duality

�: mod P (R) −→ mod P (Rop).

The preceding theorem implies the following.

COROLLARY 7.5. Let R be a ring. There is an inclusion-preserving bijective
correspondence between the Serre subcategories of mod P (R) and those of
mod P (Rop) given by L −→ �L. The induced map O(L) −→ O(�L) is an
isomorphism between the topologies, that is, the respective algebras of open sets,
of the Ziegler spectra Zsp D(R) and Zsp D(Rop).

8. Zsp D(R) of Hereditary and von Neumann Regular Rings

We finish the paper by describing the Ziegler spectra Zsp D(R) for hereditary and
von Neumann regular rings.

By a result of Neeman [Ne1], any complex X in D(R) over a right hereditary
ring R is isomorphic to the coproduct of its cohomology groups

∐
n∈Z Hn(X)[−n].

THEOREM 8.1. Let R be a right hereditary ring. A complex X is pure-injective
in D(R) iff it is a complex of the form

∐
n∈Z Qn[−n] with the Qn pure-injective

R-modules. Moreover, the Ziegler spectrum of the derived category D(R) is home-
omorphic to the disjoint union

Zsp D(R) �
⊔

n∈Z

Zsp R

of countably many copies of Zsp R.
Proof. The first part of the theorem follows from Proposition 7.1 and the fact

that a coproduct of the form
∐

Mn[−n] is isomorphic to the product
∏

Mn[−n]
(e.g. see [GaPr, 3.9]). Since every indecomposable pure-injective complex is of the
form Q[−n] for some Q ∈ Zsp R, each subset Zspn R is the basic open (vn = vn)

in Zsp D(R), where vn is a variable of sort R[−n]. Every right hereditary ring is
right coherent and every finitely presented module is of projective dimension at
most one. It remains to apply Theorem 7.3. �

The Ziegler spectrum Zsp D(R) of a von Neumann regular ring is similarly
characterized (see below). First we need the following result.
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THEOREM 8.2. For a ring R the following are equivalent:

(1) R is von Neumann regular;
(2) every pure-injective complex is injective;
(3) every complex is absolutely pure;
(4) the functor Mod P −→ Mod R = (Mod R)Z = ∏

Z Mod R sending an object
F of Mod P to (F (R[n]))n∈Z is an equivalence of categories.

If the equivalent conditions (1)–(4) hold, then every complex X in D(R) is homo-
logically isomorphic to the coproduct of the cohomology groups

∐
n∈Z Hn(X)[−n].

Each of these is an absolutely pure R-module.
Proof. (1) �⇒ (2). From [GaPr] it follows that a complex X is injective

in D(R) iff all its cohomology groups Hn(X) are injective modules. Then use
Proposition 7.1 and the fact that a ring is von Neumann regular iff every (indecom-
posable) pure-injective module is injective.

(2) �⇒ (3). A complex X is absolutely pure iff there is an injective object Q

and a pure monomorphism X −→ Q. By assumption, a pure-injective hull of an
arbitrary complex X is injective.

(3) �⇒ (1). Let M be an R-module; then the complex M[0] is absolutely pure.
By Theorem 5.2 M = H 0(M[0]) is an absolutely pure module and therefore R is
von Neumann regular.

(2) ⇐⇒ (4). The category Mod R is the quotient category of Mod P with
respect to the localizing subcategory S = {F ∈ Mod P | F(R[n]) = 0 for all

n ∈ Z}. The composed functor Mod P
(−)S−→ Mod P /S

∼−→ Mod R is an equiv-
alence iff every injective object in Mod P is S-closed. The injectives of Mod P
are of the form HX with X a pure injective complex and the S-closed injectives
are the objects of the form HQ with Q an injective complex, so the equivalence is
clear.

The fact that every complex X in D(R) is homologically isomorphic to the
coproduct of the cohomology groups

∐
n∈Z Hn(X)[−n] and that each of them is an

absolutely pure R-module follows from Theorem 5.2 (every von Neumann regular
ring is coherent). �
COROLLARY 8.3. Let R be a von Neumann regular ring. A complex in D(R) is
pure-injective iff it is a complex of the form

∐
n∈Z Qn[−n] with the Qn injective

modules.
Proof. By [GaPr] injective complexes are the complexes of the form∐

n∈Z Qn[−n] with Qn injective modules. The preceding theorem implies the
claim. �

By [He2, 4.4] a ring R is von Neumann regular iff the functor M �−→ M ⊗R −
from Mod R to CR is an equivalence. Let J be a two-sided ideal of a von Neumann
regular ring R and denote by SJ the Serre subcategory of mod R � fp CR which
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consists of finitely generated summands of coproducts of finitely many copies of
J , that is,

SJ = {P ∈ mod R | P |J (n) for some n}.
Then SJ = S(R/J ) = {P ∈ mod R | HomR(P, R/J ) = 0} [He2, 4.5]. Moreover,
the maps

S �−→ tS(R) and J �−→ S(R/J )

give an inclusion-preserving bijective correspondence between the Serre subcate-
gories S of mod R � fp CR and the two-sided ideals J of R [He2, 4.6].

Thus the open subsets of the Ziegler spectrum of a von Neumann regular ring
have the form

O(J ) = {E ∈ Zsp R | HomR(J, E) �= 0},
where J is a two-sided ideal.

Consider now the category Mod R = (Mod R)Z. Every Serre subcategory S of
mod R may be viewed as a Z-tuple (Sn)n∈Z of Serre subcategories of mod R, one
in each degree.

THEOREM 8.4 (cf. [He2]). Let R be a von Neumann regular ring. There is an
inclusion-preserving bijective correspondence between the Serre subcategories S =
(Sn)n∈Z of mod P � mod R and the Z-tuples (Jn)n∈Z of two-sided ideals Jn of R

given by the maps

(Sn)n∈Z �−→ (tSn
(R))n∈Z and (Jn)n∈Z �−→ (S(R/Jn))n∈Z

which are mutually inverse.

We are now in a position to prove the following theorem.

THEOREM 8.5. Let R be a von Neumann regular ring. The Ziegler spectrum of
the derived category D(R) is homeomorphic to the disjoint union

Zsp D(R) �
⊔

n∈Z

Zsp R

of countably many copies of Zsp R. Moreover, the open subsets of the Ziegler
spectrum have the form

O((Jn)n∈Z) = {E ∈ Zsp D(R) | D(R)(Jn[−n], E) �= 0 for some n ∈ Z}, (4)

where (Jn)n∈Z is a Z-tuple of two-sided ideals of R.
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Proof. By Corollary 8.3 every pure-injective complex is of the form∐
n∈Z Qn[−n] with the Qn injective modules. Since any von Neumann regular ring

is coherent and any finitely presented module is projective, the proof of Theo-
rem 8.1 applies to show that the Ziegler spectrum of the derived category D(R) is
homeomorphic to the disjoint union

Zsp D(R) �
⊔

n∈Z

Zsp R

of countably many copies of Zsp R.
The open subsets of the Ziegler spectrum Zsp R of R are of the form O(J ) with

J a two-sided ideal of R (see above). It follows that the open subsets of Zsp D(R)

are of the form (4). �
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