СИСТЕМЫ ДИАГРАММНЫХ КАТЕГОРИЙ И K-ТЕОРИЯ. I

© Г. ГАРКУША

Всякой левой системе диаграммных категорий и всякому левому выделенному дериватору сопоставляется пространство K-теории. Эта K-теория — канонически бесконечнократное пространство петель и имеет много общих свойств с K-теорией Вальдхаузена. Доказана ослабленная теорема аддитивности, а также, что K-теория Квиллена для широкого семейства точных категорий, включающего абелевы категории, является ретрактом K-теории ассоциированного дериватора.

Введение

Понятие дериватора было введено Гротендиком в [1, 2]. Независимо от Гротендика аналогичные конструкции были исследованы Хеллером [3], Келлером [4] и Франке [5] (так называемые системы диаграммных категорий). Основываясь на работах Гротендика [2] и Франке [5], Малциниотис [6] вводит понятие триангулированного дериватора \mathbf{D} , а затем (совместно с Келлером) строит пространство K-теории $K(\mathbf{D})$ для \mathbf{D} . В своей работе по K-теории триангулированных дериваторов [7] Малциниотис формулирует три гипотезы. Цель настоящей работы — дать частичные положительные ответы к гипотезам аддитивности и сравнения.

Стоит отметить, что мы не ограничиваемся только триангулированными дериваторами, а работаем с K-теорией $K(\mathbf{B})$ более общих объектов \mathbf{B} таких, как левая система диаграммных категорий или левый выделенный дериватор. Имеется множество таких объектов на практике.

Мы сначала определяем S.-конструкцию для таких \mathbf{B} , и затем пространство K-теории $K(\mathbf{B})$ как пространство петель для $|i.S.\mathbf{B}|$, где $iS_n\mathbf{B}$ — подкатегория изоморфизмов в каждой категории $S_n\mathbf{B}$, $n \geqslant 0$. Пространство

 $[\]mathit{Knючевые\ c.noвa}$: системы диаграммных категорий, дериваторы Гротендика, алгебраическая K -теория.

Поддержано исследовательской стипендией ІСТР.

 $K(\mathbf{B})$ — канонически бесконечнократное пространство петель по машине Сегала [8]. По аналогии с K-теорией Вальдхаузена [9] из теоремы аддитивности следует, что можно также рассматривать $K(\mathbf{B})$ в терминах следующего связного Ω -спектра. Именно, он задается последовательностью пространств

$$\Omega[i.S.\mathbf{B}], \Omega[i.S.S.\mathbf{B}], \dots, \Omega[i.S.^n\mathbf{B}], \dots,$$

в которой мультисимплициальные объекты $i.S.^n\mathbf{B},\ n\geqslant 1$, получены путем итерирования S.-конструкции. Хотя гипотеза о теореме аддитивности остается открытой в общем случае (см. также [7, гипотеза 3]), ее ослабленная форма верна.

Теорема 6.5. Теорема аддитивности верна для пространства

$$\Omega^{\infty}|i.S.^{\infty}\mathbf{B}| = \lim_{n} \Omega^{n}|i.S.^{n}\mathbf{B}|.$$

На самом деле, эта теорема доказана при некоторых дополнительных естественных ограничениях (см. ниже).

Со всею полнотою теорема аддитивности доказана в [10] для комплициальных дериваторов. Совсем недавно Сизинский и Нееман объявили справедливость теоремы аддитивности для триангулированных дериваторов [11].

Обозначим через $\mathbf{D}^b(\mathcal{E})$ дериватор, который определяется гиперфунктором $I\mapsto D^b(\mathcal{E}^I)$, где $D^b(\mathcal{E}^I)$ — производная категория точной категории функторов \mathcal{E}^I . Можно также получить некоторое соотношение K-теорий Квиллена $K(\mathcal{E})$ и $K(\mathbf{D}^b(\mathcal{E}))$ для широкого семейства точных категорий, включающего абелевы категории.

Теорема 7.1. Пусть \mathcal{E} — замкнутая относительно расширений, полная точная подкатегория абелевой категории \mathcal{A} , удовлетворяющая условиям теоремы о резольвенте. То есть

- (1) если $M' \rightarrowtail M \twoheadrightarrow M''$ точна в \mathcal{A} и $M, M'' \in \mathcal{E}$, то $M' \in \mathcal{E}$ и
- (2) для всякого объекта $M\in\mathcal{A}$ имеется конечная резольвента $0\to P_n\to P_{n-1}\to\cdots\to P_0\to M\to 0$, где $P_i\in\mathcal{E}$.

Тогда естественное отображение $K(\rho): K(\mathcal{E}) \to K(\mathbf{D}^b(\mathcal{E}))$ — гомотопически расщепляющееся включение, т.е. существует отображение $p: K(\mathbf{D}^b(\mathcal{E})) \to K(\mathcal{E})$ такое, что $p \circ K(\rho)$ гомотопно единице. В частности, каждая K-группа $K_n(\mathcal{E})$ — прямое слагаемое $K_n(\mathbf{D}^b(\mathcal{E}))$.

Теорема 7.1 дает частичный положительный ответ к гипотезе сравнения Малциниотиса. Она также показывает, что K-теория дериваторов имеет весьма непростую природу.

Я весьма благодарен Дэнису-Чарльзу Сизинскому и Амнону Нееману за ряд плодотворных бесед, а также А. И. Генералову, внимательно прочитавшему рукопись статьи.

§1. Системы диаграммных категорий

В этом параграфе читатель столкнется с категорными формальностями и определениями понятий. Ряд аналогичных утверждений этого параграфа приведены также в [5]. Мы следуем здесь первоначальной терминологии Франке [5].

- **1.1.** Обозначения. Пусть I категория. Для подкатегории J категории I и $x \in I$ через J/x обозначим следующую комма-категорию. Объекты суть пары (y,φ) , где $y \in J$ и $\varphi: y \to x$ морфизм в I. Морфизмы из (y,φ) в (y',φ') задаются морфизмами $\psi: y \to y'$ в J такими, что $\varphi = \varphi'\psi$. Категория $J \setminus x$ состоит из пар (y,φ) , где $y \in J$ и $\varphi: x \to y$. Морфизмы определяются по аналогии с J/x. Если $K \subseteq \mathrm{Ob}\,I$ подкласс объектов, через I-K будем обозначать полную подкатегорию I с классом объектов I-K. В частности, если $K=\{x\}$ имеет один объект, обозначим эту подкатегорию также через I-x. Если $f:J\to I$ функтор, категории f/x и $f \setminus x$ состоят из объектов $(y \in J, \varphi: f(y) \to x)$ и $(y \in J, \varphi: x \to f(y))$. Если f включение подкатегории, они суть то же самое, что J/x и $J \setminus x$. Для неотрицательного n через Δ^n обозначим упорядоченное множество $\{0 < 1 < \dots < n\}$. Для $i \leqslant n+1$ отображение $d_i: \Delta^n \to \Delta^{n+1}$ монотонная инъекция, не содержащая i в своем образе, и $s_i: \Delta^n \to \Delta^{n-1}$ монотонная сюръекция, удовлетворяющая условию $s_i(i) = s_i(i+1)$.
- **1.2. Аксиомы.** Понятия 2-категории и 2-функтора читатель может прочесть в [12]. Далее мы используем аббревиатуру "ч.у.м." для конечных частично упорядоченных множеств. Каждое ч.у.м. может быть рассмотрено как категория, в которой $\mathrm{Hom}(x,y)$ имеет в точности один элемент $x\leqslant y$, и пусто в противном случае. 2-категорию всех ч.у.м. (соответственно конечных категорий без циклов) обозначим через Ord (соответственно Dirf).

Пусть Dia — полная 2-подкатегория 2-категории **Cat** малых категорий, содержащая 2-категорию Ord. Далее всюду предполагается, что Dia отвечает таким условиям:

- (1) Dia замкнута относительно конечных произведений и копроизведений;
- (2) для всякого функтора $f:I\to J$ в Dia и всякого объекта y из J, категории f/y и $f\setminus y$ принадлежат Dia.

Мы также назовем Dia категорией диаграмм.

Если $I\in {
m Dia},$ под I^* понимается категория I с добавленным начальным и конечным объектом \star . Для всяких x и y из I имеется единственный морфизм $x\to y$ в I^* , который пропускается через \star . Этот морфизм назовем нулевым. Если $I\in {
m Ord}$ и $x\leqslant y$, в I^* имеется один дополнительный морфизм из x в y. Композиция определяется очевидным образом. Пусть ${
m Dia}^*-2$ -подкатегория 2-категории ${
m Cat},$ чьи объекты суть те же, что и в ${
m Dia},$ и чьи горизонтальные морфизмы $I\to J$ заданы функторами $I^*\to J^*,$ отображающими \star в \star , и пусть биморфизмы — естественные преобразования функторов из I^* в J^* . Заметим, что каждый морфизм $f:I\to J$ из ${
m Dia}$ продолжается естественным образом до морфизма $f^*:I\to J$ из ${
m Dia}^*:$ $f^*(I)=f(I),f^*(\star):=\star.$

Предсистема диаграммных категорий с областью Dia или просто предсистема диаграммных категорий— это функтор

$$C: Dia^{\star op} \to CAT$$
 (1)

из ${\rm Dia}^{\star}$ в категорию категорий ${\bf CAT}$ (не обязательно малых), удовлетворяющий аксиоме функториальности, приведенной ниже. Итак, каждой категории I из ${\rm Dia}^{\star}$ соответствует категория ${\bf C}_I$ и каждому функтору $f:I\to J$ в ${\rm Dia}^{\star}$ — функтор $f^*={\bf C}(f):{\bf C}_J\to {\bf C}_I$.

Аксиома функториальности. Выполнены следующие условия:

- (а) каждому естественному преобразованию $\varphi: f \to g$ соответствует естественное преобразование $\varphi^*: f^* \to g^*$, а отображения $f \to f^*$ и $\varphi \to \varphi^*$ задают функтор из Hom(I,J) в категорию функторов из \mathbf{C}_J в \mathbf{C}_I ;
 - (б) если

$$K \xrightarrow{f} I \xrightarrow{g'} J \xrightarrow{h} L$$

— морфизмы и $\varphi:g\to g'$ — биморфизм, то $f^*\circ\varphi^*=(\varphi\circ f)^*$ и $\varphi^*\circ h^*=(h\circ\varphi)^*.$

Отныне зафиксируем категорию диаграмм Dia. С каждой категорией $\mathcal C$ ассоциируется предсистема диаграммных категорий, переводящая категорию I из Dia* в категорию функторов

$$\mathcal{C}^{I^{\star}} = \operatorname{Hom}(I^{\star}, \mathcal{C}),$$

и отображение $f:I \to J$ — в отображение

$$f^*: \mathcal{C}^{J^*} \to \mathcal{C}^{I^*}, \quad X \mapsto X \circ f.$$

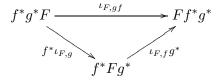
Морфизм $F: \mathbf{C} \to \mathbf{C}'$ двух предсистем диаграммных категорий \mathbf{C} и \mathbf{C}' состоит из следующих данных:

(1) для всякого $I \in \mathrm{Dia}^{\star}$ задан функтор $F : \mathbf{C}_I \to \mathbf{C}_I'$;

(2) для всякого отображения $f:I\to J$ в Dia^\star имеется изоморфизм функторов $\iota_{F,f}:f^*F\stackrel{\sim}{\longrightarrow} Ff^*.$

При этом для $\iota_{F,f}$ должны быть также выполнены следующие условия:

- (a) для всякого $I \in \mathrm{Dia}^{\star}$, $\iota_{F,1_I} = 1_F$;
- (б) для всяких двух отображений $I \stackrel{f}{\longrightarrow} J \stackrel{g}{\longrightarrow} K$ в Dia^\star диаграмма



является коммутативной;

(в) для всякого биморфизма $\varphi:f\to g$ в Dia^\star имеем следующий коммутативный квадрат:

$$f^*F \xrightarrow{\iota_{F,f}} Ff^*$$

$$\varphi^*F \downarrow \qquad \qquad \downarrow F\varphi^*$$

$$g^*F \xrightarrow{\iota_{F,q}} Fg^*.$$

Морфизм $F: \mathbf{C} \to \mathbf{C}'$ является эквивалентностью, если для любого $I \in \mathrm{Dia}^\star$ функтор $F: \mathbf{C}_I \to \mathbf{C}_I'$ — эквивалентность категорий.

Пусть ${\bf A}, {\bf B}, {\bf C}$ — предсистемы диаграммных категорий. Расслоенное про-изведение пары морфизмов $F: {\bf A} \to {\bf C}$ и $G: {\bf B} \to {\bf C}$ состоит из

(a) для любого $I\in {\rm Dia}^\star$ имеем категорию $\prod (F,G)_I$, чьи объекты суть тройки

$$(A, c, B), A \in \mathbf{A}_I, B \in \mathbf{B}_I, c : F(A) \xrightarrow{\sim} G(B),$$

и где морфизм из (A,c,B) в (A',c',B') — это пара морфизмов (a,b), согласованная с изоморфизмами c и c';

(б) для любого функтора $f:I\to J$ в Dia^\star имеем функтор

$$f^* = f^*_{\prod(F,G)} : \prod(F,G)_J \to \prod(F,G)_I,$$

определенный как

$$(A, c, B) \mapsto (f_{\mathbf{A}}^*(A), \iota_{G,f} \circ f_{\mathbf{C}}^*(c) \circ \iota_{F,f}^{-1}, f_{\mathbf{B}}^*(B)).$$

Предложение 1.1. Указанные выше данные определяют предсистему диаграммных категорий

$$\prod (F,G): \mathrm{Dia}^{\star op} \to \mathbf{CAT}. \tag{2}$$

Доказательство. Покажем, что (2) — функтор. Для этого рассмотрим два разложимых функтора $I \xrightarrow{g} J \xrightarrow{f} K$ в Dia * . Имеем

$$\iota_{G,g} f^* \circ g^* (\iota_{G,f} f^*(c) \iota_{F,f}^{-1}) \circ \iota_{F,g}^{-1} f^*$$

$$= \underbrace{\iota_{G,g} f^* \circ g^* (\iota_{G,f})}_{\iota_{G,fg}} \circ g^* (f^*(c)) \circ g^* (\iota_{F,f}^{-1}) \circ \iota_{F,g}^{-1} f^* = \iota_{G,fg} (fg)^* (c) \iota_{F,fg}^{-1}.$$

Следовательно, $(fg)^*=g^*f^*:\prod(F,G)_K\to\prod(F,G)_I.$ Так как диаграмма

$$Ff^{*}(A) \xrightarrow{\iota_{F,f}^{-1}} f^{*}F(A) \xrightarrow{f^{*}(c)} f^{*}G(B) \xrightarrow{\iota_{G,f}} Gf^{*}(B)$$

$$F\varphi^{*} \downarrow \qquad \qquad \qquad \downarrow \varphi^{*}F \downarrow \qquad \qquad \downarrow \varphi^{*}G \qquad \qquad \downarrow G\varphi^{*}$$

$$Fg^{*}(A) \xrightarrow[\iota_{F,g}^{-1}]{} g^{*}F(A) \xrightarrow[g^{*}(c)]{} g^{*}G(B) \xrightarrow{\iota_{G,g}} Gg^{*}(B)$$

коммутативна для любых функторов $f,g:I\to J$ и любого бифунктора $\varphi:f\to g$ в $\mathrm{Dia}^\star,$ отображение

$$(f^*(A), \iota_{G,f} f^*(c) \iota_{F,f}^{-1}, f^*(B)) \mapsto (g^*(A), \iota_{G,g} g^*(c) \iota_{F,g}^{-1}, g^*(B))$$

задает отображение φ^* между $f^*, g^*: \prod(F,G)_J \to \prod(F,G)_I$. Аксиома функториальности проверяется непосредственно. ullet

Пусть $\Delta^n=\{0<\dots< n\}$ \in Dia. Если нет опасности разночтения, Δ^0 обозначаем также через 0. Если $I\in$ Dia и $x\in I$, пусть $i_{x,I}:0\to I-$ функтор, отображающий 0 в x. Для $A\in\mathbf{C}_I$ положим $A_x=i_{x,I}^*A$.

Если $I \in Dia$, имеется естественный функтор

$$dia_I : \mathbf{C}_I \to \mathrm{Hom}(I, \mathbf{C}_0).$$

Он строится таким образом. Для любого $x\in I$ полагаем $\mathrm{dia}_I(B)(x)=B_x$. Каждый морфизм $\alpha:x\to y$ в I задает естественное преобразование $\alpha:i_{x,I}\to i_{y,I}$. Тогда $\mathrm{dia}_I(B)(\alpha):=\alpha^*:B_x\to B_y$.

Ниже мы рассмотрим следующие аксиомы.

Аксиома об изоморфизмах. Морфизм $f:A\to B$ в ${\bf C}_I$ является изоморфизмом тогда и только тогда, когда ${
m dia}_I(f)$ — изоморфизм в ${
m Hom}(I,{\bf C}_0)$. Иными словами, он изоморфизм тогда и только тогда, когда $f_x:A_x\to B_x$ — изоморфизм для всех $x\in I$.

Аксиома дизъюнктного объединения. (а) Если $I=I_1\coprod I_2$ — дизъюнктное объединение полных подкатегорий I_1 и I_2 , то соответствующие включения i_1,i_2 подкатегорий I_1,I_2 в I определяют эквивалентность категорий

$$(i_1^*, i_2^*): \mathbf{C}_I \stackrel{\sim}{\longrightarrow} \mathbf{C}_{I_1} imes \mathbf{C}_{I_2}.$$

(б) \mathbf{C}_{\varnothing} — тривиальная категория, имеющая в точности один морфизм между любыми двумя объектами.

Аксиомы гомотопических расширений Кана. Левая аксиома гомотопических расширений Кана требует, чтобы для каждого функтора $f:I\to J$ функтор $f^*:\mathbf{C}_J\to\mathbf{C}_I$ обладал левым сопряженным $f_!:\mathbf{C}_I\to\mathbf{C}_J$. По симметрии правая аксиома гомотопических расширений Кана говорит, что f^* имеет правый сопряженный $f_*:\mathbf{C}_I\to\mathbf{C}_J$. Функторы $f_!$ и f_* будем называть левыми и правыми гомотопическими расширениями Кана соответственно.

В случае, когда $f:I^\star\to 0^\star$ индуцируется единственным функтором $I\to 0$, будем писать Holim_I для $f_!$ и Holim_I для f_* .

Лемма 1.2. Пусть (f,g) — пара сопряженных функторов в ${\rm Dia}^*$ и пусть $\varphi:fg\to 1, \psi:1\to gf$ — морфизмы сопряженности. Тогда (g^*,f^*) — пара сопряженных функторов и $\varphi^*:g^*f^*\to 1, \psi^*:1\to f^*g^*$ — морфизмы сопряженности.

Доказательство. Очевидно. •

Определение. Функтор (1) называем левой (соответственно правой) системой диаграммных категорий, если выполнена аксиома функториальности, аксиома об изоморфизмах, аксиома дизъюнктного объединения и левая (соответственно правая) аксиома гомотопических расширений Кана.

Всюду ниже называем левую и правую системы диаграммных категорий бисистемой диаграммных категорий.

Пример. Пусть \mathcal{C} — замкнутая модельная категория и $I \in \mathrm{Dirf.}$ Существует естественная структура замкнутой модельной категории для \mathcal{C}^I (см. [5]). Предположим также, что \mathcal{C} имеет нуль-объект. Через $\mathrm{Ho}\,\mathcal{C}^I$ обозначим гомотопическую категорию, полученную путем обращения слабых эквивалентностей. Имеется канонический функтор $\mathcal{C}^I \to \mathcal{C}^{I^*}$, расширяющий I-диаграмму до I^* . Он посылает нуль-объект и морфизмы из I^* в нульобъект и морфизмы в \mathcal{C} . Всякий функтор $f: I^* \to J^*$ определяет таким образом функтор $f^*: \mathcal{C}^J \to \mathcal{C}^I$. Он сохраняет слабые эквивалентности, а значит, задает функтор между гомотопическими категориями. Из [5, 1.3.2] следует, что функтор

$$I \in \operatorname{Dirf} \mapsto \operatorname{Ho} \mathcal{C}^{\operatorname{I}}$$

определяет бисистему диаграммных категорий с областью Dirf.

Для произвольной модельной категории \mathcal{C} пусть \mathcal{C}_* обозначает модельную категорию объектов под конечным объектом * (см. [13, с. 4]). Тогда \mathcal{C}_* является выделенной категорией (с выделенным нуль-объектом). Ее бисистема диаграммных категорий с областью $\mathrm{Dirf} - \mathrm{это}$, по определению, бисистема, ассоциированная с \mathcal{C}_* .

Рассмотрим морфизм $F: \mathbf{A} \to \mathbf{C}$ левых систем диаграммных категорий \mathbf{A} и \mathbf{C} , и пусть $f: I \to J$ — функтор в Dia^\star . Рассмотрим морфизмы сопряженности

$$\alpha: 1 \longrightarrow f^* f_!$$
 и $\beta: f_! f^* \longrightarrow 1$.

Обозначим через $\gamma_{F,f}$ композицию

$$f_!F \xrightarrow{f_!F\alpha} f_!Ff^*f_! \xrightarrow{f_!\iota_{F,f}^{-1}f_!} f_!f^*Ff_! \xrightarrow{\beta Ff_!} Ff_!.$$

Говорим, что F точен справа, если $\gamma_{F,f}$ — изоморфизм и если выполнены такие условия согласованности:

$$F\alpha_{\mathbf{A}} = \iota_{F,f} f_! \circ f^*(\gamma_{F,f}) \circ \alpha_{\mathbf{C}} F \quad \text{if} \quad F\beta_{\mathbf{A}} = \beta_{\mathbf{C}} F \circ f_!(\iota_{F,f}^{-1}) \circ \gamma_{F,f}^{-1} f^*. \tag{3}$$

То есть $F\alpha_{\mathbf{A}}$ является композицией

$$F \xrightarrow{\alpha_{\mathbf{C}}F} f^* f_! F \xrightarrow{f^*(\gamma_{F,f})} f^* F f_! \xrightarrow{\iota_{F,f} f_!} F f^* f_!$$

и $F\beta_{\mathbf{A}}$ является композицией

$$Ff_!f^* \xrightarrow{\gamma_{F,f}^{-1}f^*} f_!Ff^* \xrightarrow{f_!(\iota_{F,f}^{-1})} f_!f^*F \xrightarrow{\beta_{\mathbf{C}}F} F.$$

Понятие точного слева (соответственно точного) морфизма между двумя правыми системами диаграммных категорий (соответственно бисистемами диаграммных категорий) определяется аналогично.

Предложение 1.3. Пусть $F: \mathbf{A} \to \mathbf{C}$ и $G: \mathbf{B} \to \mathbf{C}$ — точные справа (соответственно точные слева) морфизмы левых систем диаграммных категорий (соответственно правых систем диаграммных категорий). Тогда расслоенное произведение $\prod(F,G)$ является левой системой диаграммных категорий (соответственно правой системой диаграммных категорий).

Доказательство. Достаточно доказать утверждение для левых систем диаграммных категорий. По предложению $1.1 \prod (F,G)$ — предсистема диаграммных категорий. Очевидно, она удовлетворяет как аксиоме об изоморфизмах, так и аксиоме о дизъюнктном объединении. Поэтому требуется проверить аксиому гомотопических расширений Кана.

Пусть $f:I \to J$ — функтор в Dia^{\star} . Определим функтор

$$f_!:\prod(F,G)_I\to\prod(F,G)_J$$

по правилу: $(A,c,B)\mapsto (f_!(A),\gamma_{G,f}f_!(c)\gamma_{F,f}^{-1},f_!(B))$. Тогда морфизмы сопряженности $\alpha_{\mathbf{A},\mathbf{B}}:1\to f^*f_!$ и $\beta_{\mathbf{A},\mathbf{B}}:f_!f^*\to 1$ задают морфизмы сопряженности для $\prod(F,G)$. Чтобы проверить это, требуется показать, что коммутативны квадраты

$$FA \xrightarrow{c} GB$$

$$F\alpha_{\mathbf{A}} \downarrow \qquad \qquad \downarrow G\alpha_{\mathbf{B}}$$

$$Ff^*f_!A \xrightarrow{c'} Gf^*f_!B,$$

где $c' = \iota_{G,f} f_! \circ f^*(\gamma_{G,f}) \circ f^* f_!(c) \circ f^*(\gamma_{F,f}^{-1}) \circ \iota_{F,f}^{-1} f_!$, и

$$Ff_!f^*A \xrightarrow{c''} Gf_!f^*B$$

$$F\beta_{\mathbf{A}} \downarrow \qquad \qquad \downarrow G\beta_{\mathbf{B}}$$

$$FA \xrightarrow{c} GB,$$

где $c'' = \gamma_{G,f} f^* \circ f_!(\iota_{G,f}) \circ f_! f^*(c) \circ f_!(\iota_{F,f}^{-1}) \circ \gamma_{F,f}^{-1} f^*.$ Имеем следующую коммутативную диаграмму:

$$FA \xrightarrow{c} GB$$

$$\alpha_{\mathbf{C}}F \downarrow \qquad \qquad \downarrow \alpha_{\mathbf{C}}G$$

$$f^*f_!FA \xrightarrow{f^*f_!(c)} f^*f_!GB$$

$$\iota_{F,f}f_!\circ f^*(\gamma_{F,f}) \downarrow \qquad \qquad \downarrow \iota_{G,f}f_!\circ f^*(\gamma_{G,f})$$

$$Ff^*f_!A \xrightarrow{c'} Gf^*f_!B.$$

Ввиду (3) получаем

$$G\alpha_{\mathbf{B}} \circ c = \iota_{G,f} f_! \circ f^*(\gamma_{G,f}) \circ \alpha_{\mathbf{C}} G \circ c = \iota_{G,f} f_! \circ f^*(\gamma_{G,f}) \circ f^* f_!(c) \circ \alpha_{\mathbf{C}} F$$
$$= \iota_{G,f} f_! \circ f^*(\gamma_{G,f}) \circ f^* f_!(c) \circ f^*(\gamma_{F,f}^{-1}) \circ \iota_{F,f}^{-1} f_! \circ F\alpha_{\mathbf{A}} = c' \circ F\alpha_{\mathbf{A}}.$$

Поэтому первый квадрат коммутативен. Коммутативность второго квадрата доказывается аналогично. Непосредственно проверяется, что следующие композиции суть единицы (для $f_{\Pi(F,G)}^*$) соответственно $f_{!\Pi(F,G)}$):

$$f^* \xrightarrow{\alpha f^*} f^* f_! f^* \xrightarrow{f^* \beta} f^*, \quad f_! \xrightarrow{f_! \alpha} f_! f^* f_! \xrightarrow{\beta f_!} f_!.$$

Отсюда следует аксиома гомотопических расширений Кана. •

1.3. Следствия из аксиом. В этом разделе мы обсудим следствия из аксиом. Мы также отсылаем читателя к работе Франке [5].

1.3.1. Свойства функторов гомотопических расширений Кана. Функтор $f:I\to J$ в $\mathrm{Dia}-\mathit{замкнуmas}$ ($\mathit{открыmas}$) $\mathit{иммерсиs}$, если он вполне унивалентное включение такое, что для всякого $x\in J$ соотношение $\mathrm{Hom}(I,x)\neq\varnothing$ ($\mathrm{Hom}(x,I)\neq\varnothing$) влечет $x\in I$. Очевидно следующее утверждение.

Лемма об иммерсии. Пусть функтор $f:I\to J$ в Dia — замкнутая (открытая) иммерсия. Тогда функтор $g:J^*\to I^*$, переводящий $j\in J$ в j, если $j\in I$, и в *, в противном случае, является правым (левым) сопряженным к f^* .

Предложение 1.4. Пусть ${\bf C}$ — левая система диаграммных категорий, $f:I\to J$ — функтор, $x\in J$, и пусть $i_x:J/x\to J, j_x:f/x\to I,l:f/x\to J/x$ — канонические функторы. Если J- ч.у.м., то для $A\in {\bf C}_I$ имеются следующие изоморфизмы:

$$(f_!A)_x \simeq \operatorname{\underline{Holim}}_{J/x} i_x^* f_! A \simeq \operatorname{\underline{Holim}}_{J/x} l_! j_x^* A \simeq \operatorname{\underline{Holim}}_{f/x} j_x^* A.$$

Если C — правая система диаграммных категорий, то двойственное утверждение выполнено для проективных гомотопических пределов и для правых гомотопических расширений Кана.

Доказательство. Доказательство проводится аналогично [5, 1.4.2]. •

Если f — включение полной подкатегории $I\subseteq J$, где J — ч.у.м., для каждого объекта $x\in I$ категория f/x имеет конечный объект (x,id_x) . Поэтому выполнено следующее

Следствие 1.5. Пусть ${\bf C}$ — левая (соответственно правая) система диаграммных категорий и пусть $f:I\to J$ — включение полной подкатегории, где J — ч.у.м. Тогда канонический в ${\bf C}_I$ морфизм $A\to f^*f_!A$ (соответственно $f^*f_*A\to A$) — изоморфизм для любого объекта $A\in {\bf C}_I$.

Предложение 1.4 часто используется, чтобы свести утверждения о функторах $f_!$ и f_* к подобным утверждениям о $\underbrace{\operatorname{Holim}_J}$ и $\underbrace{\operatorname{Holim}_J}$. Следующее предложение относится к вопросу о замене J меньшей категорией.

Предложение 1.6. Пусть ${\bf C}$ — левая система диаграммных категорий, $i:I^* \to J^*$ — некоторый функтор (как правило, включение подкатегории). Если i имеет левый сопряженный вида l^* , где $l:J \to I$, то $\underline{\operatorname{Holim}}_J A \simeq \underline{\operatorname{Holim}}_I i^* A$. Двойственно, допустим, что ${\bf C}$ — правая система диаграммных категорий. Если i имеет правый сопряженный вида r^* для некоторого функтора $r:J \to I$, то $\underline{\operatorname{Holim}}_J A \simeq \underline{\operatorname{Holim}}_I i^* A$.

Доказательство. (1) Пусть l сопряжен слева к i. Тогда $l_!$ естественно изоморфен i^* . Следовательно, $\underline{\mathrm{Holim}}_J = \underline{\mathrm{Holim}}_I \circ l_! \simeq \underline{\mathrm{Holim}}_I \circ i^*$.

1.3.2. Декартовы квадраты. Пусть $\square \in \mathrm{Dia} -$ ч.у.м. $\Delta^1 \times \Delta^1$, имеющий следующие элементы:

$$(0,0) \longrightarrow (0,1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(1,0) \longrightarrow (1,1),$$

где \to означает <. Пусть подкатегория $\Gamma \subset \square$ получена путем удаления нижнего правого угла (1,1) и пусть $\sqcup \subset \square$ — подкатегория, содержащая все элементы \square , кроме (0,0). Пусть $i_r: \Gamma \to \square$ и $i_{\!\!_}: \sqcup \to \square$ — включения, и ${\bf C}$ — правая система диаграммных категорий (соответственно левая система диаграммных категорий). Объект $A \in {\bf C}_\square$ называется ${\it декартовым}$ (соответственно ${\it кодекартовым}$), если канонический морфизм $A \to i_{\!\!_*}i_{\!\!_*}^*A -$ изоморфизм (соответственно если $i_{r_i}i_{\!\!_*}^*A \to A$ — изоморфизм).

Лемма 1.7. Пусть ${\bf C}$ — левая система диаграммных категорий. Объект $A\in {\bf C}_\square$ кодекартов тогда и только тогда, когда $A_{(1,1)}\simeq \operatorname{\underline{Holim}}_{r}i_r^*A$. Двойственно, если ${\bf C}$ — правая система диаграммных категорий, то объект $A\in {\bf C}_\square$ декартов тогда и только тогда, когда $A_{(0,0)}\simeq \operatorname{\underline{Holim}}_{l}i_l^*A$.

Доказательство. Рассмотрим случай, когда ${\bf C}$ — левая система диаграммных категорий. Если A — объект ${\bf C}_\square$, по следствию 1.5 естественный морфизм

$$i^*A \rightarrow i^*i$$
, i^*A

является изоморфизмом. Поэтому $A_{(i,j)} \simeq i_{\mathsf{r}!} i_{\mathsf{r}}^* A_{(i,j)}$, если $(i,j) \in \{(0,0),(0,1),(1,0)\}.$

Из предложения 1.4 вытекает, что $i_{\tt r,l}i_{\tt r}^*A_{(1,1)}\simeq \varinjlim_{\tt r}i_{\tt r}^*A,$ откуда немедленно следует наше утверждение. ullet

Отныне все левые или правые системы диаграммных категорий предполагаются системами с областью Ord^\star . Объект A из $\mathbf{C}_{I \times \square}$, $I \in \mathrm{Ord}$, назовем декартовым, если

$$A \to (\mathrm{id}_I \times i_{\lrcorner})_* (\mathrm{id}_I \times i_{\lrcorner})^* A$$

— изоморфизм. Кодекартовость определяется аналогично, с помощью замены правой системы диаграммных категорий ${\bf C}$ на левую, \square на \lceil и $({\rm id}_I \times i_{\lrcorner})_*$ на $({\rm id}_I \times i_{\lrcorner})_*$ на $({\rm id}_I \times i_{\lrcorner})_*$, и обращая направление стрелки. Из аксиомы об изоморфизмах и предложения 1.8, приведенного ниже, следует, что объект $A \in {\bf C}_{I \times \square}$ декартов (кодекартов) тогда и только тогда, когда объект $A_{x,\square} = (i_{x,I} \times {\rm id}_{\square})^*A$ декартов (кодекартов) в ${\bf C}_{\square}$ для всех $x \in I$.

Пусть ${\bf C}$ — левая система диаграммных категорий. Для любого $I\in {\rm Ord}$ через ${\bf C}(I)$ обозначим левую систему диаграммных категорий, определенную как ${\bf C}(I)_J={\bf C}_{I\times J}$. Здесь I играет роль параметра.

Предложение 1.8. Пусть ${\bf C}$ — левая система диаграммных категорий, $f:I\to J$ — функтор в ${\rm Ord}^*.$ Тогда f задает точный справа функтор $f^*:{\bf C}(J)\to {\bf C}(I),$ индуцированный $(f\times 1_K)^*:{\bf C}_{J\times K}\to {\bf C}_{I\times K},$ $K\in {\rm Ord}^*.$ В частности, он сохраняет кодекартовы квадраты. Двойственное утверждение выполнено также для правых систем диаграммных категорий.

Доказательство. Если $g: K \to L$ — функтор в Ord^{\star} , требуется показать, что естественный морфизм $\gamma: (1_I \times g)_! (f \times 1_K)^* \to (f \times 1_L)^* (1_J \times g)_!$ — изоморфизм. Пусть $A \in \mathbf{C}_{J \times K}$ и $(x,y) \in I \times L$.

Морфизм $\varphi_{x,y}: 1\times g/(x,y)\to g/y, ((u,u\to x),(v,g(v)\to y))\mapsto (v,g(v)\to y),$ имеет правый сопряженный $\psi_{x,y}: g/y\to 1\times g/(x,y), (v,g(v)\to y)\mapsto ((x,x=x),(v,g(v)\to y)).$ По предложению 1.6 имеем $\underbrace{\mathrm{Holim}}_{1\times g/(x,y)}\simeq \underbrace{\mathrm{Holim}}_{g/y}\psi_{x,y}^*.$

По предложению 1.4

$$(1_I \times g)_!(f \times 1_K)^* A_{(x,y)} \simeq \underbrace{\operatorname{Holim}}_{1_I \times g/(x,y)} j_{(x,y)}^* (f \times 1_K)^* A$$

$$\simeq \underbrace{\operatorname{Holim}}_{g/y} \psi_{x,y}^* j_{(x,y)}^* (f \times 1_K)^* A.$$

С другой стороны,

$$(f \times 1_L)^* (1_J \times g)! A_{(x,y)} = i^*_{(f(x),y)} (1_J \times g)! A \simeq \underbrace{\operatorname{Holim}}_{1_J \times g/(f(x),y)} j^*_{(f(x),y)} A$$
$$\simeq \underbrace{\operatorname{Holim}}_{g/y} \psi^*_{f(x),y} j^*_{(f(x),y)} A = \underbrace{\operatorname{Holim}}_{g/y} \psi^*_{x,y} j^*_{(x,y)} (f \times 1_K)^* A.$$

Здесь мы использовали соотношение $j_{(f(x),y)}\psi_{f(x),y}=(f\times 1_K)j_{(x,y)}\psi_{x,y}.$ Итак, γ — изоморфизм. Условия согласованности (3) проверяются непосредственно. \bullet

Определение. Пусть ${\bf C}$ — правая (соответственно левая) система диаграммных категорий. *Квадратом* в I назовем функтор $i: \square \to I$, инъективный на множестве объектов. Пусть A — объект из ${\bf C}_I$. Говорим, что A делает квадрат i декартовым (соответственно кодекартовым), если i^*A декартов (соответственно кодекартов).

Предложение 1.9. Пусть ${\bf C}$ — левая система диаграммных категорий, i — квадрат в ч.у.м. I. Если функтор $\Gamma \to (I-i(1,1)/i(1,1))$ имеет левый сопряженный и $A=f_!B$, где $f:J\to I$ — функтор, не содержащий i(1,1) в своем образе, то A делает квадрат i кодекартовым. Аналогичное утверждение выполнено, когда ${\bf C}$ — правая система диаграммных

категорий, функтор $\bot \to (I-i(0,0)\setminus i(0,0))$ обладает правым сопряженным, и $A=f_*B$, где $f:J\to I$ — функтор, не содержащий i(0,0) в своем образе.

Доказательство. Доказательство проводится аналогично [5, 1.4.5]. •

Предложение 1.10 (конкатенация квадратов и (ко-)декартовость). Пусть \mathbf{C} — левая (соответственно правая) система диаграммных категорий, $d_{0,1,2}:\Delta^1\to\Delta^2$ — три монотонные инъекции и $A\in\mathbf{C}_{\Delta^2\times\Delta^1}$. Допустим, ито $(d_2\times\mathrm{id}_{\Delta^1})^*A\in\mathbf{C}_\square$ кодекартов (соответственно $(d_0\times\mathrm{id}_{\Delta^1})^*A\in\mathbf{C}_\square$ декартов). Тогда $(d_0\times\mathrm{id}_{\Delta^1})^*A$ кодекартов (соответственно $(d_2\times\mathrm{id}_{\Delta^1})^*A\in\mathbf{C}_\square$ декартов) тогда и только тогда, когда $(d_1\times\mathrm{id}_{\Delta^1})^*A$ кодекартов (соответственно $(d_1\times\mathrm{id}_{\Delta^1})^*A\in\mathbf{C}_\square$ декартов).

Доказательство. Доказательство проводится аналогично [5, 1.4.6]. •

Предложение 1.11. Пусть ${\bf C}$ — левая (соответственно правая) система диаграммных категорий. Для любого I категория ${\bf C}_I$ имеет нульобъект и конечные копроизведения (соответственно произведения). Для любого функтора $f:I\to J$ функтор $f_!$ (соответственно f_*) сохраняет копроизведения (соответственно произведения).

Доказательство. Пусть $f: I^* \to \varnothing^*$ — единственный функтор. Включение $g: \varnothing^* \to I^*$ сопряжено слева и справа к f. Тогда g^* сопряжен слева и справа к f^* . Поэтому, если $0 \in \mathbf{C}_\varnothing$, объект f^*0 (обозначим его также через 0) — нуль-объект в \mathbf{C}_I .

Пусть $I\coprod I$ — дизъюнктное объединение двух копий $I, p:I\coprod I\to I$ — функтор, тождественный на каждой копии I. По аксиоме о дизъюнктном объединении $\mathbf{C}_{I\coprod I}\simeq \mathbf{C}_I\times \mathbf{C}_I$. Следовательно, функтор $p_!$ обеспечивает копроизведения. Так как $f_!$ сопряжен слева к f^* , где $f:I\to J$ — функтор в Dia, то он сохраняет копроизведения. \bullet

Пусть $f:I^\star\to J^\star$ — функтор в Dia * и $x\in I$. Если $f(x)=\star$, то $f^*A_x=i_{x,I}^*f^*A=0$ для всякого $A\in \mathbf{C}_J$. В самом деле, композиция $0^\star\stackrel{i_{x,I}}{\longrightarrow}I^\star\stackrel{f}{\longrightarrow}J^\star$ пропускается как $0^\star\stackrel{j}{\longrightarrow}\varnothing^\star\stackrel{l}{\longrightarrow}J^\star$, откуда $f^*A_x=j^*l^*A=0$.

§2. Дериваторы

2.1. Определения. Пусть Dia — категория диаграмм. До сих пор мы рассматривали только функторы

$$\mathbf{C}:\mathrm{Dia}^{\star op} \to \mathbf{CAT}$$

с областью определения ${\rm Dia}^{\star}$. Горизонтальные морфизмы $I \to J$ в ${\rm Dia}^{\star}$ определены функторами $I^{\star} \to J^{\star}$, отображающими \star в \star . Особый интерес

представляют также функторы

$$\mathbf{D}: \mathrm{Dia}^{\mathrm{op}} \to \mathbf{CAT}$$
 (4)

с областью определения в исходной категории Dia. Здесь мы следуем терминологии [7].

Все аксиомы §1 могут быть также переформулированы для морфизмов и биморфизмов в Dia.

Определение. Функтор (4) называем предериватором, если выполнена аксиома функториальности. Он левый (соответственно правый) дериватор, если выполнены аксиома функториальности, аксиома об изоморфизмах, аксиома дизъюнктного объединения, левая (соответственно правая) аксиома гомотопических расширений Кана и левая (соответственно правая) аксиома замены базы, приведенная ниже.

Аксиома замены базы. Пусть $f:I\to J$ — морфизм в Dia и $x\in J$. Рассмотрим диаграмму в Dia

$$\begin{array}{ccc}
f/x & \xrightarrow{j_x} I \\
p & \swarrow \alpha_x & \downarrow f \\
0 & \xrightarrow{i_x} J,
\end{array}$$

в которой j_x — естественный морфизм и α_x — биморфизм

$$fj_x \to i_{x,I}p, \quad \alpha_x : fj_x(y, a : f(y) \to x) = f(y) \xrightarrow{a} x = i_{x,J}p(y, a).$$

Биморфизм α_x индуцирует биморфизм $\beta_x: p_! j_x^* \to i_{x,I}^* f_!$, являющийся композицией

$$p_!j_x^* \to p_!j_x^*f^*f_! \xrightarrow{p_!\alpha_x^*f_!} p_!p^*i_x^*f_! \to i_x^*f_!.$$

Левая аксиома замены базы требует, чтобы β_x был изоморфизмом.

Симметрично, правая аксиома замены базы говорит, что диаграмма

$$\begin{array}{ccc}
f \setminus x \xrightarrow{l_x} I \\
q \downarrow & \nearrow \gamma_x & \downarrow f \\
0 \xrightarrow[l_{x,J}]{} J
\end{array}$$

задает изоморфизм $\delta_x:i_{x,I}^*f_* o q_*l_x^*.$

Левые и правые дериваторы будем называть бидериваторами.

Пример. Если категория $\mathcal C$ имеет копределы, представимый предериватор, ассоциированный с $\mathcal C$, является левым дериватором. Типичный пример бидериватора (с областью Dirf) задается функтором $I \mapsto \operatorname{Ho} \mathcal C^I$, где $\mathcal C$ — замкнутая модельная категория (см. более подробно [14]).

Отныне все левые или правые дериваторы имеют фиксированную область определения Dia. Понятия морфизма двух предериваторов, расслоенного произведения пары морфизмов определяются по аналогии с предсистемами диаграммных категорий. Аналогично доказывается, что расслоенное произведение пары морфизмов является предериватором и что он левый (правый) дериватор всякий раз, когда оба морфизма точны справа (слева).

Предложение 2.1. Пусть \mathbf{D} — левый дериватор, $f: I \to J$ — функтор в Dia, $x \in J$. Для $A \in \mathbf{D}_I$ имеется изоморфизм: $(f_!A)_x \simeq \underbrace{\mathrm{Holim}_{f/x} j_x^* A}$. Если \mathbf{D} — правый дериватор, выполнено двойственное утверждение для проективных гомотопических пределов и правых гомотопических расширений Кана.

Доказательство. Очевидно. •

Если f — включение полной подкатегории $I\subseteq J$, для каждого объекта $x\in I$ категория f/x имеет конечный объект (x,id_x) . Поэтому выполнено следующее

Следствие 2.2. Пусть ${\bf D}-$ левый (соответственно правый) дериватор и пусть $f:I\to J-$ включение полной подкатегории. Тогда канонический в ${\bf D}_I$ морфизм $A\to f^*f_!A$ (соответственно $f^*f_*A\to A$) — изоморфизм для любого объекта $A\in {\bf D}_I$.

Понятие (ко-)декартового квадрата определяется аналогично случаю правых (левых) систем диаграммных категорий. Ниже мы формулируем утверждения о (ко-)декартовых квадратах без доказательств. Они дословно повторяют доказательства предыдущего параграфа.

Лемма 2.3. Пусть \mathbf{D} — левый дериватор. Объект $A \in \mathbf{D}_{\square}$ кодекартов тогда и только тогда, когда $A_{(1,1)} \simeq \operatorname{\underline{Holim}}_{\Gamma} i_{\Gamma}^* A$. Двойственно, если \mathbf{D} — правый дериватор, то объект $A \in \mathbf{D}_{\square}$ декартов тогда и только тогда, когда $A_{(0,0)} \simeq \operatorname{\underline{Holim}}_{\Gamma} i_{\Gamma}^* A$.

Для $I\in {
m Dia}$ обозначим через ${f D}(I)$ левый дериватор, определенный по правилу: ${f D}(I)_J={f D}_{I imes J}.$

Предложение 2.4. Пусть \mathbf{D} — левый дериватор, $f:I\to J$ — функтор \mathbf{B} Dia. Тогда f задает точный справа функтор $f^*:\mathbf{D}(J)\to\mathbf{D}(I)$, индущированный $(f\times 1_K)^*:\mathbf{D}_{J\times K}\to\mathbf{D}_{I\times K}$, $K\in \mathrm{Dia}$. В частности, он сохраняет кодекартовы квадраты. Двойственное утверждение верно также для правых дериваторов.

Предложение 2.5. Пусть \mathbf{D} — левый дериватор, i — квадрат в $I \in \mathrm{Dia}$. Если функтор $\Gamma \to (I-i(1,1)/i(1,1))$ имеет левый сопряженный и $A=f_!B$, где $f:J\to I$ — функтор, не содержащий i(1,1) в своем образе, то A делает квадрат i кодекартовым. Аналогичное утверждение выполнено, когда \mathbf{D} — правый дериватор, функтор $\bot \to (I-i(0,0)\setminus i(0,0))$ обладает правым сопряженным, и $A=f_*B$, где $f:J\to I$ — функтор, не содержащий i(0,0) в своем образе.

Предложение 2.6 (конкатенация квадратов и (ко-)декартовость). Пусть $\mathbf{D}-$ левый (соответственно правый) дериватор, $d_{0,1,2}:\Delta^1\to\Delta^2-$ три монотонные инъекции и $A\in\mathbf{D}_{\Delta^2\times\Delta^1}$. Допустим, что $(d_2\times\mathrm{id}_{\Delta^1})^*A\in\mathbf{D}_\square$ кодекартов (соответственно $(d_0\times\mathrm{id}_{\Delta^1})^*A\in\mathbf{D}_\square$ декартов). Тогда $(d_0\times\mathrm{id}_{\Delta^1})^*A$ кодекартов (соответственно $(d_2\times\mathrm{id}_{\Delta^1})^*A\in\mathbf{D}_\square$ декартов) тогда и только тогда, когда $(d_1\times\mathrm{id}_{\Delta^1})^*A$ кодекартов (соответственно $(d_1\times\mathrm{id}_{\Delta^1})^*A\in\mathbf{D}_\square$ декартов).

Предложение 2.7. Пусть \mathbf{D} — левый (соответственно правый) дериватор. Для всякого I категория \mathbf{D}_I имеет начальный (соответственно конечный) объект и конечные копроизведения (соответственно произведения). Для всякого функтора $f: I \to J$ функтор $f_!$ (соответственно f_*) сохраняет копроизведения (соответственно произведения).

Доказательство. Пусть $f: \varnothing \to I$ — включение и $0 \in \mathbf{D}_\varnothing$. Так как $f_!$ сопряжен слева к f^* , объект $f_!0$ (обозначим его также через 0) — начальный объект в \mathbf{D}_I .

Пусть $I\coprod I$ — дизъюнктное объединение двух копий $I, p: I\coprod I \to I$ — функтор, тождественный на каждой копии I. По аксиоме о дизъюнктном объединении $\mathbf{D}_{I\coprod I} \simeq \mathbf{D}_I \times \mathbf{D}_I$. Следовательно, функтор $p_!$ обеспечивает копроизведения. Так как $f_!$ сопряжен слева к f^* , где $f: I \to J$ — функтор в Dia, то он сохраняет копроизведения, а f^* — произведения (когда они существуют). •

2.2. Выделенные дериваторы. Дериваторы, с которыми мы будем работать, должны отвечать некоторым дополнительным условиям. Мы начнем с определений.

Определение. Говорят, что левый дериватор *выделен*, если он удовлетворяет следующим трем условиям:

- (1) для любой замкнутой иммерсии $f:I\to J$ в Dia структурный функтор $f_!$ имеет левый сопряженный $f^?;$
- (2) для любой открытой иммерсии $f: I \to J$ в Dia, структурный функтор f^* имеет правый сопряженный f_* ;
- (3) для любой открытой иммерсии $f:I\to J$ в Dia и любого объекта $x\in J$ морфизм замены базы, полученный из диаграммы

$$\begin{array}{c|c}
f \setminus x \xrightarrow{l_x} I \\
q \downarrow & \nearrow \gamma_x & \downarrow f \\
0 \xrightarrow{i_{x,J}} J,
\end{array}$$

производит изоморфизм $\delta_x: i_{x,I}^*f_* \to q_*l_x^*$. Понятие правого выделенного дериватора определяется аналогично.

Пусть $f:I\to J$ — открытая иммерсия в Dia, $x\in J$ и $q:f\setminus x\to 0$ — единственный функтор. Тогда всегда существует правый сопряженный к q^* функтор q_* . Действительно, если x не принадлежит I, то $f\setminus x=\varnothing$, и q_* существует, потому что $\varnothing\to 0$ — открытая иммерсия. Если $x\in I$, то $f\setminus x$ имеет начальный объект (x,id_x) , и мы полагаем $q_*=p^*$, где $0\stackrel{p}{\mapsto}(x,\mathrm{id}_x)\in f\setminus x$.

Пусть \mathbf{D} — левый (правый) выделенный дериватор. Тогда \mathbf{D}_I обладает нуль-объектом для любого $I\in \mathrm{Dia}$, ибо включение $\varnothing\to I$ — как замкнутая, так и открытая иммерсия, и потому $0=f_!0$ ($0=f_*0$) — также конечный (начальный) объект. Имеем также, что для любой открытой иммерсии $f:I\to J$ в Dia и любого объекта $x\in J$ "значение" f_*A_x в $x,A\in \mathbf{D}_I$, — это либо A_x , если $x\in I$, либо 0, в противном случае.

Далее будем называть левый и правый выделенный дериватор *выделенным бидериватором*.

2.3. Пример. Если $I \in {\rm Dirf}$ и ${\cal C}$ — категория Вальдхаузена, то категория функторов ${\cal C}^I$ также является категорией Вальдхаузена. Морфизм $F \to G$ в ${\cal C}^I$ — корасслоение (соответственно слабая эквивалентность), если таковым является $F(x) \to G(x)$ для всех $x \in I$.

Определение. Пусть \mathcal{A} — категория с конечными копроизведениями и начальным объектом e. Допустим, что \mathcal{A} имеет два выделенных класса морфизмов, которые будем называть слабыми эквивалентностями и корасслоениями. Назовем морфизм тривиальным корасслоением, если он является как слабой эквивалентностью, так и корасслоением. Следуя терминологии Брауна [15], назовем \mathcal{A} категорией корасслоенных объектов, если выполнены следующие аксиомы:

- (A) пусть f и g морфизмы, для которых определена композиция gf. Если два морфизма из f, g, gf слабые эквивалентности, то также и третий морфизм;
- (B) композиция двух корасслоений снова корасслоение. Каждый изоморфизм является корасслоением;
 - (С) если в диаграмме

$$A \stackrel{u}{\longleftarrow} C \stackrel{v}{\longrightarrow} B$$

- v корасслоение (тривиальное корасслоение), существует расслоенное произведение $A\coprod_C B$, и $A\to A\coprod_C B$ корасслоение (тривиальное корасслоение);
- (D) всякий морфизм u в \mathcal{A} имеет факторизацию u=pi, где p слабая эквивалентность, а i корасслоение;
 - (E) для каждого объекта A морфизм $e \to A$ является корасслоением.

Для примера, категория Вальдхаузена ограниченных комплексов $C^b(\mathcal{E})$ точной категории \mathcal{E} , в которой слабые эквивалентности суть квазиизоморфизмы, а корасслоения — покомпонентно допустимые мономорфизмы, является категорией корасслоенных объектов.

Пусть \mathcal{C} — категория Вальдхаузена корасслоенных объектов, и пусть $\operatorname{Ho}\mathcal{C}$ обозначает категорию, полученную из \mathcal{C} путем обращения слабых эквивалентностей. Можно ввести понятие гомотопии для двух морфизмов f и g (см. [15]). Рассмотрим категорию $\pi\mathcal{C}$, у которой объекты суть те же, что и в \mathcal{C} , а $\pi\mathcal{C}(A,B)$ — это фактор-множество $\mathcal{C}(A,B)$ по отношению эквивалентности $f\sim g$, определенному в терминах этой гомотопии. Тогда класс слабых эквивалентностей в категории $\pi\mathcal{C}$ допускает исчисление левых частных [15]. Если $I\in \operatorname{Dirf}$, то из [16, 1.31] следует, что категория функторов \mathcal{C}^I является категорией Вальдхаузена корасслоенных объектов.

Теорема 2.8 (Сизинский [16]). Если C — категория Вальдхаузена корасслоенных объектов, то гиперфунктор

$$\mathbf{D}\mathcal{C}: I \in \mathrm{Dirf} \mapsto \mathbf{D}\mathcal{C}_{\mathrm{I}} = \mathrm{Ho}\,\mathcal{C}^{\mathrm{I}}$$

определяет левый выделенный дериватор с областью Dirf.

$\S 3. S.$ -конструкция

В этом параграфе всюду предполагается, что ${\bf B}-$ либо левая система диаграммных категорий (с областью ${\rm Ord}^{\star}$), либо левый выделенный дериватор (с областью ${\rm Dia}$). Пусть ${\rm Ar}\,\Delta^n-$ ч.у.м. пар $(i,j),\,0\leqslant i\leqslant j\leqslant n$, где $(i,j)\leqslant (i',j')$, если $i\leqslant i'$ и $j\leqslant j'$. Как категория, оно может быть отождествлено с категорией стрелок Δ^n .

Для $0 \leqslant i < j < k \leqslant n$ определим функтор

$$a_{i,j,k}: \square \to \operatorname{Ar} \Delta^n$$
 (5)

по правилу

$$(0,0) \mapsto (i,j), \quad (0,1) \mapsto (i,k), \quad (1,0) \mapsto (j,j), \quad (1,1) \mapsto (j,k).$$

Для $n \geqslant 0$ через $S_n \mathbf{B}$ обозначим полную подкатегорию $\mathbf{B}_{\operatorname{Ar} \Delta^n}$, состоящую из таких объектов X:

- \diamond для любого $i\leqslant n$ объект $X_{(i,i)}$ изоморфен нулю в \mathbf{B}_0 ;
- \diamond при n>1 для любых $0\leqslant i < j < k \leqslant n$ квадрат $a_{i,j,k}^*X$ кодекартов.

Определение $S_n\mathbf{B}$ аналогично определению $S_n\mathcal{C}$, где \mathcal{C} — категория Вальдхаузена (более детально см. [9]). Заметим, что $S_0\mathbf{B}$ — полная подкатегория нуль-объектов в \mathbf{B}_0 . Категория $S_1\mathbf{B}$ отождествляется с полной подкатегорией объектов $X \in \mathbf{B}_{\Delta^2}$ таких, что X_0 и X_2 изоморфны нулю.

Предложение 3.1. Для $n\geqslant 1$ рассмотрим функтор $\ell:\Delta^{n-1}\to {\rm Ar}\;\Delta^n$, переводящий j в (0,j+1). Тогда функтор ℓ^* индуцирует эквивалентность категорий $S_n{\bf B}$ и ${\bf B}_{\Delta^{n-1}}$.

Доказательство. Разобьем доказательство на две части.

- I. Рассмотрим отдельно случаи левой системы диаграммных категорий и левого выделенного дериватора.
- (a) Пусть ${\bf B}$ левая система диаграммных категорий. Рассмотрим такую полную подкатегорию I категории ${\rm Ar}\,\Delta^n$:

$$\left\{\begin{array}{c} (0,1) \longrightarrow (0,2) \longrightarrow \cdots \longrightarrow (0,n) \\ \downarrow \\ (1,1) \end{array}\right\} \bigcup_{2 \leqslant i \leqslant n} (i,i),$$

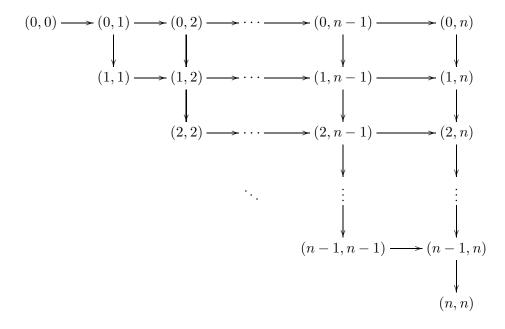
а также морфизм $g:\Delta^{n-1}\to I,\ j\mapsto (0,j+1).$ Так как g — открытая иммерсия, по лемме об иммерсиях g обладает левым сопряженным $f:I^\star\to\Delta^{n-1\star},\ (0,j)\mapsto j-1$ и $(i,i)\mapsto\star.$ Следовательно, f^\star сопряжен справа к $g^\star.$

Пусть \mathbf{B}_I — полная подкатегория \mathbf{B}_I , состоящая из $X \in \mathbf{B}_I$ таких, что $X_{(i,i)}, 1 \leqslant i \leqslant n$, изоморфны нулю. Мы утверждаем, что f^* и g^* — взаимнообратные эквивалентности между $\mathbf{B}_{\Delta^{n-1}}$ и $\widetilde{\mathbf{B}}_I$. В самом деле, $f^*A \in \widetilde{\mathbf{B}}_I$ для любого $A \in \mathbf{B}_{\Delta^{n-1}}$, и $g^*f^* = 1$. С другой стороны, морфизм сопряженности $B \to f^*g^*B$ является изоморфизмом для всякого $B \in \widetilde{\mathbf{B}}_I$.

(b) Пусть ${\bf B}$ — левый выделенный дериватор. Так как g — открытая иммерсия, функтор g^* обладает правым сопряженным g_* . Покажем, что g^* и

 g_* — взаимно-обратные эквивалентности между $\mathbf{B}_{\Delta^{n-1}}$ и $\widetilde{\mathbf{B}}_I$. Действительно, морфизм сопряженности $g^*g_* \to 1$ является изоморфизмом по следствию 2.2. Так как g — открытая иммерсия, $g_*B \in \widetilde{\mathbf{B}}_I$ для всех $B \in \mathbf{B}_{\Delta^{n-1}}$ (см. соответствующие замечания на с. 147). Отсюда немедленно следует, что морфизм сопряженности $B \to g_*g^*B$ — изоморфизм для всякого $B \in \widetilde{\mathbf{B}}_I$.

II. Далее, пусть $h:I\to {\rm Ar}\, \Delta^n$ — включение. По предложениям 1.9 и 2.5 для любого $A\in {\bf B}_I$ объект $h_!A$ делает все квадраты



категории ${\rm Ar}\,\Delta^n$ кодекартовыми. По предложениям 1.10 и 2.6 то же справедливо для всех конкатенаций квадратов.

По предложениям 1.4 и 2.1 $h_!A_{(0,0)}$ изоморфен нулю, а по следствиям 1.5 и 2.2 канонический морфизм $A \to h^*h_!A$ является изоморфизмом для всех $A \in \mathbf{B}_I$. Если $1 \leqslant i \leqslant n$, то для любого $A \in \widetilde{\mathbf{B}}_I$

$$0 \simeq A_{(i,i)} \simeq h^* h_! A_{(i,i)} = h_! A_{(i,i)}.$$

Таким образом, $h_!$ переводит объект $A \in \widetilde{\mathbf{B}}_I$ в объект из $S_n\mathbf{B}$. Ограничение $h_!$ на $\widetilde{\mathbf{B}}_I$ обозначим тем же символом. Чтобы доказать, что $h_!: \widetilde{\mathbf{B}}_I \to S_n\mathbf{B}$ — эквивалентность, остается проверить, что морфизм сопряженности

$$h!h^*B \to B \tag{6}$$

— изоморфизм для любого $B \in S_n \mathbf{B}$. По аксиоме об изоморфизмах достаточно показать, что он изоморфизм в каждом $(i,j) \in \operatorname{Ar} \Delta^n$. Очевидно, это так в каждом $(i,j) \in I \cup (0,0)$.

Если $1 \leqslant i < j \leqslant n$, рассмотрим квадрат $a_{0,i,j}: \square \to \operatorname{Ar} \Delta^n$. Ограничение $a_{0,i,j}$ на Γ обозначим через α . Морфизм (6) индуцирует морфизм

$$\alpha^* h_! h^* B \to \alpha^* B, \tag{7}$$

а также морфизм

$$h_!h^*B_{(i,j)} \simeq \underline{\operatorname{Holim}}_{r} \alpha^*h_!h^*B \to \underline{\operatorname{Holim}}_{r} \alpha^*B \simeq B_{(i,j)}.$$

Мы использовали здесь леммы 1.7 и 2.3. Последний морфизм — изоморфизм всякий раз, когда (7) — изоморфизм. Так как ${\rm Im}\,\alpha\subset I$, то (7) — всегда изоморфизм. Поэтому (6) — изоморфизм в каждом $(i,j)\in {\rm Ar}\,\Delta^n$, а, значит, $h_!$ и h^* взаимно обратны по аксиоме об изоморфизмах.

Так как $\ell=hg$, функтор $\ell^*=g^*h^*:S_n\mathbf{B}\to\mathbf{B}_{\Delta^{n-1}}$ — эквивалентность, поскольку как g^* , так и h^* — эквивалентности по рассуждениям, приведенным выше. •

Замечание. Отметим, что если ${\bf B}$ — левая система диаграммных категорий (левый выделенный дериватор), то квазиобратный к ℓ^* функтор задается $h_!f^*$ ($h_!g_*$).

Напомним, что через ${f B}(I)$ мы обозначаем левую систему диаграммных категорий или левый выделенный дериватор, соответственно определенный как ${f B}(I)_J={f B}_{I imes J}$. Каждый морфизм f:I o J задает функтор $f^*:{f B}(J) o {f B}(I)$. Ниже нам понадобится следующее

Предложение 3.2. Структурный функтор $f^*: \mathbf{B}(J)_0 = \mathbf{B}_J \to \mathbf{B}(I)_0 = \mathbf{B}_I$ сохраняет конечные произведения и копроизведения.

Доказательство. Доказательство проводится аналогично [5, 1.4.7]. •

По предложениям 1.8 и 2.4 $f^*: \mathbf{B}(J) \to \mathbf{B}(I)$ сохраняет кодекартовы квадраты. Получаем поэтому функтор (обозначим его той же буквой)

$$f^*: S_n\mathbf{B}(J) \to S_n\mathbf{B}(I)$$
,

и для каждого бифунктора $\varphi:f\to g$ бифунктор φ^* индуцирует естественное преобразование

$$S_n\mathbf{B}(J) \xrightarrow{f^*} S_n\mathbf{B}(I)$$
.

Положим $\mathbf{S}_n\mathbf{B}_I=S_n\mathbf{B}(I)$. Тогда $\mathbf{S}_n\mathbf{B}$ — предсистема диаграммных категорий или предериватор соответственно. $\mathbf{S}_0\mathbf{B}$ тривиальна, и для $n\geqslant 1$ предложение 3.1 влечет эквивалентность

$$\mathbf{S}_n\mathbf{B}\simeq\mathbf{B}(\Delta^{n-1}).$$

Так как ${\bf B}(\Delta^{n-1})$ — левая система диаграммных категорий или левый выделенный дериватор соответственно, то также и ${\bf S}_n{\bf B}$. Поэтому получаем симплициальную левую систему диаграммных категорий или симплициальный левый выделенный дериватор соответственно

$$\mathbf{S}.\mathbf{B}:\Delta^n\mapsto\mathbf{S}_n\mathbf{B}.$$

Рассмотрим следующую симплициальную категорию:

$$S.\mathbf{B}:\Delta^n\mapsto S_n\mathbf{B}.$$

Для $n \geqslant 0$ через $iS_n\mathbf{B}$ обозначим подкатегорию $S_n\mathbf{B}$, чьи объекты суть те же, что и в $S_n\mathbf{B}$, и чьи морфизмы — изоморфизмы в $S_n\mathbf{B}$, и пусть $i.S_n\mathbf{B}$ — нерв $iS_n\mathbf{B}$. Тогда получаем следующий бисимплициальный объект:

$$i.S.: \Delta^m \times \Delta^n \mapsto i_m S_n \mathbf{B}.$$

Лемма 3.3. Пространство |i.S.B| является связным.

Доказательство. Геометрическая реализация бисимплициального множества — это диагональ. Если $O_1, O_2 \in i_0S_0\mathbf{B}$ и $f: O_1 \to O_2$ — единственный морфизм в $S_0\mathbf{B}$, соединяющий их, то для $A = \sigma_0(f) \in i_1S_1\mathbf{B}$ имеем $\partial_0A = O_2, \partial_1A = O_1$.

Определение. Группа Гротендика $K_0(\mathbf{B})$ порождена множеством классов изоморфности [B] объектов из \mathbf{B}_0 и имеет такие соотношения: $[B] = [A] \cdot [C]$ для любого $E \in S_2 \mathbf{B}$ такого, что $E_{(0,1)} = A$, $E_{(0,2)} = B$ и $E_{(1,2)} = C$.

Лемма 3.4. $\pi_1|i.S.\mathbf{B}| \simeq K_0(\mathbf{B}).$

Доказательство. $\pi_1|i.S.\mathbf{B}|$ — свободная группа на $\pi_0|i.S_1\mathbf{B}|$ по модулю соотношений $d_1(x)=d_2(x)d_0(x)$ для каждого $x\in\pi_0|i.S_2\mathbf{B}|$. Это следует из того, что $\pi_1|i.S_0\mathbf{B}|=0$ и из спектральной последовательности Бусфелда—Фридландера [17]. $\pi_0|i.S_1\mathbf{B}|$ — множество классов изоморфности объектов из $\mathbf{B}_0,\ \pi_0|i.S_2\mathbf{B}|$ — множество классов изоморфности объектов из $S_2\mathbf{B}$, и морфизмы $d_i:S_2\mathbf{B}\to S_1\mathbf{B}$ посылают E в $E_{(1,2)},\ E_{(0,2)}$ и в $E_{(0,1)}$ соответственно. •

Если \mathcal{A} — точная категория, ее ограниченная производная категория $D^b(\mathcal{A})$ строится следующим образом (мы следуем здесь определениям Келлера [18]).

Пусть $H^b(\mathcal{A})$ — гомотопическая категория категории ограниченных комплексов $\mathcal{C}=C^b(\mathcal{A})$, т.е. фактор-категория \mathcal{C} по модулю гомотопической эквивалентности. Пусть $Ac(\mathcal{A})$ — полная подкатегория в $H^b(\mathcal{A})$, состоящая из ацикличных комплексов. Называем комплекс

$$X^n \longrightarrow X^{n+1} \longrightarrow X^{n+2}$$

ацикличным, если каждый морфизм $X^n \to X^{n+1}$ факторизуется в $\mathcal A$ как $X^n \stackrel{e_n}{\to} D^n \stackrel{m_n}{\rightarrowtail} X^{n+1}$, где e_n — допустимый эпиморфизм, а m_n — допустимый мономорфизм. Кроме того, $D^n \stackrel{m_n}{\rightarrowtail} X^{n+1} \stackrel{e_{n+1}}{\to} D^{n+1}$ должна быть точной последовательностью.

Если точная категория идемпотентно замкнута, то каждый стягиваемый комплекс ацикличен. Пусть $\mathcal{N}=\mathcal{N}_{\mathcal{A}}$ — полная подкатегория $H^b(\mathcal{A})$, чьи объекты суть комплексы изоморфные в $H^b(\mathcal{A})$ ацикличным комплексам. Имеется иное описание \mathcal{N} . Пусть $\mathcal{A}\to\tilde{\mathcal{A}}$ — универсальный аддитивный функтор в идемпотентно замкнутую точную категорию $\tilde{\mathcal{A}}$. Он точен и отражает точные последовательности, и \mathcal{A} замкнута относительно расширений в $\tilde{\mathcal{A}}$ (см. [19, A.9.1]). Тогда комплекс с компонентами из \mathcal{A} принадлежит \mathcal{N} тогда и только тогда, когда его образ в $H^b(\tilde{\mathcal{A}})$ ацикличен. Категория $\mathcal{N}_{\tilde{\mathcal{A}}}=Ac(\tilde{\mathcal{A}})$ является толстой в $H^b(\tilde{\mathcal{A}})$. Заметим, что комплекс над $\tilde{\mathcal{A}}$ ацикличен тогда и только тогда, когда он имеет тривиальную гомологию, вычисленную в окружающей $\tilde{\mathcal{A}}$ абелевой категории. Тогда \mathcal{N} — толстая подкатегория в $H^b(\mathcal{A})$. Обозначим через Σ мультипликативную систему, ассоциированную с \mathcal{N} , и назовем элементы из Σ квазиизоморфизмами. Морфизм s — квазиизоморфизм тогда и только тогда, когда в каждом треугольнике $L \stackrel{s}{\longrightarrow} M \to N \to L[1]$ комплекс N принадлежит \mathcal{N} .

Производная категория определяется как

$$D^b(\mathcal{A}) = H^b(\mathcal{A})/\mathcal{N} = H^b(\mathcal{A})[\Sigma^{-1}].$$

Ясно, что морфизм — квазиизоморфизм тогда и только тогда, когда его образ в $C^b(\tilde{\mathcal{A}})$ — квазиизоморфизм, и тогда и только тогда, когда его образ в $D^b(\mathcal{A})$ — изоморфизм.

Напомним, что группа Гротендика $K_0(D^b(\mathcal{A}))$ определяется как группа, порожденная множеством классов изоморфности [B] объектов из $D^b(\mathcal{A})$, с соотношениями: [B] = [A] + [C] для всякого треугольника $A \to B \to C \to A[1]$.

Согласно [18] (см. также [16]), гиперфунктор $I\mapsto D^b(\mathcal{A}^I)$ задает выделенный бидериватор с областью Dirf. Обозначим его через $\mathbf{D}^b(\mathcal{A})$.

Лемма 3.5. $K_0(\mathbf{D}^b(\mathcal{A})) = K_0(D^b(\mathcal{A})).$

Доказательство. Достаточно заметить, что существует взаимно однозначное соответствие между множеством классов изоморфности объектов из $S_2\mathbf{D}^b(\mathcal{A})$ и множеством классов изоморфности треугольников в $D^b(\mathcal{A})$ (см. более подробно [16, 6]). •

Определение. Алгебраическая K-теория малой левой системы диаграммных категорий с областью Ord^* или левого выделенного дериватора с областью Dia — это пространство с отмеченной точкой (фиксированный нуль-объект 0 из \mathbf{B}_0 берется за отмеченную точку)

$$K(\mathbf{B}) = \Omega |i.S.\mathbf{B}|.$$

K-группы для ${\bf B}$ суть гомотопические группы $K({\bf B})$:

$$K_*(\mathbf{B}) = \pi_*(\Omega|i.S.\mathbf{B}|) = \pi_{*+1}(|i.S.\mathbf{B}|).$$

Обозначения. Через $0 \in \mathbf{B}_I$ будем также обозначать объект const*0, где const : $I \to 0$ — постоянный морфизм и 0 — фиксированный нуль-объект из \mathbf{B}_0 . Пусть (L.s.d.c., Left pointed dérivateurs) — соответствующие категории левых систем диаграммных категорий и левых выделенных дериваторов, и точных справа морфизмов. Чтобы отображение

$$(L.s.d.c., Left pointed dérivateurs) \xrightarrow{K} (Spaces)$$

было функториальным, далее всюду предполагается, что $\iota_{F,f}:f^*F\to Ff^*$ суть единицы для любого точного справа морфизма $F:\mathbf{A}\to\mathbf{B}$ и любого морфизма f из Dia.

Любой точный справа морфизм $F: \mathbf{A} \to \mathbf{B}$ индуцирует отображение пространств $F_*: K(\mathbf{A}) \to K(\mathbf{B})$ и их гомотопических групп $K_i(\mathbf{A}) \to K_i(\mathbf{B})$.

Можно применить S.-конструкцию к каждому $\mathbf{S}_n\mathbf{B}$, получая бисимплициальную левую систему диаграммных категорий и левый выделенный дериватор соответственно. Итерируя эту конструкцию, можем получить мультисимплициальный объект $\mathbf{S}.^n\mathbf{B} = \mathbf{S}.\mathbf{S}.\cdots \mathbf{S}.\mathbf{B}$ и мультисимплициальные категории $iS.^n\mathbf{B}$ изоморфизмов. Мы покажем, что выполнение теоремы аддитивности влечет, что $|i.S.^n\mathbf{B}|$ — пространство петель для $|i.S.^{n+1}\mathbf{B}|$, где $n\geqslant 1$, и что последовательность

$$\Omega|i.S.\mathbf{B}|, \Omega|i.S.S.\mathbf{B}|, \dots, \Omega|i.S.^{n}\mathbf{B}|, \dots$$

образует связный Ω -спектр \mathbf{KB} . В этом случае можно рассматривать K-теорию для \mathbf{B} в терминах этого спектра. Это не влияет на K-группы, так как

$$\pi_i(\mathbf{KB}) = \pi_i(K(\mathbf{B})) = K_i(\mathbf{B}), \quad i \geqslant 0.$$

Теорема аддитивности остается открытой для $K(\mathbf{B})$. Тем не менее если определение K-теории как пространства $\Omega|i.S.\mathbf{B}|$ заменить бесконечнократным пространством петель

$$\Omega^{\infty}|i.S.^{\infty}\mathbf{B}| = \lim_{n} \Omega^{n}|i.S.^{n}\mathbf{B}|,$$

то теорема аддитивности верна (за исключением патологических случаев, которые мы никогда не встречаем на практике).

Для определения пространства K-теории триангулированного дериватора Малциниотис [7] использует Q.-конструкцию. Эта конструкция может быть продолжена на произвольные левые системы диаграммных категорий и левые выделенные дериваторы, если в определении Малциниотиса заменить бидекартовы квадраты на кодекартовы. А именно, она задается бисимплициальной категорией $Q\mathbf{B} = \{Q_{m,n}\mathbf{B}\}_{m,n\geqslant 0}$, где $Q_{m,n}\mathbf{B}$ — полная подкатегория в $\mathbf{B}_{\Delta^m \times \Delta^n}$ такая, что каждый $X \in Q_{m,n}\mathbf{B}$ делает любой квадрат $i: \square \to \Delta^m \times \Delta^n$ кодекартовым. Через $iQ\mathbf{B}$ обозначим соответствующий максимальный группоид. Тогда $i.Q\mathbf{B}$ — трисимплициальный объект, и пространство K-теории определяется как $\Omega \mid \mathrm{diag}(i.Q\mathbf{B}) \mid$.

Согласно [20], полученная K-теория эквивалентна той, которую мы определили в терминах S-конструкции. Доказательство основывается на [9, с. 334] и переносится без всяких затруднений на наш контекст.

§4. Симплициальные предварительные сведения

Мультисимплициальные множества будут возникать естественным образом в нашей работе. Будет полезно работать с ними напрямую, не диагонализируя всю структуру. Такая работа зависит от пары лемм, которые мы приводим ниже. Мы формулируем их для бисимплициальных множеств, так как соответствующие леммы для мультисимплициальных множеств — немедленные следствия, если взять подходящие диагонали.

Лемма 4.1 ([8]). Пусть $X.. \to Y.. -$ отображение бисимплициальных множеств и пусть для любого n отображение $X._n \to Y._n -$ гомотопическая эквивалентность. Тогда и $X.. \to Y.. -$ гомотопическая эквивалентность.

Лемма 4.2 ([21, 5.2]). Пусть $X.. \to Y.. \to Z.. -$ последовательность бисимплициальных множеств таких, что $X.. \to Z..$ постоянно. Если $X._n \to Y._n \to Z._n$ — гомотопически расслоенная последовательность и $Z._n$ связно для любого n, тогда $X.. \to Y.. \to Z..$ — также гомотопически расслоенная последовательность.

Лемма 4.3. Если \mathcal{A} и \mathcal{B} — малые симплициальные категории, так что множества объектов образуют симплициальные множества, и $i\mathcal{A}$, $i\mathcal{B}$ —

соответствующие категории изоморфизмов, то каждая эквивалентность $F: \mathcal{A} \to \mathcal{B}$ индуцирует гомотопическую эквивалентность бисимплициальных объектов $F: i.\mathcal{A} \to i.\mathcal{B}$. В частности, если \mathcal{A} и \mathcal{B} — левые системы диаграммных категорий или левые выделенные дериваторы, то каждая точная справа эквивалентность $F: \mathcal{A} \to \mathcal{B}$ индуцирует гомотопическую эквивалентность $F: i.S.\mathcal{A} \to i.S.\mathcal{B}$.

Доказательство. Очевидно. •

Пусть C и D — симплициальные объекты в категории \mathcal{C} и пусть Δ/Δ^1 — категория объектов над Δ^1 в Δ ; они суть морфизмы $\Delta^n \longrightarrow \Delta^1$. Для любого симплициального объекта C в \mathcal{C} через C^* обозначим композицию

$$(\Delta/\Delta^1)^{\operatorname{op}} \longrightarrow \Delta^{\operatorname{op}} \xrightarrow{C} \mathcal{C},$$
$$(\Delta^n \longrightarrow \Delta^1) \mapsto \Delta^n \mapsto C_n.$$

Тогда симплициальной гомотопией морфизмов из C в D называется естественное преобразование $C^* \longrightarrow D^*$ [9, с. 335].

Существует функтор $P: \Delta \to \Delta, \ P\Delta^n = \Delta^{n+1}$ такой, что естественное отображение $s_0: \Delta^n \to \Delta^{n+1} = P\Delta^n$ — это естественное преобразование $\mathrm{id}_\Delta \to P$. Оно получается формальным добавлением начального объекта 0' к каждому Δ^n и потом отождествлением $\{0' < 1 < \cdots < n\}$ с Δ^{n+1} . Итак, $P(s_i) = s_{i+1}$ и $P(d_i) = d_{i+1}$. Если A — симплициальный объект в A, пространство путей PA — это симплициальный объект, полученный как композиция A с P. Поэтому $PA_n = A_{n+1}$ и i-й оператор грани для PA — это ∂_{i+1} для A, и i-й оператор вырождения для PA — это σ_{i+1} для σ_{i+1} образуют симплициальное отображение σ_{i+1} для σ_{i+1}

Будем писать A_0 для постоянного симплициального объекта в A_0 . Естественные отображения $\sigma_0^{n+1}:A_0\to A_{n+1}$ образуют симплициальное отображение $\iota:A_0\to PA$, и отображения $A_{n+1}\to A_0$, индуцированные каноническим включением $\Delta^0=\{0\}$ в Δ^{n+1} , образуют симплициальное отображение $\rho:PA\to A_0$ такое, что $\rho\iota$ тождественно на A_0 . Хорошо известно, что $\iota\rho$ гомотопно единице на PA. Поэтому PA гомотопически эквивалентно A_0 .

§5. Γ -пространства

В этом параграфе используется машина Сегала [8], чтобы получить некоторую информацию о K-теории $K(\mathbf{B})$. Начнем с определений.

Если T — конечное множество, через $\mathcal{P}(T)$ обозначим множество всех подмножеств T, а множество $\{1, 2, \ldots, n\}$ будем обозначать через \mathbf{n} .

Определение. І. Г — это категория, чьи объекты суть конечные множества и чьи морфизмы из S в T суть отображения $\theta:S\to \mathcal{P}(T)$ такие, что $\theta(\alpha)$ и $\theta(\beta)$ дизъюнктны, когда $\alpha\neq\beta$. Композиция $\theta:S\to \mathcal{P}(T)$ и $\varphi:T\to \mathcal{P}(U)$ — это $\psi:S\to \mathcal{P}(U)$, где $\psi(\alpha)=\bigcup_{\beta\in\theta(\alpha)}\varphi(\beta)$.

- II. Γ -пространство это контравариантный функтор $A:\Gamma \to (Spaces)$ такой, что
 - (a) $A(\mathbf{0})$ стягиваемо и
- (b) для любого n отображение $p_n: A(\mathbf{n}) \to A(\mathbf{1}) \times \cdots \times A(\mathbf{1})$, индуцированное отображениями $i_k: \mathbf{1} \to \mathbf{n}$ в Γ , $i_k(1) = \{k\} \subset \mathbf{n}$, гомотопическая эквивалентность.
 - $A(\mathbf{1})$ будем называть исходным пространством.

Имеется ковариантный функтор $\Delta \to \Gamma$, переводящий Δ^m в \mathbf{m} и $f: \Delta^m \to \Delta^n$ в $\theta(i) = \{j \in \mathbf{n} \mid f(i-1) < j \leqslant f(i)\}$. Посредством этого функтора можно рассматривать Γ -пространства как симплициальные пространства.

Сегал использует функтор реализации $A \to |A|$ для симплициальных пространств несколько отличный от обычного (см. [8, приложение A]). Если $A - \Gamma$ -пространство, его реализация — это реализация симплициального пространства, которое оно определяет.

Определение. Если $A - \Gamma$ -пространство, его классифицирующее пространство — это Γ -пространство BA такое, что для всякого конечного множества S, BA(S) — реализация Γ -пространства $T \mapsto A(S \times T)$.

Если $A - \Gamma$ -пространство, пространства $A(\mathbf{1}), BA(\mathbf{1}), B^2A(\mathbf{1}), \dots$ образуют спектр, который мы обозначим через $\mathbf{B}A$. Соображение, по которому мы вводим Γ -пространства, — такое, что они естественно возникают из категорий.

Определение. Γ -*категория* — это контравариантный функтор $\mathcal C$ из Γ в категории такой, что

- (a) C(0) эквивалентна категории с одним объектом и одним морфизмом;
- (b) для любого n функтор $p_n: \mathcal{C}(\mathbf{n}) \to \mathcal{C}(\mathbf{1}) \times \stackrel{n}{\cdots} \times \mathcal{C}(\mathbf{1})$, индуцированный отображениями $i_k: \mathbf{1} \to \mathbf{n}$ в Γ , эквивалентность категорий.

Если $\mathcal{C}-\Gamma$ -категория, $|\mathcal{C}|$ является Γ -пространством. Здесь $|\mathcal{C}|$ означает функтор $S\mapsto |\mathcal{C}(S)|$.

 Γ -категории возникают следующим образом. Пусть \mathcal{C} — категория с суммами и нуль-объектом 0. Если S — конечное множество, через $\mathcal{P}(S)$ обозначим категорию подмножеств S и их включений — это не должно приводить к разночтениям с прежним употреблением $\mathcal{P}(S)$. Пусть $\mathcal{C}(S)$ —

категория, чьи объекты суть функторы из $\mathcal{P}(S)$, которые переводят дизъюнктные объединения в суммы. Морфизмы из Γ были определены таким образом, что морфизмы $S \to T$ в Γ в точности соответствуют функторам из $\mathcal{P}(S)$ в $\mathcal{P}(T)$, сохраняющим дизъюнктные объеденения. Тогда категория $i\mathcal{C}(S)$ изоморфизмов в $\mathcal{C}(S)$ удовлетворяет определению, приведенному выше.

Приспосабливаясь к терминологии и обозначениям [9, часть 1.8], полученную симплициальную категорию обозначим через $N.\mathcal{C}$. По определению, $N_0\mathcal{C}=0$ и $N_n\mathcal{C}=\mathcal{C}(\mathbf{n})$ для $n\geqslant 1$. Симплициальную категорию $N.\mathcal{C}$ называем нервом относительно закона композиции. По построению, пространство $|i.N.\mathcal{C}|$ — это $B|i.\mathcal{C}|(\mathbf{1})$. Обозначим через $N.\mathbf{B}$ нерв относительно закона композиции ассоциированный с категорией \mathbf{B}_0 .

Заметим, что всякий функтор $f: \mathcal{C} \to \mathcal{D}$, сохраняющий суммы, задает отображения бисимплициальных объектов $f^*: i.N.\mathcal{C} \to i.N.\mathcal{D}$. Если нам дана левая система диаграммных категорий или левый выделенный дериватор \mathbf{B} , мы можем построить мультисимплициальные категории $iN.^mS.^n\mathbf{B}$, $m,n \geqslant 0$, и пространства $|i.N.^mS.^n\mathbf{B}|$ путем итерации N.- и S.-конструкций.

Предложение 5.1. $|i.S.\mathbf{B}|$ — канонически бесконечнократное пространство петель, а значит, и пространство K-теории $K(\mathbf{B})$.

Доказательство. Приведенные выше рассуждения показывают, что $|i.S.\mathbf{B}|$ является исходным пространством Γ -пространства относительно закона композиции, полученного из копроизведения. •

Рассмотрим точный справа функтор $F: \mathbf{A} \to \mathbf{B}$ между левыми системами диаграммных категорий или левыми выделенными дериваторами соответственно. Обозначим через $N_n(\mathbf{A} \to \mathbf{B})$ расслоенное произведение диаграммы

$$N_n \mathbf{A} \xrightarrow{F} N_n \mathbf{B} \xleftarrow{\partial_0} (PN.\mathbf{B})_n = N_{n+1} \mathbf{B}.$$

Объект из $N_n({\bf A}\to {\bf B})$ — это тройка (A,c,B), где $A\in N_n{\bf A}$, $B\in N_{n+1}{\bf B}$, $c:F(A)\to\partial_0(B)$ — изоморфизм в $N_n{\bf B}$. Получаем симплициальную категорию

$$N.(\mathbf{A} \to \mathbf{B}) : \Delta^n \mapsto N_n(\mathbf{A} \to \mathbf{B}).$$

Для любого n существует функтор

$$g: \mathbf{B}_0 = N_1 \mathbf{B} \to N_n (\mathbf{A} \to \mathbf{B}),$$

определенный как $B\mapsto (0,1,v^*B)$, где $v:\Delta^{n+1}\to \Delta^1,\ i\mapsto 0,$ если i=0, и $i\mapsto 1,$ в противном случае.

Рассматривая ${f B}_0$ как тривиальную симплициальную категорию, получим последовательность

$$\mathbf{B}_0 \xrightarrow{g} N.(\mathbf{A} \to \mathbf{B}) \xrightarrow{p} N.\mathbf{A},$$

в которой p — проекция. Она задает последовательность

$$i.S.\mathbf{B} \xrightarrow{g} i.N.S.(\mathbf{A} \to \mathbf{B}) \xrightarrow{p} i.N.S.\mathbf{A},$$
 (8)

где $N.S.({f A} \to {f B}) = N.(S.{f A} \to S.{f B})$. Заметим, что пространство $|i.N.S.{f A}|$ — это $B|i.S.{f A}|({f 1})$, где $B|i.S.{f A}|$ — это Γ -пространство ассоциированное с $|i.S.{f A}|$.

Лемма 5.2. Последовательность (8) является гомотопически расслоенной.

Доказательство. По лемме 4.2 достаточно проверить, что для любого n последовательность $i.S.\mathbf{B} \longrightarrow i.N_nS.(\mathbf{A} \to \mathbf{B}) \longrightarrow i.N_nS.\mathbf{A}$ является гомотопически расслоенной, так как базовое пространство $i.N_nS.\mathbf{A} = i.\operatorname{Hom}(\mathcal{P}(\mathbf{n}),S.\mathbf{A}) \simeq (i.S.\mathbf{A})^n$ связно для любого n по лемме 3.3. Мы по-кажем, что эта последовательность — гомотопически то же самое, что и тривиальное расслоение ассоциированное с произведением $i.S.\mathbf{B} \times i.N_nS.\mathbf{A}$.

Пусть $u:\Delta^1\to\Delta^{n+1}$ — морфизм $0;1\mapsto 0;1.$ Рассмотрим также морфизмы $d_0:\Delta^n\to\Delta^{n+1}$ и $s_0:\Delta^{n+1}\to\Delta^n.$ Для каждого $B\in N_{n+1}{\bf B}$ построим следующую диаграмму:

$$B' = v^* u^* B \xrightarrow{\varphi} B \xleftarrow{\psi} B'' = s_0^* \partial_0 B.$$

Для каждого подмножества $S \subseteq [\mathbf{n} + \mathbf{1}]$

$$B_S' = \begin{cases} B_1, & 1 \in S, \\ 0, & 1 \notin S \end{cases}$$

И

$$B_S'' = \begin{cases} B_{S \setminus \{1\}}, & 1 \in S, \\ B_S, & 1 \notin S, \end{cases}$$

откуда следуют определения φ и ψ . Заметим, что $B_S' \xrightarrow{\varphi_S} B_S \xleftarrow{\psi_S} B_S''$ принадлежит $N_2\mathbf{B}$.

Функтор $N_n({f A} o {f B}) o N_n{f A} imes {f B}_0, \ (A,c,B) \mapsto (A,B_{\{1\}})$ является эквивалентностью категорий. Квазиобратный функтор задается как

$$(A,B) \mapsto (A,1,s_0^*FA \coprod v^*B).$$

Тогда индуцированное отображение $i.N_nS.(\mathbf{A} \to \mathbf{B}) \to i.N_nS.\mathbf{A} \times i.S.\mathbf{B}$ — гомотопическая эквивалентность по лемме 4.1.

Эта гомотопическая эквивалентность вкладывается в следующую коммутативную диаграмму:

Будучи гомотопически эквивалентно тривиальному расслоению (нижняя строка диаграммы), заключаем, что верхняя последовательность является гомотопически расслоенной, что и требовалось доказать. •

Как и выше, можно построить последовательность

$$i.\mathbf{B}_0 \to P(i.N.\mathbf{B}) \to i.N.\mathbf{B}.$$

Композиция является постоянным отображением, и средняя компонента стягиваема, так что получаем отображение, корректно определенное с точностью до гомотопии,

$$|i.\mathbf{B}_0| \to \Omega |i.N.\mathbf{B}|.$$

Заменяя ${\bf B}$ симплициальной категорией $S.{\bf B}$, получаем последовательность

$$i.S.\mathbf{B} \to P(i.N.S.\mathbf{B}) \to i.N.S.\mathbf{B},$$

где "P" относится к N.-направлению. По предыдущей лемме эта последовательность является гомотопически расслоенной. Тогда $|i.S.\mathbf{B}| \to \Omega |i.N.S.\mathbf{B}|$ — гомотопическая эквивалентность, и более общо поэтому ввиду леммы 4.1 отображение $|i.N.^nS.\mathbf{B}| \to \Omega |i.N.^{n+1}S.\mathbf{B}|$ также гомотопическая эквивалентность. Получаем спектр

$$n \mapsto |i.N.^n S.\mathbf{B}|,$$

который является Ω -спектром. Он не что иное, как спектр $n \mapsto B^n | i.S.\mathbf{B} | (\mathbf{1})$, полученный по машине Сегала.

Поскольку в последовательности

$$|i.S.\mathbf{B}| \to \Omega |i.N.S.\mathbf{B}| \to \Omega \Omega |i.N.N.S.\mathbf{B}| \to \cdots$$

все отображения — гомотопические эквивалентности, то также и отображение

$$|i.S.\mathbf{B}| \to \Omega^{\infty} |i.N.^{\infty}S.\mathbf{B}| = \lim_n \Omega^n |i.N.^nS.\mathbf{B}|.$$

Следствие 5.3. Пусть $A \to B \to C$ — последовательность точных справа морфизмов левых систем диаграммных категорий или левых выделенных дериваторов соответственно. Тогда квадрат

$$i.S.\mathbf{B} \longrightarrow i.N.S.(\mathbf{A} \to \mathbf{B})$$

$$\downarrow \qquad \qquad \downarrow$$

$$i.S.\mathbf{C} \longrightarrow i.N.S.(\mathbf{A} \to \mathbf{C})$$

является гомотопически декартовым.

Доказательство. Имеется коммутативная диаграмма

$$i.S.\mathbf{B} \longrightarrow i.N.S.(\mathbf{A} \to \mathbf{B}) \longrightarrow i.N.S.\mathbf{A}$$

$$\downarrow \qquad \qquad \downarrow \text{id}$$
 $i.S.\mathbf{C} \longrightarrow i.N.S.(\mathbf{A} \to \mathbf{C}) \longrightarrow i.N.S.\mathbf{A},$

в которой строки суть гомотопически расслоенные последовательности по лемме 5.2. Поэтому левый квадрат является гомотопически декартовым. •

Следствие 5.4. Справедливы следующие два утверждения.

(1) C каждым точным справа морфизмом ассоциируется гомотопически расслоенная последовательность

$$i.S.\mathbf{B} \rightarrow i.S.\mathbf{C} \rightarrow i.N.S.(\mathbf{B} \rightarrow \mathbf{C}).$$

(2) Если ${f C}$ — ретракт ${f B}$ (по точным справа функторам), имеется расщепление

$$i.S.\mathbf{B} \simeq i.S.\mathbf{C} \times i.N.S.(\mathbf{C} \to \mathbf{B}).$$

Доказательство. (1). Если $\mathbf{A} = \mathbf{B}$, пространство $|i.N.S.(\mathbf{A} = \mathbf{A})|$ стягиваемо, откуда следует первое утверждение.

(2). Так как композиция ${\bf A} \to {\bf B} \to {\bf C}$ тождественна, то $i.N.S.({\bf A} \to {\bf C})$ стягиваемо, и тогда (2) следует из следствия 5.3. •

§6. Теорема аддитивности

Пусть ${\bf B}-$ либо левая система диаграммных категорий, либо левый выделенный дериватор и пусть ${\bf E}_0-$ полная подкатегория в ${\bf B}_\square$, состоящая из кодекартовых квадратов $B\in {\bf B}_\square$ таких, что $B_{(1,0)}$ изоморфен нулю. Если заменить ${\bf B}$ на ${\bf B}(I)$, определение категории ${\bf E}_I$ аналогично ${\bf E}_0$. Получаем левую систему диаграммных категорий либо левый выделенный дериватор ${\bf E}$ соответственно.

Лемма 6.1. Морфизм $l:\Delta^1\to\Box$, $i\mapsto(0,i)$, индуцирует эквивалентность категорий $l^*:\mathbf{E}_0\to\mathbf{B}_{\Delta^1}$, а также точную справа эквивалентность $\mathbf{E}\to\mathbf{B}(\Delta^1)$.

Доказательство. Морфизм l факторизуется как $\Delta^1 \stackrel{g}{\longrightarrow} \Gamma \stackrel{h}{\longrightarrow} \square$. Доказательство предложения 3.1 показывает, что $l^*: \mathbf{E}_0 \to \mathbf{B}_{\Delta^1}$ — эквивалентность (для левых выделенных дериваторов следует использовать тот факт, что g — открытая иммерсия). Ясно, что индуцированный морфизм $\mathbf{E} \to \mathbf{B}(\Delta^1)$ — эквивалентность. Он точен справа по предложениям 1.8 и 2.4. •

Следствие 6.2. Морфизм $f: \Box \to \operatorname{Ar} \Delta^2$, $(i,j) \mapsto (i,j+1)$, индуцирует эквивалентность категорий $f^*: S_2\mathbf{B} \to \mathbf{E}_0$, а также точную справа эквивалентность $\mathbf{S}_2\mathbf{B} \longrightarrow \mathbf{E}$.

Доказательство. Пусть $\ell: \Delta^1 \to \operatorname{Ar} \Delta^2 - \operatorname{морфизм} i \mapsto (0, i+1)$. Он факторизуется как $\Delta^1 \stackrel{l}{\longrightarrow} \Box \stackrel{f}{\longrightarrow} \operatorname{Ar} \Delta^2$, где l — морфизм леммы 6.1. По предложению $3.1 \ \ell^* = l^* f^* : \mathbf{S}_2 \mathbf{B} \to \mathbf{B}_{\Delta^1}$ — эквивалентность. По лемме 6.1 l^* — эквивалентность, а значит, и f^* .

Лемма 6.3. Пусть \mathbf{B} — либо левая система диаграммных категорий, либо левый выделенный дериватор, и пусть $B \in \mathbf{B}_{\square}$ — кодекартов квадрат такой, что морфизм $B_{(0,0)} \to B_{(0,1)}$ (соответственно морфизм $B_{(0,0)} \to B_{(1,0)}$) — изоморфизм. Тогда $B_{(1,0)} \to B_{(1,1)}$ (соответственно $B_{(0,1)} \to B_{(1,1)}$) — также изоморфизм. С другой стороны, квадрат, у которого две параллельные стрелки — изоморфизмы, является кодекартовым.

Доказательство. Пусть морфизм $B_{(0,0)} \to B_{(0,1)}$ — изоморфизм. Рассмотрим функтор $q: \Box \to \Delta^1$, $(\varepsilon, \eta) \mapsto \varepsilon$, и пусть $i: \Delta^1 \to \Box$ — функтор $\varkappa \mapsto (\varkappa, 0)$. Тогда i сопряжен слева к q, значит, $i_! \simeq q^*$. Морфизм i факторизуется как

$$\Delta^1 \xrightarrow{l} \Gamma \xrightarrow{i_{\Gamma}} \Box,$$

 $l(\varkappa)=(\varkappa,0)$. По предложениям 1.9 и 2.5 объект $i_!i^*B\simeq i_{\mathtt{r}!}(l_!i^*B)$ кодекартов

Пусть $\beta:(i_!i^*B\simeq)q^*i^*B\to B$ — морфизм сопряженности. Тогда $\beta_{(0,0)}=\beta_{(1,0)}=1,\ \beta_{(0,1)}$ — изоморфизм по предположению и $i_r^*\beta$ — изоморфизм.

Рассмотрим коммутативный квадрат

$$i_{r}!i_{r}^{*}i_{!}i^{*}B \xrightarrow{i_{r}!i_{r}^{*}\beta} i_{r}!i_{r}^{*}B$$

$$\downarrow \qquad \qquad \downarrow$$

$$i_{!}i^{*}B \xrightarrow{\beta} B.$$

Верхняя стрелка — изоморфизм. Вертикальные стрелки — также изоморфизмы, так как B и $i_!i^*B$ кодекартовы. Тогда β — также изоморфизм, а значит, и $B_{(1,0)} \to B_{(1,1)} \simeq \beta_{(1,1)}$ — изоморфизм. Соответствующее утверждение, когда $B_{(0,0)} \to B_{(1,0)}$ — изоморфизм, выводится из первого применением автоэквивалентности $\tau: \square \to \square$, переставляющей вершины (1,0) и (0,1).

С другой стороны, если $B_{(0,0)} \to B_{(0,1)}$ и $B_{(1,0)} \to B_{(1,1)}$ — изоморфизмы, то $\beta:i_!i^*B \to B$ — изоморфизм. Так как $i_!i^*B$ кодекартов, то B также кодекартов. •

Mы хотим построить функтор $\alpha: \mathbf{B}_0 \to \mathbf{E}_0$, переводящий объект $A \in \mathbf{B}_0$ в объект из \mathbf{E}_0 , и который изображается в \mathbf{B}_0 как квадрат

$$A \xrightarrow{1} A$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow 0.$$

Пусть $s_0:\Delta^1\to 0$ — единственный функтор. Допустим сперва, что \mathbf{B} — левая система диаграммных категорий и $d:\Box^\star\to\Delta^{1\star}$ — морфизм $(0,i)\mapsto i,$ $(1,i)\mapsto\star$. Полагаем тогда $\alpha=d^*s_0^*$. Если \mathbf{B} — левый выделенный дериватор, пусть $l:\Delta^1\to\Box$ — морфизм $i\mapsto (0,i)$. Тогда l — открытая иммерсия, а значит, существует правый сопряженный к l^* функтор l_* . В этом случае $\alpha=l_*s_0^*$.

Пусть $j:\square\to\Delta^1$ — морфизм $(\varepsilon,\eta)\mapsto\eta$. Тогда j^* переводит $B\in\mathbf{B}_{\Delta^1}$ в квадрат из \mathbf{B}_\square , который изображается в \mathbf{B}_0 как

$$B_0 \longrightarrow B_1$$

$$\downarrow 1$$

$$B_0 \longrightarrow B_1.$$

Пусть ${\bf B}-$ левая система диаграммных категорий и пусть $u:\Delta^{1\star}\to 0^\star-$ морфизм $0\mapsto \star,\ 1\mapsto 0.$ Тогда u^* переводит объект $B\in {\bf B}_0$ в объект из ${\bf B}_{\Delta^1}$, имеющий $u^*B_0=0$ и $u^*B_1=B.$ Полагаем $\beta=j^*u^*.$ В свою очередь, если ${\bf B}-$ левый выделенный дериватор, рассмотрим морфизм $v:0\to\Delta^1$,

v(0)=1. Тогда $v_!B_0=0$ и $v_!B_1=B$ для любого $B\in {f B}_0$. В этом случае $\beta:=j^*v_!$.

 β переводит объект $B \in \mathbf{B}_0$ в квадрат

$$0 \longrightarrow B$$

$$\downarrow 1$$

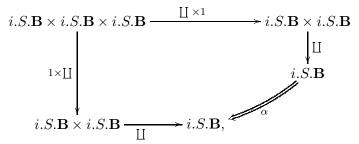
$$0 \longrightarrow B.$$

Пусть ${\bf B}-$ либо левая система диаграммных категорий, либо левый выделенный дериватор, ${\bf B}'$ и ${\bf B}''-$ либо две левые подсистемы диаграммных категорий, либо два левых выделенных поддериватора соответственно такие, что морфизмы включения точны справа. Имеется три естественных точных справа морфизма $s,t,q:{\bf E}\to{\bf B}$, переводящие объект $E\in{\bf E}_?$ в $E_{(0,0)},\,E_{(0,1)}$ и $E_{(1,1)}$ соответственно. Определим предсистему диаграммных категорий либо предериватор ${\bf E}({\bf B}',{\bf B},{\bf B}'')=\{E\in{\bf E}\mid E_{(0,0)}\in{\bf B}',E_{(1,1)}\in{\bf B}''\}$. Тогда ${\bf E}({\bf B}',{\bf B},{\bf B}'')$ — левая система диаграммных категорий, либо левый выделенный дериватор соответственно, ибо ${\bf E}({\bf B}',{\bf B},{\bf B}'')$ эвивалентна расслоенному произведению диаграммы ${\bf E}\xrightarrow{(s,q)}{\bf B}\times{\bf B}\longleftarrow{\bf B}'\times{\bf B}''$. Заметим, что ${\bf E}={\bf E}({\bf B},{\bf B},{\bf B})$.

Чтобы получить унитарную, ассоциативную структуру H-пространства для $|i.S.\mathbf{B}|$, индуцированную копроизведением \coprod посредством отображения

$$|i.S.\mathbf{B}| \times |i.S.\mathbf{B}| \xrightarrow{\sim} |i.S.\mathbf{B} \times i.S.\mathbf{B}| \xrightarrow{\coprod} |i.S.\mathbf{B}|,$$

мы должны иметь хороший выбор для $A\coprod B$, $A,B\in S_n\mathbf{B}$, такой, что $f^*(A\coprod B)=f^*(A)\coprod f^*(B)$, где $f:\Delta^m\to\Delta^n$ — структурный морфизм в Δ (мы всегда имеем изоморфизм между ними, так как f^* сохраняет копроизведения по лемме 3.2). Мы бы имели затем симплициальную эквивалентность $\coprod (\coprod \times 1)\simeq \coprod (1\times \coprod)$



которая индуцирует гомотопию между ними, переходя к реализации. Также следовало бы, что два отображения $i.S.\mathbf{B} \to i.S.\mathbf{B},\ B \mapsto B \coprod 0$ и $B \mapsto 0 \coprod B$, гомотопны единице, и тогда $|i.S.\mathbf{B}|$ унитарно. По-видимому, у нас

нет достаточно данных в общем случае для такого выбора копроизведений. Эту ситуацию будем называть $namonoeuuecko \ddot{u}$. Этот термин обусловлен тем наблюдением, что мы всегда имеем требуемый выбор на практике. В самом деле, все левые системы диаграммных категорий и левые выделенные дериваторы возникают на практике как гиперфунктор $I \mapsto \operatorname{Ho} \mathcal{C}^I$, в котором $\mathcal C$ замкнута относительно копроизведений. Тогда необходимый выбор производится в $\mathcal C$.

Обозначения. Всюду далее в этом параграфе предполагается, что ${\bf B}$ не является патологической.

Точная справа последовательность $F' \to F \to F''$ точных справа функторов $\mathbf{B}' \to \mathbf{B}$ — это точный справа функтор $G: \mathbf{B}' \to \mathbf{E} = \mathbf{E}(\mathbf{B}, \mathbf{B}, \mathbf{B})$ такой, что $F' = s \circ G, \ F = t \circ G$ и $F'' = q \circ G$.

Предложение 6.4 (эквивалентные формулировки теоремы аддитивности). *Каждое из следующих условий влечет оставшиеся три*.

(1) Проекция

$$i.S.\mathbf{E}(\mathbf{B}', \mathbf{B}, \mathbf{B}'') \rightarrow i.S.\mathbf{B}' \times i.S.\mathbf{B}'', \quad E \mapsto (E_{(0,0)}, E_{(1,1)})$$

является гомотопической эквивалентностью.

(2) Проекция

$$i.S.\mathbf{E} \to i.S.\mathbf{B} \times i.S.\mathbf{B}, \quad E \mapsto (E_{(0,0)}, E_{(1,1)})$$

является гомотопической эквивалентностью.

(3) Следующие два отображения гомотопны:

$$i.S.\mathbf{E} \to i.S.\mathbf{B}, \ E \mapsto E_{(0,1)}, \ coomsemcmsehho \ E \mapsto E_{(0,0)} \coprod E_{(1,1)}.$$

(4) Если $F' \to F \to F''$ — точная справа последовательность точных справа функторов ${f B}' \to {f B}$, имеется гомотопия

$$|i.S.F| \simeq |i.S.F'| \vee |i.S.F''|.$$

Доказательство. (2) — это специальный случай (1), (3) — специальный случай (4), и (4) следует из (3) естественным образом.

Итак, достаточно показать $(2) \Longrightarrow (3)$ и $(4) \Longrightarrow (1)$.

 $(2)\Longrightarrow (3).$ Искомая гомотопия $|i.S.t|\simeq |i.S.(s\vee q)|$ получается из ограничения вдоль отображения

$$|i.S.\mathbf{B}| \times |i.S.\mathbf{B}| \longrightarrow |i.S.\mathbf{E}|, \quad (A,B) \mapsto \alpha A \prod \beta B.$$

Поэтому достаточно показать, что это отображение является гомотопической эквивалентностью. Но оно сечение отображения (2), а значит, является гомотопической эквивалентностью, если таковым является (2).

 $(4)\Longrightarrow (1)$. Рассмотрим сначала морфизмы $l:\Delta^1\to\Box,\ arkappa\mapsto (arkappa,0),\$ и $q:\Box\to\Delta^1,\ (arepsilon,\eta)\mapsto arepsilon.$ Обозначим через $\mathbf{E}_?'=\{q^*l^*E\mid E\in\mathbf{E}(\mathbf{B}',\mathbf{B},\mathbf{B}'')_?\}.$ Если $E\in\mathbf{E}(\mathbf{B}',\mathbf{B},\mathbf{B}'')_0,$ объект q^*l^*E изображается в \mathbf{B}_0 как

$$E_{(0,0)} \xrightarrow{1} E_{(0,0)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$O \xrightarrow{1} O,$$

где $O = E_{(1,0)}$ — нуль-объект.

Также пусть $i: \Delta^1 \to \square$, $\varkappa \mapsto (1, \varkappa)$ и $j: \square \to \Delta^1$, $(\varepsilon, \eta) \mapsto \eta$. Обозначим через $\mathbf{E}_?'' = \{j^*i^*E \mid E \in \mathbf{E}(\mathbf{B}', \mathbf{B}, \mathbf{B}'')_?\}$. Если $E \in \mathbf{E}(\mathbf{B}', \mathbf{B}, \mathbf{B}'')_0$, объект j^*i^*E изображается в \mathbf{B}_0 как

$$\begin{array}{ccc}
O & \longrightarrow & E_{(1,1)} \\
\downarrow^{1} & & \downarrow^{1} \\
O & \longrightarrow & E_{(1,1)}.
\end{array}$$

Мы построим такой точный справа морфизм

$$E \in \mathbf{E}(\mathbf{B}', \mathbf{B}, \mathbf{B}'')_? \mapsto E^2 \in \mathbf{E}(\mathbf{E}', \mathbf{E}, \mathbf{E}'')_?,$$

что E^2 изображается в ${f E}_0$ следующим образом:

$$E' \longrightarrow E$$

$$\downarrow \qquad \qquad \downarrow$$

$$O \longrightarrow E''.$$

Пренебрегая объектом $(1,0)\in\Box$, E^2 изображается в ${f B}_0$ как

Тогда из нашего предположения будет следовать, что

$$i.S.\mathbf{E}(\mathbf{B}', \mathbf{B}, \mathbf{B}'') \rightarrow i.S.\mathbf{E}' \times i.S.\mathbf{E}'', \quad E \mapsto (q^*l^*E, j^*i^*E)$$

— гомотопическая эквивалентность с сечением $(E',E'')\mapsto E'\coprod E''$. Построим E^2 следующим образом. Рассмотрим два морфизма $\varphi,\psi:\Box\to\Delta^1$,

определенные по правилам

$$(0,0), (0,1), (1,0) \stackrel{\varphi}{\mapsto} 0, \quad (1,1) \stackrel{\varphi}{\mapsto} 1$$

И

$$(0,0) \stackrel{\psi}{\mapsto} 0, \quad (0,1), (1,0), (1,1) \stackrel{\psi}{\mapsto} 1.$$

Функторы φ^* и ψ^* переводят каждый $A \in \mathbf{B}_{\Delta^1}$ в квадраты, изображенные в \mathbf{B}_0 как

$$A_0 \xrightarrow{1} A_0$$

$$\downarrow \downarrow \qquad \qquad \downarrow$$

$$A_0 \longrightarrow A_1$$

$$A_0 \longrightarrow A_1$$

$$\downarrow \qquad \qquad \downarrow 1$$

$$A_1 \xrightarrow{1} A_1$$

И

соответственно.

Объект $E\in \mathbf{E}(\mathbf{B}',\mathbf{B},\mathbf{B}'')_0$ может быть рассмотрен как объект в $\mathbf{B}(\Delta^1)_{\Delta^1}$, который принимает значения $E_{(0,0)}\to O$ в 0 и $E_{(0,1)}\to E_{(1,1)}$ в 1. Вложим E в кодекартов квадрат $E^1=(1_{\Delta^1}\times\varphi)^*E$ в $\mathbf{B}(\Delta^1)_\square$. Изображая E^1 подходящим образом, получим следующую диаграмму в \mathbf{B}_0 :

$$E_{(0,0)} \xrightarrow{P} O$$

$$\downarrow E_{(0,0)} \xrightarrow{P} O \downarrow$$

$$\downarrow E_{(0,1)} \xrightarrow{P} E_{(1,1)}$$

$$E_{(0,0)} \xrightarrow{P} O.$$

 E^1 может быть рассмотрен как объект в ${\bf B}(\square)_{\Delta^1}$, который принимает значения левого квадрата в изображенном кубе в 0 и правого квадрата в 1. Вложим E^1 в кодекартов квадрат $E^2=(\psi\times 1_\square)^*E^1$ в ${\bf B}(\square)_\square$. Построение E^2 завершено. Тогда $E\in {\bf E}({\bf B}',{\bf B},{\bf B}'')_?\mapsto E^2\in {\bf E}({\bf E}',{\bf E},{\bf E}'')_?$ индуцирован $(\psi\times 1_\square)^*(1_{\Delta^1}\times \varphi)^*$.

Остается показать, что отображения $f:E\in \mathbf{E}_{?}'\mapsto E_{(0,0)}\in \mathbf{B}_{?}$ и $g:E\in \mathbf{E}_{?}''\mapsto E_{(1,1)}\in \mathbf{B}_{?}$ индуцируют гомотопическую эквивалентность

$$i.S.\mathbf{E}' \times i.S.\mathbf{E}'' \xrightarrow{(f,g)} i.S.\mathbf{B}' \times i.S.\mathbf{B}'',$$

так как $p:i.S.\mathbf{E}(\mathbf{B}',\mathbf{B},\mathbf{B}'') \to i.S.\mathbf{B}' \times i.S.\mathbf{B}'', E \mapsto (E_{(0,0)},E_{(1,1)}),$ — это композиция

$$i.S.\mathbf{E}(\mathbf{B}', \mathbf{B}, \mathbf{B}'') \xrightarrow{(q^*l^*, j^*i^*)} i.S.\mathbf{E}' \times i.S.\mathbf{E}'' \xrightarrow{(f,g)} i.S.\mathbf{B}' \times i.S.\mathbf{B}'',$$

и левая стрелка — гомотопическая эквивалентность (см. выше).

Пусть $\bar{\mathbf{B}}_?=\{X\in\mathbf{B}_{\Delta^1\times?}\mid X_1\simeq 0\}$. Тогда $\bar{\mathbf{B}}$ и \mathbf{E}' изоморфны, так как $l^*q^*=1_{\bar{\mathbf{B}}}$ и $q^*l^*q^*l^*|_{\mathbf{E}'}=1_{\mathbf{E}'}$. Аналогично пусть $\bar{\bar{\mathbf{B}}}_?=\{X\in\mathbf{B}_{\Delta^1\times?}\mid X_0\simeq 0\}$. Тогда $\bar{\bar{\mathbf{B}}}$ и \mathbf{E}'' изоморфны, так как $i^*j^*=1_{\bar{\mathbf{B}}}$ и $j^*i^*j^*i^*|_{\mathbf{E}''}=1_{\mathbf{E}''}$.

Наконец, доказательство предложения 3.1 показывает, что морфизм $\bar{\mathbf{B}} \to \mathbf{B}'$, индуцированный морфизмом $0 \mapsto 0 \in \Delta^1$, — эквивалентность, так же как и морфизм $\bar{\mathbf{B}} \to \mathbf{B}''$, индуцированный морфизмом $0 \mapsto 1 \in \Delta^1$. Доказательство завершено. •

Пусть X — симплициальный объект и $PX \to X$ — проекция, индуцированная морфизмом грани $\partial_0: X_{n+1} \to X_n$. Если рассмотреть X_1 как симплициальный объект, имеется включение $X_1 \to PX$, приводящее к последовательности $X_1 \to PX \to X$.

В частности, получаем последовательность $i.S_1{f B} \to P(i.S.{f B}) \to i.S.{f B},$ которая ввиду эквивалентности $i.S_1{f B}$ и $i.{f B}_0$ может быть записана как

$$i.\mathbf{B}_0 \xrightarrow{G} P(i.S.\mathbf{B}) \xrightarrow{\partial_0} i.S.\mathbf{B}.$$

Покажем явно, как устроен G. Пусть $\ell^*: S_1\mathbf{B} \to \mathbf{B}_0$ — эквивалентность из предложения 3.1. Квазиобратный к ℓ^* строится следующим образом. Рассмотрим открытую иммерсию $e: 0 \mapsto 0 \in \Delta^1$. Если \mathbf{B} — левая система диаграммных категорий и $k: \Delta^1 \to 0$ — морфизм $0; 1 \mapsto 0; \star$, то $(k^*B)_0 = B$ и $(k^*B)_1 = 0$ для любого $B \in \mathbf{B}_0$. В свою очередь, если \mathbf{B} — левый выделенный дериватор, то $(e_*B)_0 = B$ и $(e_*B)_1 = 0$.

Далее, пусть $p:\Delta^1\to \operatorname{Ar}\Delta^1$ — замкнутая иммерсия $i\mapsto (i,1),\ r:\operatorname{Ar}\Delta^{1\star}\to\Delta^{1\star},$ — морфизм $(0,0)\mapsto\star,(0;1,1)\mapsto 0;1,$ и $B\in\mathbf{B}_0.$ Если \mathbf{B} — левая система диаграммных категорий, то $(r^*k^*B)_{(0,0)}=(r^*k^*B)_{(1,1)}=0$ и $(r^*k^*B)_{(0,1)}=B.$ Положим $g=r^*k^*.$ Если \mathbf{B} — левый выделенный дериватор, то $(p_!e_*B)_{(0,0)}=(p_!e_*B)_{(1,1)}=0$ и $(p_!e_*B)_{(0,1)}=B.$ В этом случае $g:=p_!e_*.$

Рассмотрим также морфизм $v: \Delta^{n+1} \to \Delta^1, \ 0 \mapsto 0$ и $i \mapsto 1$ для $i \geqslant 1$. Положим $G = v^*g: \mathbf{B}_0 \to S_{n+1}\mathbf{B}$. Тогда "значения" GB в каждом $(i,j) \in \mathrm{Ar}\,\Delta^{n+1}$ суть $GB_{(i,j)} = 0$, если (i,j) = (0,0) и $i \geqslant 1$, и $GB_{(0,j)} = B$ для $j \geqslant 1$. Рассматривая \mathbf{B}_0 как тривиальную симплициальную категорию, получаем отображения $G: \mathbf{B}_0 \to PS.\mathbf{B}$ и $G: |i.\mathbf{B}_0| \to |P(i.S.\mathbf{B})|$.

Композиция $|i.\mathbf{B}_0| \stackrel{G}{\longrightarrow} |P(i.S.\mathbf{B})| \rightarrow |i.S.\mathbf{B}|$ является постоянным отображением, и $|P(i.S.\mathbf{B})|$ стягиваемо, так как гомотопически эквивалентно

стягиваемому пространству $|i.S_0\mathbf{B}|$. Поэтому получаем отображение, корректно определенное с точностью до гомотопии,

$$|i.\mathbf{B}_0| \to \Omega |i.S.\mathbf{B}|.$$

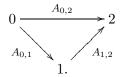
Мы приведем пару полезных наблюдений, принадлежащих Вальдхаузену [9, с. 332].

Наблюдение. Следующие две композиции гомотопны:

$$|i.\mathbf{E}_0| \xrightarrow[s\vee q]{t} |i.\mathbf{B}_0| \longrightarrow \Omega|i.S.\mathbf{B}|.$$

Доказательство. Посмотрим на 2-скелет $|i.S.\mathbf{B}|_{(2)}$ для $|i.S.\mathbf{B}|$ в S.-направлении. Мы можем отождествить $i\mathbf{B}_0$ с $iS_1\mathbf{B}$ и $i\mathbf{E}_0$ с $iS_2\mathbf{B}$.

Отображения грани из $i.S_2\mathbf{B}$ в $i.S_1\mathbf{B}$ соответствуют трем отображениям s,t,q соответственно, каждое из которых представлено в диаграмме



Рассмотрим каноническое отображение $|i.S_2\mathbf{B}| \times |\Delta^2| \to |i.S.\mathbf{B}|_{(2)}$. Рассматривая 2-симплекс $|\Delta^2|$ как гомотопию из ребра (0,2) в ребро пути (0,1)(1,2), получим гомотопию из jt

$$|i.\mathbf{E}_0| \xrightarrow{t} |i.\mathbf{B}_0| \xrightarrow{j} \Omega |i.S.\mathbf{B}|_{(2)}$$

в произведение петель двух композиций js и jq. Но в H-пространстве $\Omega|i.S.\mathbf{B}|$ произведение петель гомотопно закону композиции, откуда следует наше наблюдение. \bullet

Те же рассуждения влекут более общо такое

Наблюдение. Для любого $n \geqslant 0$ две композиции гомотопны

$$|i.S.^n\mathbf{E}| \xrightarrow[s\vee q]{t} |i.S.^n\mathbf{B}| \longrightarrow \Omega|i.S.^{n+1}\mathbf{B}|.$$

Теорема 6.5. Теорема аддитивности справедлива (т.е. выполнено любое из равносильных условий предложения (6.4)), если определение K-теории как $\Omega|i.S.\mathbf{B}|$ заменить на $\Omega^{\infty}|i.S.^{\infty}\mathbf{B}| = \lim_{n} \Omega^{n}|i.S.^{n}\mathbf{B}|$.

Доказательство. Для начала заметим, что предложение 6.4 является формальным в том смысле, что оно также применимо к новому определению K-теории. По предыдущему наблюдению две композиции гомотопны

$$\Omega^{\infty}|i.S.^{\infty}\mathbf{E}| \xrightarrow[s\vee q]{t} \Omega^{\infty}|i.S.^{\infty}\mathbf{B}| \longrightarrow \Omega^{\infty}|i.S.^{\infty}\mathbf{B}|.$$

Поскольку стрелка справа — изоморфизм, это одно из эквивалентных условий теоремы аддитивности (см. предложение 6.4). •

Замечание. Как следствие из теоремы, мы могли бы добавить еще одну формулировку теоремы аддитивности к списку предложения 6.4 (см. также теорему 6.6). А именно теорема аддитивности, как она там сформулирована, влечет, что отображения $|i.S.^n\mathbf{B}| \to \Omega|i.S.^{n+1}\mathbf{B}|$ — гомотопические эквивалентности для $n \geqslant 1$. Обратно, если эти отображения — гомотопические эквивалентности, то также и $\Omega|i.S.\mathbf{B}| \to \Omega^{\infty}|i.S.^{\infty}\mathbf{B}|$. Поэтому теорема аддитивности следует из предыдущей теоремы.

Пусть $F: \mathbf{A} \to \mathbf{B}$ — точный справа функтор двух левых систем диаграммных категорий или левых выделенных дериваторов. Обозначим через $\mathbf{S}.(F: \mathbf{A} \to \mathbf{B})$ расслоенное произведение диаграммы

$$\mathbf{S.A} \xrightarrow{F} \mathbf{S.B} \xleftarrow{\partial_0} P\mathbf{S.B},$$

где $\partial_0=d_0^*,\ d_0:\Delta^n\to\Delta^{n+1}.$ По предложению 1.3 $\mathbf{S}.(F:\mathbf{A}\to\mathbf{B})$ — симплициальная левая система диаграммных категорий или симплициальный левый выделенный дериватор. Поэтому имеем коммутативный квадрат для каждого n

$$\mathbf{S}_{n}(F: \mathbf{A} \to \mathbf{B}) \xrightarrow{F'} (P\mathbf{S}.\mathbf{B})_{n} = \mathbf{S}_{n+1}\mathbf{B}$$

$$\downarrow \mathbf{S}_{n}\mathbf{A} \xrightarrow{F} \mathbf{S}_{n}\mathbf{B}.$$

По построению мы можем отождествить объект из $\mathbf{S}_n(F:\mathbf{A}\to\mathbf{B})_?$ с тройкой (A,c,B), в которой $A\in\mathbf{S}_n\mathbf{A}_?$, $B\in\mathbf{S}_{n+1}\mathbf{B}_?$ и $FA\overset{c}{\simeq}\partial_0B$ — изоморфизм. Заметим, что все морфизмы в диаграмме точны справа.

Пусть $G: \mathbf{B} \to \mathbf{S}_{n+1}\mathbf{B}$ — морфизм, построенный выше. Тогда $\partial_0 GB = 0$, и G факторизуется как $F' \circ G'$, где $G': \mathbf{B} \to \mathbf{S}_n(F: \mathbf{A} \to \mathbf{B}), B \overset{G'}{\mapsto} (0, 1, GB)$.

Рассматривая ${\bf B}$ как тривиальный симплициальный объект, получим последовательность

$$\mathbf{B} \xrightarrow{G'} \mathbf{S}.(F : \mathbf{A} \to \mathbf{B}) \xrightarrow{p} \mathbf{S}.\mathbf{A},$$
 (9)

в которой композиция тривиальна, а также последовательность, полученную из (9),

$$i.S.\mathbf{B} \longrightarrow i.S.S.(\mathbf{A} \rightarrow \mathbf{B}) \longrightarrow i.S.S.\mathbf{A}.$$

Аналогично имеется последовательность

$$i.S.\mathbf{B} \to P(i.S.S.\mathbf{B}) \to i.S.S.\mathbf{B},$$

где "P" относится, скажем, к первому S.-направлению.

Теорема 6.6. Эквивалентны следующие утверждения:

- (1) выполнена теорема аддитивности (см. предложение (6.4));
- (2) последовательность

$$i.S.\mathbf{B} \longrightarrow i.S.S.(\mathbf{A} \to \mathbf{B}) \longrightarrow i.S.S.\mathbf{A}$$

является гомотопически расслоенной;

(3) последовательность

$$i.S.\mathbf{B} \to P(i.S.S.\mathbf{B}) \to i.S.S.\mathbf{B}$$

является гомотопически расслоенной;

(4) отображение $|i.S.^n \mathbf{B}| \to \Omega |i.S.^{n+1} \mathbf{B}|$ является гомотопической эквивалентностью для любого $n \geqslant 1$.

Если выполнены эквивалентные условия (1)–(4), то спектр $n \mapsto i.S.^n \mathbf{B}$, у которого структурные отображения определены так же, как и $|i.\mathbf{B}_0| \to \Omega|i.S.\mathbf{B}|$ (см. выше), является Ω -спектром, за исключением первой компоненты. Этот спектр является связным (n-я компонента (n-1)-связна). Следовательно, K-теория для \mathbf{B} может быть эквивалентно определена как пространство

$$\Omega^{\infty}|i.S.^{\infty}\mathbf{B}| = \lim_{n} \Omega^{n}|i.S.^{n}\mathbf{B}|.$$

Доказательство. (3) следует из (2). Так как $|P(i.S.S.\mathbf{B})|$ стягиваемо, из (3) следует, что $|i.S.\mathbf{B}| \to \Omega|i.S.S.\mathbf{B}|$ — гомотопическая эквивалентность, а также, более общо, что и $|i.S.^n\mathbf{B}| \to \Omega|i.S.^{n+1}\mathbf{B}|,\ n\geqslant 1,$ — гомотопическая эквивалентность. Итак, (4) следует из (3). По второму наблюдению, следующему за предложением 6.4, гомотопны композиции

$$|i.S.\mathbf{E}| \xrightarrow[S \lor a]{t} |i.S.\mathbf{B}| \longrightarrow \Omega|i.S.S.\mathbf{B}|.$$

Если правое отображение — гомотопическая эквивалентность, то t гомотопно $s \lor q$. Поэтому (4) влечет (1). Остается доказать $(1) \Longrightarrow (2)$.

По лемме 4.2 достаточно показать, что для всякого n последовательность $i.S.\mathbf{B} \longrightarrow i.S.S_n(\mathbf{A} \to \mathbf{B}) \longrightarrow i.S.S_n\mathbf{A}$ является гомотопически расслоенной, так как базовое пространство $i.S.S_n\mathbf{A}$ связно для любого n. Используя теорему аддитивности, мы покажем, что эта последовательность

с точностью до гомотопии то же самое, что и тривиальное расслоение, ассоциированное с произведением $i.S.\mathbf{B} \times i.S.S_n\mathbf{A}$.

Рассмотрим $u:\Delta^1\to\Delta^{n+1},\ 0;1\mapsto 0;1,\ \mathrm{if}\ v:\Delta^{n+1}\to\Delta^1,\ 0\mapsto 0,\ i\mapsto 1,\ \mathrm{ecn}\ i\geqslant 1.$ Тогда u сопряжен слева $\mathrm{if}\ v$. Для простоты обозначений, соответствующие морфизмы $\mathrm{Ar}\ \Delta^1\to\mathrm{Ar}\ \Delta^{n+1}$ $\mathrm{if}\ \mathrm{Ar}\ \Delta^{n+1}\to\mathrm{Ar}\ \Delta^1,\ \mathrm{if}\ \mathrm{$

Пусть $\bar{\mathbf{B}} = \{ \sigma_0 \partial_0 B \mid B \in \mathbf{S}_{n+1} \mathbf{B} \}$, где $\sigma_0 : \mathbf{S}_n \mathbf{B} \to \mathbf{S}_{n+1} \mathbf{B}$ — функтор, индуцированный $s_0 : \operatorname{Ar} \Delta^{n+1} \to \operatorname{Ar} \Delta^n$. Заметим, что σ_0 сопряжен справа к ∂_0 .

Если $m:\Delta^1\times {\rm Ar}\,\Delta^{n+1}\to {\rm Ar}\,\Delta^{n+1}$ — морфизм, переводящий (0,(i,j)) в (uv(i),uv(j)) и (1,(i,j)) в (i,j), то m^* переводит объект $B\in {\bf S}_{n+1}{\bf B}_?$ в объект из ${\bf S}_{n+1}{\bf B}_{\Delta^1\times?}$, который изображается в ${\bf S}_{n+1}{\bf B}_?$ как морфизм сопряженности $v^*u^*B\to B$.

 $ildе{\mathbb{A}}$ алее, пусть $l:\Delta^1 \times \operatorname{Ar} \Delta^{n+1} \to \operatorname{Ar} \Delta^{n+1} - \operatorname{морфизм}$, переводящий (0,(i,j)) в (i,j) и (1,(i,j)) в $(d_0s_0(i),d_0s_0(j))$. Тогда l^* переводит объект $B \in \mathbf{S}_{n+1}\mathbf{B}_2$ в объект из $\mathbf{S}_{n+1}\mathbf{B}_{\Delta^1 \times ?}$. Он принимает значения B в 0 и $\sigma_0\partial_0B$ в 1, и изображается в $\mathbf{S}_{n+1}\mathbf{B}_2$ как морфизм сопряженности $\beta: B \to \sigma_0\partial_0B$.

Ограничение точного справа морфизма $(1_{\Delta^1} \times m)^*l^*: \mathbf{B}(\mathrm{Ar}\,\Delta^{n+1}) \to \mathbf{B}(\square \times \Delta^{n+1})$ на $\mathbf{S}_{n+1}\mathbf{B}$ переводит объект $B \in \mathbf{S}_{n+1}\mathbf{B}_?$ в объект из $\mathbf{E}(\mathrm{Ar}\,\Delta^{n+1})_? \subset \mathbf{B}(\square \times \mathrm{Ar}\,\Delta^{n+1})_?$. Поэтому получаем точный справа функтор

$$T: \mathbf{S}_{n+1}\mathbf{B} \xrightarrow{l^*} \mathbf{S}_{n+1}\mathbf{B}(\Delta^1) \xrightarrow{(1_{\Delta^1} \times m)^*} \mathbf{E}(\operatorname{Ar} \Delta^{n+1})$$

такой, что $t \circ T$ — тождественный морфизм на $\mathbf{S}_{n+1}\mathbf{B}$, и для всякого $B \in \mathbf{S}_{n+1}\mathbf{B}$ имеем $s \circ T(B) \in \bar{\mathbf{B}}$ и $q \circ T(B) \in \bar{\mathbf{B}}$. Тогда T принимает значения в $\mathbf{E}(\bar{\mathbf{B}}, \mathbf{S}_{n+1}\mathbf{B}, \bar{\bar{\mathbf{B}}})$ и на самом деле он функтор

$$T: \mathbf{S}_{n+1}\mathbf{B} \to \mathbf{E}(\bar{\mathbf{B}}, \mathbf{S}_{n+1}\mathbf{B}, \bar{\bar{\mathbf{B}}}).$$

Для иллюстрации приведенной выше процедуры рассмотрим $\mathbf{S}_{n+1}\mathbf{B}$ на некоторое время как "струны" $\mathbf{B}(\Delta^n)$ посредством эквивалентности $\ell^*:\mathbf{S}_{n+1}\mathbf{B}\to\mathbf{B}(\Delta^n)$ из предложения 3.1. Пусть функция $\widetilde{m}:\Delta^1\times\Delta^n\to\Delta^n$ определена как

$$(0,i) \mapsto 0, \quad (1,i) \mapsto i.$$

Тогда индуцированный точный справа морфизм $\widetilde{m}^*: \mathbf{B}(\Delta^n) \to \mathbf{B}(\Delta^1 \times \Delta^n)$ переводит объект $B \in \mathbf{B}(\Delta^n)$? в объект из $\mathbf{B}(\Delta^1 \times \Delta^n)$?, изображенный в

 $\mathbf{B}_{?}$ как

$$B_0 \xrightarrow{1} B_0 \xrightarrow{1} \cdots \xrightarrow{1} B_0$$

$$\downarrow b_1 \qquad \qquad \downarrow b_n \cdots b_1$$

$$B_0 \xrightarrow{b_1} B_1 \xrightarrow{b_2} \cdots \xrightarrow{b_n} B_n.$$

Пусть $k:\Delta^1 \times \Delta^n \to \operatorname{Ar} \Delta^{n+1}$ — морфизм $(i,j) \mapsto (i,j+1), \alpha_j: \square \to \Delta^1 \times \Delta^n$ — морфизм, переводящий (0;1,0) в (0;1,j) и (0;1,1) в (0;1,j+1). Пусть $\mathbf{S}'_{n+1}\mathbf{B}$ — левая подсистема диаграммных категорий или левый выделенный поддериватор в $\mathbf{B}(\Delta^1 \times \Delta^n)$ таких объектов B, что все квадраты α_j^*B , $j \leqslant n$, являются кодекартовыми, и $B_{(1,0)} = O$ — нуль-объект. Тогда легко показать, что морфизмы ограничения $k^*: \mathbf{S}_{n+1}\mathbf{B} \to \mathbf{S}'_{n+1}\mathbf{B}$ и $w^*: \mathbf{S}'_{n+1}\mathbf{B} \to \mathbf{B}(\Delta^n)$, где $w: \Delta^n \to \Delta^1 \times \Delta^n$, $j \mapsto (0,j)$, — эквивалентности.

Ограничение морфизма $(1_{\Delta^1} \times \widetilde{m})^* : \mathbf{B}(\Delta^1 \times \Delta^n) \to \mathbf{B}(\square \times \Delta^n)$ на $\mathbf{S}'_n \mathbf{B}$ переводит объект $B \in \mathbf{S}'_n \mathbf{B}_?$ в объект из $\mathbf{B}(\square \times \Delta^n)_?$, изображенный в $\mathbf{B}_?$ как

Задняя стенка диаграммы — это элемент $B \in \mathbf{S}'_n \mathbf{B}_?$, изображенный в $\mathbf{B}_?$. Мы получаем точный справа морфизм $\widetilde{T} = (1_{\Delta^1} \times \widetilde{m})^* \circ w^{*-1} : \mathbf{B}(\Delta^n) \to \mathbf{E}(\Delta^n)$, так как каждый поперечный x-й квадрат $B_{x,\square}$, $x \leqslant n$, кодекартов.

Вернемся теперь к морфизму T и поднимем его до $\mathbf{S}_n(\mathbf{A} \to \mathbf{B})$. А именно мы посылаем объект $(A,c,B) \in \mathbf{S}_n(\mathbf{A} \to \mathbf{B})$? в $(\partial_0 T \sigma_0 A, \partial_0 T \sigma_0 (c), TB) \in \mathbf{E}(\mathbf{S}_n(\mathbf{A} \to \mathbf{B}))$?. Мы используем коммутативную диаграмму

чтобы показать, что $F\partial_0 T\sigma_0 A=\partial_0 T\sigma_0 FA$. Соотношение $\partial_0 TB=\partial_0 T\sigma_0\partial_0 B$ очевидно.

Пусть $\mathbf{B}' = \{(\partial_0 v^* u^* \sigma_0 A, \partial_0 v^* u^* \sigma_0 (c), v^* u^* B) \mid (A, c, B) \in \mathbf{S}_n (\mathbf{A} \to \mathbf{B}) \}$ и $\mathbf{B}'' = \{(A, c, \sigma_0 \partial_0 B) \mid (A, c, B) \in \mathbf{S}_n (\mathbf{A} \to \mathbf{B}) \}.$

Получаем точный справа функтор

$$T': \mathbf{S}_n(\mathbf{A} \to \mathbf{B}) \to \mathbf{E}(\mathbf{B}', \mathbf{S}_n(\mathbf{A} \to \mathbf{B}), \mathbf{B}''),$$

где $s\circ T'$ переводит (A,c,B) в $(\partial_0 v^*u^*\sigma_0 A,\partial_0 v^*u^*\sigma_0(c),v^*u^*B)$, $t\circ T'$ тождественно, и $q\circ T'$ переводит (A,c,B) в $(A,c,\sigma_0\partial_0 B)$. Таким образом, получаем точную справа последовательность $s\circ T'\to 1\to q\circ T'$. По нашему предположению отображение $(s\circ T',q\circ T'):S.S_n(\mathbf{A}\to\mathbf{B})\to S.\mathbf{B}'\times S.\mathbf{B}''$ гомотопическая эквивалентность, и гомотопически обратное отображение индуцировано копроизведением.

Ясно, что морфизм $\mathbf{B}' \to \mathbf{B}$, переводящий $(\partial_0 v^* u^* \sigma_0 A, \partial_0 v^* u^* \sigma_0 (c), v^* u^* B)$ в $B_{(0,1)}$, — эквивалентность. Квазиобратным к нему является G'.

Покажем, что морфизм $\delta: \mathbf{S}_n \mathbf{A} \to \mathbf{B}'', A \mapsto (A,1,\sigma_0 FA)$, является квазиобратным к ограничению p на \mathbf{B}'' . Очевидно, δ унивалентен. Для $(A,c,B) \in \mathbf{B}''$ морфизм $(1,\sigma_0(c)): (A,1,\sigma_0 FA) \to (A,c,B)$ — изоморфизм. Следует также, что каждый морфизм $(a,b): \delta A \to \delta A'$ в \mathbf{B}'' равен $(a,\sigma_0 Fa)$, откуда δ является полным. Поэтому δ — эквивалентность.

Итак, отображение $i.S.\mathbf{B}' \times i.S.\mathbf{B}'' \to i.S.\mathbf{B} \times i.S.S_n\mathbf{A}$ — гомотопическая эквивалентность, а значит, и композиция

$$i.S.S_n(\mathbf{A} \to \mathbf{B}) \to i.S.\mathbf{B}' \times i.S.\mathbf{B}'' \to i.S.\mathbf{B} \times i.S.S_n\mathbf{A}$$

— тоже гомотопическая эквивалентность. Эта гомотопическая эквивалентность вкладывается в следующий коммутативный квадрат:

Верхняя строка гомотопически эквивалентна тривиальному расслоению (нижняя строка диаграммы). Следовательно, она является гомотопически расслоенной. •

Замечание. Пусть \Im — класс левых систем диаграммных категорий либо левых выделенных дериваторов, удовлетворяющий следующим условиям:

- (1) $\mathbf{B} \in \Im$ влечет $\mathbf{S}_n \mathbf{B} \in \Im$ для любого n;
- (2) отображение $i.S.\mathbf{E} \xrightarrow{(s,q)} i.S.\mathbf{B} \times i.S.\mathbf{B}$ гомотопическая эквивалентность для любого $\mathbf{B} \in \mathfrak{F}$.

Доказательство теоремы 6.6 тогда показывает, что спектр $n\mapsto i.S.^n\mathbf{B}$ является Ω -спектром, за исключением первой компоненты, а значит, K-теория каждого $\mathbf{B}\in\Im$ может быть тогда эквивалентно определена как пространство

$$\Omega^{\infty}|i.S.^{\infty}\mathbf{B}| = \lim_{n} \Omega^{n}|i.S.^{n}\mathbf{B}|.$$

Левый выделенный дериватор \mathbf{D} с областью Ord называем комплициальным, если существует точная справа эквивалентность $F: \mathbf{D}\mathcal{C} \longrightarrow \mathbf{D}$ для некоторой комплициальной бивальдхаузеновой категории \mathcal{C} в смысле Томасона [19], которая замкнута относительно канонических гомотопически кодекартовых и декартовых квадратов. Говорим в этом случае, что \mathbf{D} представляется \mathcal{C} . Эта эквивалентность индуцирует гомотопическую эквивалентность бисимплициальных множеств $F: i.S.\mathbf{D}\mathcal{C} \longrightarrow i.S.\mathbf{D}$.

Теорема 6.7 ([10]). Класс комплициальных дериваторов удовлетворяет условиям замечания.

Предложение 6.8. В условиях теоремы 6.6 предположим, что $\mathbf{A} \to \mathbf{B} \to \mathbf{C}$ — последовательность точных справа морфизмов между левыми системами диаграммных категорий либо левыми выделенными дериваторами. Тогда

$$i.S.\mathbf{B} \longrightarrow i.S.S.(\mathbf{A} \to \mathbf{B})$$

$$\downarrow \qquad \qquad \downarrow$$

$$i.S.\mathbf{C} \longrightarrow i.S.S.(\mathbf{A} \to \mathbf{C})$$

является гомотопически декартовым квадратом.

Доказательство. Имеется коммутативная диаграмма

$$i.S.\mathbf{B} \longrightarrow i.S.S.(\mathbf{A} \to \mathbf{B}) \longrightarrow i.S.S.\mathbf{A}$$

$$\downarrow \qquad \qquad \downarrow \text{id}$$
 $i.S.\mathbf{C} \longrightarrow i.S.S.(\mathbf{A} \to \mathbf{C}) \longrightarrow i.S.S.\mathbf{A},$

в которой строки являются гомотопически расслоенными последовательностями по теореме 6.6. Поэтому левый квадрат гомотопически декартов. •

Следствие 6.9. В условиях теоремы 6.6 выполнены следующие утверждения.

(1) C каждым точным справа морфизмом ассоциируется гомотопически расслоенная последовательность

$$i.S.\mathbf{B} \rightarrow i.S.\mathbf{C} \rightarrow i.S.S.(\mathbf{B} \rightarrow \mathbf{C}).$$

(2) Если ${f C}$ — ретракт ${f B}$ (по точным справа функторам), имеется расщепление

$$i.S.\mathbf{B} \simeq i.S.\mathbf{C} \times i.S.S.(\mathbf{C} \to \mathbf{B}).$$

Доказательство. (1) Если $\mathbf{A} = \mathbf{B}$, то пространство $|i.S.S.(\mathbf{A} = \mathbf{A})|$ стягиваемо, откуда следует первое утверждение.

(2) Это случай предложения 6.8, так как композиция ${f A} \to {f B} \to {f C}$ единичный морфизм, и тогда $i.S.S.({f A} \to {f C})$ стягиваемо.

§7. Теорема сравнения

Мы хотим сравнить K-теорию Квиллена $K(\mathcal{E})$ с K-теорией ассоциированного бидериватора $\mathbf{D}^b(\mathcal{E})$, где \mathcal{E} — точная категория.

Пусть $wC^b(\mathcal{E})$ — категория Вальдхаузена для квазиизоморфизмов в $C^b(\mathcal{E})$, в которой корасслоения — покомпонентно допустимые мономорфизмы. Имеется естественный функтор для каждого $I \in \mathrm{Dirf}$

$$\operatorname{Ho}: C^b(\mathcal{E}^I) \to D^b(\mathcal{E}^I).$$

Образ относительно функтора Но любого кодекартового в $C^b(\mathcal{E})^\square = C^b(\mathcal{E}^\square)$ квадрата

где горизонтальные стрелки — корасслоения, является кодекартовым квадратом в $\mathbf{D}^b(\mathcal{E})_\square$ (это утверждение двойственно к [16, 3.14]). Поэтому Но индуцирует отображение бисимплициальных множеств $\nu: w.S.C^b(\mathcal{E}) \to i.S.\mathbf{D}^b(\mathcal{E})$. Рассмотрим отображение

$$K(\tau): K(\mathcal{E}) \to K(wC^b(\mathcal{E})),$$

индуцированное функтором τ , переводящий объект из $\mathcal E$ в комплекс, сосредоточенный в нулевой степени $(K(wC^b(\mathcal E)))$ означает K-теорию Вальдхаузена для $wC^b(\mathcal E)$).

Первая гипотеза Малциниотиса [7]. Отображение $K(\rho) = K(\nu \tau)$: $K(\mathcal{E}) \to K(\mathbf{D}^b(\mathcal{E}))$ является гомотопической эквивалентностью.

Гомоморфизм $K_0(\mathcal{E}) \to K_0(\mathbf{D}^b(\mathcal{E}))$ — изоморфизм, так как группы Гротендика $K_0(\mathcal{E})$ и $K_0(D^b(\mathcal{E}))$ естественно изоморфны (упражнение!), и $K_0(\mathbf{D}^b(\mathcal{E}))$ естественно изоморфна $K_0(D^b(\mathcal{E}))$ по лемме 3.5.

Первая гипотеза Малциниотиса очень трудна в общем случае. Однако можно получить некоторую информацию для широкого класса точных категорий, включающего абелевы категории. Следующее утверждение показывает, что K-теория $K(\mathcal{E})$ точной категории \mathcal{E} из этого класса — ретракт $K(\mathbf{D}^b(\mathcal{E}))$.

Теорема 7.1. Пусть \mathcal{E} — замкнутая относительно расширений, полная точная подкатегория абелевой категории \mathcal{A} , удовлетворяющая условиям теоремы о резольвенте. То есть

- (1) если $M' \rightarrow M \rightarrow M''$ точна в A и $M, M'' \in \mathcal{E}$, то $M' \in \mathcal{E}$, и
- (2) для всякого объекта $M\in\mathcal{A}$ имеется конечная резольвента $0\to P_n\to P_{n-1}\to\cdots\to P_0\to M\to 0$, где $P_i\in\mathcal{E}$.

Тогда естественное отображение $K(\rho): K(\mathcal{E}) \to K(\mathbf{D}^b(\mathcal{E}))$ — гомотопически расщепляющееся включение, т.е. существует отображение $p: K(\mathbf{D}^b(\mathcal{E})) \to K(\mathcal{E})$ такое, что $p \circ K(\rho)$ гомотопно единице. В частности, каждая K-группа $K_n(\mathcal{E})$ — прямое слагаемое $K_n(\mathbf{D}^b(\mathcal{E}))$.

Mы отложим доказательство. Следует сказать, что оно существенно использует результаты Неемана [22] по K-теории триангулированных категорий.

В [24, 25] показано, что естественное отображение $K(\mathcal{C}) \to K(\mathbf{D}\mathcal{C})$ из K-теории Вальдхаузена в K-теорию его дериватора не может быть эквивалентностью в общем случае. Например, это так для K-теории Вальдхаузена пространств. Это не означает, однако, что K-группы $K_n(\mathcal{C})$ не могут быть перестроены из его дериватора и что это — контрпример к проблеме сравнения, сформулированной выше для точных категорий.

Если категория Вальдхаузена вкладывается в категорию корасслоенных объектов выделенной модельной категории, чья структура Вальдхаузена индуцирована объемлющей модельной структурой (см. точное определение в [25]), то будем называть ее хорошей. Хотя имеются "нехорошие" категории Вальдхаузена (см. [25, пример 2.2]), на практике оказывается, что если нам дана категория Вальдхаузена, всегда существует хорошая вальдхаузенова модель, т.е. хорошая категория Вальдхаузена с таким же пространством K-теории с точностью до гомотопии. Любая хорошая категория Вальдхаузена является категорией Вальдхаузена корасслоенных объектов, а значит, ей можно сопоставить левый выделенный дериватор $\mathbf{D}\mathcal{C}$ по теореме 2.8. Следующая теорема является также следствием результата Сизинского и Тоэна [24, 2.16].

Теорема 7.2 (впервые сформулирована Тоэном [26]). Если C, C' — хорошие категории Вальдхаузена такие, что их ассоциированные дериваторы DC и DC' эквивалентны, то спектры K-теорий Вальдхаузена K(C) и K(C') также эквивалентны.

При некоторых дополнительных данных ${\bf B}$ кодирует структуру триангулированной категории для ${\bf B}_0$ [16, 5, 6, 7]. Эта структура канонически переносится на все категории ${\bf B}_I,\ I\in {\rm Dia.}\ {\bf B}$ этом случае ${\bf B}$ называется системой триангулированных диаграммных категорий или триангулированным дериватором соответственно. Следующий результат показывает, что такой ${\bf B}$ содержит строго больше информации, нежели его триангулированная категория ${\bf B}_0$.

Предложение 7.3. Существуют неэквивалентные триангулированные дериваторы ${\bf B}$ и ${\bf B}'$, чьи ассоциированные триангулированные категории ${\bf B}_0$ и ${\bf B}'_0$ эквивалентны.

Доказательство. Пусть $\mathcal{C}=m\mathcal{M}(\mathbf{Z}/p^2)$ и $\mathcal{C}'=m\mathcal{M}(\mathbf{Z}/p[\varepsilon]/\varepsilon^2)$ — две стабильные модельные категории, рассмотренные в [27]. Здесь $\mathcal{M}(\mathbf{Z}/p^2)$ и $\mathcal{M}(\mathbf{Z}/p[\varepsilon]/\varepsilon^2)$ — соответствующие категории конечно-порожденных модулей. Так как \mathbf{Z}/p^2 и $\mathbf{Z}/p[\varepsilon]/\varepsilon^2$ — квазифробениусовы кольца, $\mathcal{M}(\mathbf{Z}/p^2)$ и $\mathcal{M}(\mathbf{Z}/p[\varepsilon]/\varepsilon^2)$ — фробениусовы категории, а $\mathbf{D}\mathcal{C}$ и $\mathbf{D}\mathcal{C}'$ — триангулированные дериваторы по [16, 4.19]. Из [27, 1.4] следует, что $\mathbf{D}\mathcal{C}_0$ и $\mathbf{D}\mathcal{C}'$ не могут быть эквивалентными по теореме 7.2, так как K-теории Вальдхаузена $K(\mathcal{C})$ и $K(\mathcal{C}')$ не эквивалентны по [27, 1.7]. •

Другая проблема в нашем контексте (см. также [7, предположение 2]) — это теорема локализации. Рассмотрим семейство морфизмов $\mathcal{W} = \{\mathcal{W}_I \subseteq \operatorname{Mor} \mathbf{B}_I \mid I \in \operatorname{Dia} \}$ согласованных со структурными функторами f^* и $f_!$, т.е. $f^*(\mathcal{W}_J) \subseteq \mathcal{W}_I$ и $f_!(\mathcal{W}_I) \subseteq \mathcal{W}_J$ для любого $f:I \to J$. Пусть $\mathbf{B}_?[\mathcal{W}_?^{-1}]$ — категория частных, полученная путем обращения стрелок из $\mathcal{W}_?$. Требуется также выполнение следующих условий: морфизм принадлежит $\mathcal{W}_?$, если его образ в $\mathbf{B}_?[\mathcal{W}_?^{-1}]$ — изоморфизм. Пусть гиперфунктор $I \stackrel{Q}{\mapsto} \mathbf{B}_I[\mathcal{W}_I^{-1}]$ определяет левую систему диаграммных категорий или левый выделенный дериватор соответственно. Обозначим его через $\mathbf{B}[\mathcal{W}^{-1}]$. Допустим также, что функтор локализации $Q: \mathbf{B} \to \mathbf{B}[\mathcal{W}^{-1}]$ точен справа.

Если ${\bf B}$ — система триангулированных диаграммных категорий или триангулированный дериватор соответственно, то каждая толстая подкатегория ${\bf A}_0$ в ${\bf B}_0$ порождает локализацию в ${\bf B}$. А именно для $I\in {\rm Dia}$ положим ${\bf A}_I=\{A\in {\bf B}_I\mid A_x\in {\bf A}_0$ для всех $x\in I\}$. Тогда ${\bf A}_I$ является толстой в ${\bf B}_I$, и функтор $I\mapsto {\bf A}_I$ определяет систему триангулированных диаграммных категорий или триангулированный дериватор соответственно, и затем функтор локализации строится естественным образом (см. [5, с. 39]).

Вторая гипотеза Малциниотиса [7]. Если нам дана последовательность морфизмов левых систем диаграммных категорий или левых выделенных дериваторов соответственно

$$\mathbf{A} \xrightarrow{F} \mathbf{B} \xrightarrow{Q} \mathbf{B}[\mathcal{W}^{-1}],$$

еде Q — функтор локализации, а F — точная справа эквивалентность между ${\bf A}$ и $Q^{-1}(0)=\{B\in {\bf B}_?\mid 0\to B\in {\cal W}_?\}$, то индуцированная последовательность пространств K-теории

$$K(\mathbf{A}) \longrightarrow K(\mathbf{B}) \longrightarrow K(\mathbf{B}[\mathcal{W}^{-1}])$$

является гомотопически расслоенной.

Мы уже сопоставили морфизму F гомотопически расслоенную последовательность (см. следствие 5.4(1))

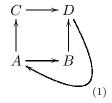
$$i.S.\mathbf{A} \rightarrow i.S.\mathbf{B} \rightarrow i.N.S.(\mathbf{A} \rightarrow \mathbf{B}).$$

Имеется естественное отображение из $i.N.S.(\mathbf{A} \to \mathbf{B})$ в $i.S.\mathbf{B}[\mathcal{W}^{-1}]$. Поэтому теорема локализации сводится, скажем, к доказательству того, что последнее отображение — гомотопическая эквивалентность.

Остается доказать, как обещано, теорему 7.1. Мы начнем с определений.

Определение. Аддитивную категорию \mathcal{T} будем называть *категорией с квадратами*, если

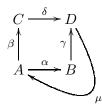
- \diamond \mathcal{T} обладает автоморфизмом $\Sigma: \mathcal{T} \to \mathcal{T};$
- ⋄ Т наделена семейством специальных квадратов



Это означает, что квадрат коммутативен в \mathcal{T} и существует морфизм $D \to \Sigma A$, изображенный как изогнутая стрелка. Метка (1) говорит о том, что этот морфизм степени 1, т.е. морфизм $D \to \Sigma A$.

Специальный функтор категорий с квадратами $F: \mathcal{S} \to \mathcal{T}$ — это функтор такой, что существует естественный изоморфизм $\Sigma F \simeq F \Sigma$ и F переводит специальные квадраты в \mathcal{S} в специальные квадраты в \mathcal{T} .

Если \mathcal{T} — категория с квадратами, под сверткой квадрата



понимается последовательность

$$A \xrightarrow{(\alpha, -\beta)^t} B \oplus C \xrightarrow{(\gamma, \delta)} D \xrightarrow{\mu} \Sigma A.$$

Примеры. Пусть \mathcal{T} — триангулированная категория. Тогда \mathcal{T} аддитивна и имеет автоморфизм Σ . Объявляем квадрат специальным, если его свертка — выделенный треугольник в \mathcal{T} . Если мы рассматриваем триангулированную категорию \mathcal{T} как категорию с квадратами, определенную выше, будем обозначать ее через \mathcal{T}^d .

Пусть \mathcal{A} — абелева категория, $Gr^b\mathcal{A}$ — категория ограниченных градуированных объектов в \mathcal{A} . Напомним, что градуированный объект из \mathcal{A} это последовательность объектов $\{A_i\in\mathcal{A}\}_{i\in\mathbf{Z}}$. Последовательность $\{A_i\}$ ограничена, если $A_i=0$, кроме конечного числа $i\in\mathbf{Z}$.

Пусть $\Sigma:Gr^b\mathcal{A}\to Gr^b\mathcal{A}$ — функтор сдвига, т.е. $\Sigma\{A_i\}=\{B_i\},\ B_i=A_{i+1}.$ Квадрат в $Gr^b\mathcal{A}$ объявляем специальным, если свертка

$$A \xrightarrow{(\alpha, -\beta)^t} B \oplus C \xrightarrow{(\gamma, \delta)} D \xrightarrow{\mu} \Sigma A$$

задает длинную точную последовательность в ${\mathcal A}$

$$\cdots \to D_{i-1} \to A_i \to B_i \oplus C_i \to D_i \to A_{i+1} \to \cdots$$

Если $H:D^b(\mathcal{A})\to Gr^b\mathcal{A}$ — функтор гомологий, переводящий комплекс $A\in D^b(\mathcal{A})$ в $\{H_i(A)\}$, он индуцирует функтор между категориями с квадратами

$$H: D^b(\mathcal{A})^d \to Gr^b\mathcal{A}.$$

Определение. (1) Пусть \mathcal{T} — категория с квадратами и пусть $m,n\geqslant 0$. Функтор $X:\Delta^m\times\Delta^n\to\mathcal{T}$ назовем *аугментированной диаграммой*, если для любых $0\leqslant i\leqslant i'\leqslant m$ и $0\leqslant j\leqslant j'\leqslant n$ нам дан специальный квадрат

$$X_{ij'} \longrightarrow X_{i'j'}$$

$$X_{ij} \longrightarrow X_{i'j}$$

$$\delta_{i,j}^{i',j'}$$

такой, что $\delta_{i,j}^{i',j'}$ — это композиция $X_{i'j'}\to X_{mn}\xrightarrow{\delta_{0,0}^{m,n}}\Sigma X_{00}\to\Sigma X_{ij}$. Морфизмом двух аугментированных диаграмм $\varphi:X\to Y$ называем естественное преобразование функторов такое, что квадрат

$$X_{i'j'} \xrightarrow{\delta_{i,j}^{i',j'}} \Sigma X_{ij}$$

$$\varphi_{i'j'} \downarrow \qquad \qquad \downarrow \Sigma \varphi_{ij}$$

$$Y_{i'j'} \xrightarrow{\delta_{i,j}^{i',j'}} \Sigma Y_{ij}$$

коммутативен для любых $0\leqslant i\leqslant i'\leqslant m$ и $0\leqslant j\leqslant j'\leqslant n.$

Категорию аугментированных диаграмм обозначим через $Q_{m,n}\mathcal{T}$. Получаем бисимплициальную категорию $Q\mathcal{T} = \{Q_{m,n}\mathcal{T}\}_{m,n\geqslant 0}$ (операторы

грани/вырождения определяются вычеркиванием/вставкой строки или столбца).

(2) K-теория $K(\mathcal{T})$ категории с квадратами \mathcal{T} определяется как пространство $\Omega|\operatorname{Ob}(Q\mathcal{T})|$.

Пусть $H:D^b(\mathcal{A})^d\to Gr^b\mathcal{A}$ — функтор категорий с квадратами, построенный выше. Мы имеем морфизм бисимплициальных категорий $\chi:QD^b(\mathcal{A})^d\to QGr^b\mathcal{A}$, индуцированный H, а значит, и отображение $K(\chi):K(D^b(\mathcal{A}))\to K(Gr^b\mathcal{A})$.

Если $\mathcal E$ — точная категория, и $m,n\geqslant 0$, обозначим через $Q_{m,n}\mathcal E$ такую категорию. Ее объекты суть функторы $X:\Delta^m\times\Delta^n\to\mathcal E$ такие, что для всяких $0\leqslant i\leqslant i'\leqslant m$ и $0\leqslant j\leqslant j'\leqslant n$ нам дан бидекартов квадрат

$$X_{ij} \longrightarrow X_{i'j'}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_{ij} \longrightarrow X_{i'j},$$

где вертикальные стрелки — эпиморфизмы, а горизонтальные стрелки — мономорфизмы. Морфизмы определены естественными преобразованиями. Полученную бисимплициальную категорию обозначим через $Q\mathcal{E}$. Хорошо известно, что симплициальная модель для распетливания $K(\mathcal{E})$ задается реализацией бисимплициального множества $\mathrm{Ob}\,Q\mathcal{E}$.

Пусть \mathcal{A} — абелева категория, $i:\mathcal{A}\to D^b(\mathcal{A})$ — естественный функтор, переводящий $A\in\mathcal{A}$ в комплекс, сосредоточенный в нулевой степени. Он индуцирует функтор бисимплициальных категорий $\iota:Q\mathcal{A}\to QD^b(\mathcal{A})^d$ (см. также рассуждения ниже). Заметим, что дифференциалы $\delta_{i,j}^{i',j'}$ в $QD^b(\mathcal{A})^d$ строятся канонически и единственны для диаграмм, приходящих из $Q\mathcal{A}$ (см. [23]).

Теорема 7.4 (Нееман [22]). Пусть $\mathcal{A}-$ малая абелева категория. Тогда композиция

$$\operatorname{Ob} Q\mathcal{A} \stackrel{\iota}{\longrightarrow} \operatorname{Ob} QD^b(\mathcal{A})^d \stackrel{\chi}{\longrightarrow} \operatorname{Ob} QGr^b(\mathcal{A})$$

является гомотопической эквивалентностью.

Как обычно, если \mathcal{C} — категория, то $i\mathcal{C}$ означает ее максимальный группоид, а $i.\mathcal{C}$ — нерв в i-направлении.

Следствие 7.5. Пусть $\mathcal{A}-$ малая абелева категория. Тогда композиция отображений трисимплициальных объектов

$$i.QA \xrightarrow{\iota} i.QD^b(A)^d \xrightarrow{\chi} i.QGr^b(A)$$

является гомотопической эквивалентностью.

Доказательство. Для $k\geqslant 0$ категория $i_k\mathcal{A}$ струн изоморфизмов $A_0\stackrel{\sim}{\longrightarrow}\cdots\stackrel{\sim}{\longrightarrow}A_k$ абелева, и композиция

$$i_k Q \mathcal{A} = Q[i_k \mathcal{A}] \xrightarrow{\iota} i_k Q D^b(\mathcal{A})^d \xrightarrow{\chi} i_k Q G r^b(\mathcal{A}) = Q G r^b[i_k \mathcal{A}]$$

является гомотопической эквивалентностью бисимплициальных объектов по теореме 7.4, а по лемме 4.1 также и отображение следствия. •

Доказательство теоремы 7.1. (1) Докажем сначала утверждение для абелевой категории \mathcal{A} . Для K-теории Квиллена $K(\mathcal{A})$ мы используем такую симплициальную модель. Она — пространство петель реализации $i.Q\mathcal{A}$ (см. [9]). В свою очередь, бисимплициальный максимальный группоид $iQ\mathbf{D}^b(\mathcal{A})$ является моделью для $K(\mathbf{D}^b(\mathcal{A}))$ (см. §3).

По следствию 7.5 достаточно показать, что отображение $i.Q\mathcal{A} \stackrel{\iota}{\longrightarrow} i.QD^b(\mathcal{A})^d$ пропускается через $i.Q\mathbf{D}^b(\mathcal{A})$. Напомним, что $Q_{m,n}\mathbf{D}^b(\mathcal{A}),\ m,n\geqslant 0$, состоит из объектов $X\in\mathbf{D}^b(\mathcal{A})_{\Delta^m\times\Delta^n}$ таких, что для любых $0\leqslant i\leqslant i'\leqslant m$ и $0\leqslant j\leqslant j'\leqslant n$ квадрат

$$X_{ij'} \longrightarrow X_{i'j'}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_{ij} \longrightarrow X_{i'j}$$

бидекартов в $\mathbf{D}^b(\mathcal{A})_\square$ (= кодекартов в триангулированном дериваторе [7]). Тогда

$$\operatorname{cone}(X_{ij} \to X_{ij'} \oplus X_{i'j}) \to \operatorname{cone}(0 \to X_{i'j'}) \simeq X_{i'j'}$$

— квазиизоморфизм в $C^b(\mathcal{A})$, а значит, изоморфизм в $D^b(\mathcal{A})$ (мы используем здесь свойства триангулированных дериваторов и информацию о триангулированной структуре, которую кодирует $\mathbf{D}^b(\mathcal{A})$ [16, 5, 6]). Композиция обратного к этому изоморфизму с естественной проекцией

$$cone(X_{ij} \to X_{ij'} \oplus X_{i'j}) \to cone(X_{ij} \to 0) \simeq \Sigma X_{ij}$$

задает морфизм $\delta_{i,j}^{i',j'}:X_{i'j'} o\Sigma X_{ij}$. Получаем специальный квадрат в $D^b(\mathcal{A})^d$.

Ясно, что эта конструкция естественна. Пусть $f: X \to Y$, где $X, Y \in Q_{m,n}\mathbf{D}^b(\mathcal{A})$, — изоморфизм. Он представляется диаграммой $X \leftarrow Z \to Y$,

где $Z \in Q_{m,n}\mathbf{D}^b(\mathcal{A})$, и стрелки суть квазиизоморфизмы. Имеется коммутативная диаграмма в $C^b(\mathcal{A})$ для всяких $0 \leqslant i \leqslant i' \leqslant m$ и $0 \leqslant j \leqslant j' \leqslant n$:

$$X_{ij} \xrightarrow{a} X_{ij'} \oplus X_{i'j} \longrightarrow X_{i'j'} \longleftarrow \operatorname{cone}(a) \longrightarrow \Sigma X_{ij}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$Z_{ij} \xrightarrow{b} Z_{ij'} \oplus Z_{i'j} \longrightarrow Z_{i'j'} \longleftarrow \operatorname{cone}(b) \longrightarrow \Sigma Z_{ij}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Y_{ij} \xrightarrow{c} Y_{ij'} \oplus Y_{i'j} \longrightarrow Y_{i'j'} \longleftarrow \operatorname{cone}(c) \longrightarrow \Sigma Y_{ij}.$$

Она определяет изоморфизм треугольников в $D^b(\mathcal{A})$

$$X_{ij} \longrightarrow X_{ij'} \oplus X_{i'j} \longrightarrow X_{i'j'} \xrightarrow{\delta_{i,j}^{i',j'}} \Sigma X_{ij}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Y_{ij} \longrightarrow Y_{ij'} \oplus Y_{i'j} \longrightarrow Y_{i'j'} \xrightarrow{\delta_{i,j}^{i',j'}} \Sigma Y_{ij}$$

и, значит, изоморфизм специальных квадратов в $D^b(\mathcal{A})^d$.

Пусть теперь $X\in Q_{m,n}\mathbf{D}^b(\mathcal{A}),\ 0\leqslant i'\leqslant m$ и $0\leqslant j'\leqslant n$. Имеется коммутативная диаграмма в $C^b(\mathcal{A})$

$$X_{00} \longrightarrow X_{i'0} \oplus X_{0j'} \longrightarrow X_{i'j'}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_{00} \longrightarrow X_{m0} \oplus X_{0n} \longrightarrow X_{mn},$$

и, значит, в $D^b(\mathcal{A})$ мы получим коммутативный квадрат

$$X_{i'j'} \xrightarrow{\delta_{0,0}^{i',j'}} \Sigma X_{00}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_{mn} \xrightarrow{\delta_{0,0}^{m,n}} \Sigma X_{00}.$$

Если $0\leqslant i\leqslant i'$ и $0\leqslant j\leqslant j'$, имеется коммутативная диаграмма в $C^b(\mathcal{A})$

$$X_{00} \longrightarrow X_{i'0} \oplus X_{0j'} \longrightarrow X_{i'j'}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_{ij} \longrightarrow X_{i'j} \oplus X_{ij'} \longrightarrow X_{i'j'},$$

и, значит, в $D^b(\mathcal{A})$ мы получим коммутативный квадрат

$$X_{i'j'} \xrightarrow{\delta_{0,0}^{i',j'}} \Sigma X_{00}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_{i'j'} \xrightarrow{\delta_{i,j}^{i',j'}} \Sigma X_{ij},$$

а "естественный" морфизм $\delta_{i,j}^{i',j'}:X_{i'j'} o\Sigma X_{ij}$ получается из $\delta_{0,0}^{m,n}:X_{mn} o\Sigma X_{00}$ просто как композиция

$$X_{i'j'} \to X_{mn} \xrightarrow{\delta_{0,0}^{m,n}} \Sigma X_{00} \to \Sigma X_{ij}.$$

Поэтому функторы dia : $\mathbf{D}^b(\mathcal{A})_{\Delta^m \times \Delta^n} \to \mathrm{Hom}(\Delta^m \times \Delta^n, D^b(\mathcal{A})), \ m,n \geqslant 0$, индуцируют отображение бисимплициальных группоидов

$$\theta: iQ\mathbf{D}^b(\mathcal{A}) \to iQD^b(\mathcal{A})^d.$$

Ясно, что $i.Q\mathcal{A} \stackrel{\iota}{\longrightarrow} i.QD^b(\mathcal{A})^d$ факторизуется как

$$i.QA \xrightarrow{\rho} i.QD^b(A) \xrightarrow{\theta} i.QD^b(A)^d,$$

откуда следует наше утверждение.

(2) Допустим, что точная категория $\mathcal{E} \subseteq \mathcal{A}$ удовлетворяет условиям теоремы. Рассмотрим коммутативный квадрат

$$i.Q\mathcal{E} \xrightarrow{\rho} i.Q\mathbf{D}^{b}(\mathcal{E})$$

$$\downarrow \qquad \qquad \downarrow$$

$$i.Q\mathcal{A} \xrightarrow{\rho} i.Q\mathbf{D}^{b}(\mathcal{A}) \xrightarrow{\chi\theta} i.QGr^{b}\mathcal{A},$$

где вертикальные стрелки индуцированы включением $\mathcal{E} \to \mathcal{A}$. Левая вертикальная стрелка — гомотопическая эквивалентность по теореме о резольвенте [28]. То, что отображение $\chi\theta\rho$ — гомотопическая эквивалентность по (1), очевидно завершает доказательство. •

Основываясь на вычислениях Вакнина [29], Нееман показывает [23, предложение 58], что существует точная категория $\mathcal E$ такая, что гомоморфизм $K_1(\iota):K_1(\mathcal E)\to K_1(D^b(\mathcal E))$ не является мономорфизмом, тогда как он расщепляющийся мономорфизм для абелевых категорий [22, 23]. Простейший пример доставляет категория $\mathcal E$ свободных модулей конечного ранга над кольцом дуальных чисел $k[\varepsilon]/\varepsilon^2$. Такие точные категории могли бы обеспечить контрпримеры для первой гипотезы Малциниотиса, если бы мы показали аналогичным образом, что гомоморфизм $K_1(\rho):K_1(\mathcal E)\to K_1(\mathcal D^b(\mathcal E))$ не является мономорфизмом.

Список литературы

- [1] Grothendieck A., Pursuing stacks, Manuscript, 1983.
- [2] Grothendieck A., Les dérivateurs, Manuscript, 1983-1990; www.math.jussieu.fr/~maltsin/groth/Derivateurs.html
- [3] Heller A., Homotopy theories, Mem. Amer. Math. Soc. 71 (1988), no. 383, 78 pp.
- [4] Keller B., Derived categories and universal problems, Comm. Algebra 19 (1991), no. 3, 699–747.
- [5] Franke J., Uniqueness theorems for certain triangulated categories with an Adams spectral sequence, K-Theory Preprint Archives, no. 139, 1996.
- [6] Maltsiniotis G., Structure triangulée sur les catégories des coefficients d'un dérivateur triangulé, Exposés au groupe de travail "Algèbre et topologie homotopiques", 2001.
- [7] Maltsiniotis G., La K-théorie d'un dérivateur triangulé, Preprint, 2002; www.math.jussieu.fr/~maltsin
- [8] Segal G., Categories and cohomology theories, Topology 13 (1974), 293-312.
- [9] Waldhausen F., *Algebraic K-theory of spaces*, Algebraic and Geometric Topology (New Brunswick, NJ, 1983), Lecture Notes in Math., vol. 1126, Springer-Verlag, Berlin, 1985, pp. 318–419.
- [10] Garkusha G., Systems of diagram categories and K-theory. II, Math. Z. 249 (2005), no. 3, 641-682.
- [11] Cisinski D.-C., Neeman A., Additivity for derivator K-theory, Preprint, 2005; www.math.univ-paris13.fr/~cisinski.
- [12] Маклейн С., Категории для работающего математика, Физматлит, 2004.
- [13] Hovey M., Model categories, Math. Surveys Monogr., vol. 63, Amer. Math. Soc., Providence, RI, 1999.
- [14] Cisinski D.-C., Images directes cohomologiques dans les catégories de modèles, Ann. Math. Blaise Pascal 10 (2003), no. 2, 195–244.
- [15] Brown K. S., Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc. 186 (1974), 419–458.
- [16] Cisinski D.-C., Catégories dérivables, Preprint, 2002; www.math.univ-paris13.fr/~cisinski
- [17] Bousfield A. K., Friedlander E. M., Homotopy theory of Γ-spaces, spectra, and bisimplicial sets, Geometric Applications of Homotopy Theory (Proc. Conf., Evanston, IL, 1977), II, Lecture Notes in Math., vol. 658, Springer-Verlag, Berlin, 1978, pp. 80–130.
- [18] Keller B., Le dérivateur triangulé associé à une catégorie exacte, Preprint, 2002.
- [19] Thomason R. W., Trobaugh T., *Higher algebraic K-theory of schemes and of derived categories*, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435.
- [20] Cisinski D.-C., An e-interchange, January 2004.
- [21] Waldhausen F., Algebraic K-theory of generalized free products, Ann. of Math. (2) 108 (1978), 135-204.
- [22] Neeman A., *K-theory for triangulated categories* $3\frac{1}{2}$, A, B, K-Theory **20** (2000), 97–174; 243–298.
- [23] Neeman A., *The K-theory of triangulated categories*, Handbook of K-Theory. Vol. 1, 2, Springer-Verlag, Berlin, 2005, pp. 1011–1080.
- [24] Toën B., Homotopical and higher categorical structures in algebraic geometry, Habilitation thesis, Preprint math.AG/0312262.

- [25] Toën B., Vezzosi G., A remark on K-theory and S-categories, Topology 43 (2004), no. 4, 765–791.
- [26] Toën B., Comparing S-categories and "dérivateurs de Grothendieck", Preprint, 2003; math.unice.fr/ toen.
- [27] Schlichting M., A note on K-theory and triangulated categories, Invent. Math. 150 (2002), 111-116.
- [28] Quillen D., *Higher algebraic K-theory*. I, Algebraic *K-*Theory I: Higher *K-*Theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 85–147.
- [29] Vaknin A., Determinants in triangulated categories, K-Theory 24 (2001), 57-68.

Department of Mathematics
The University of Manchester
Oxford Road, M13 9PL Manchester
UK
E-mail: garkusha@imi.ras.ru

Поступило 6 марта 2006 г.