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Abstract. Given a commutative ring R (respectively a positively graded commutative
ring A = ⊕j≥0Aj which is finitely generated as an A0-algebra), a bijection between the
torsion classes of finite type in Mod R (respectively tensor torsion classes of finite type
in QGr A) and the set of all subsets Y ⊆ Spec R (respectively Y ⊆ Proj A) of the form
Y =

S
i∈Ω Yi, with Spec R \ Yi (respectively Proj A \ Yi) quasi-compact and open for all

i ∈ Ω, is established. Using these bijections, there are constructed isomorphisms of ringed
spaces

(Spec R,OR)
∼−→ (Spec(Mod R),OMod R)

and

(Proj A,OProj A)
∼−→ (Spec(QGr A),OQGr A),

where (Spec(Mod R),OMod R) and (Spec(QGr A),OQGr A) are ringed spaces associated
to the lattices Ltor(Mod R) and Ltor(QGr A) of torsion classes of finite type. Also, a
bijective correspondence between the thick subcategories of perfect complexes Dper(R)
and the torsion classes of finite type in Mod R is established.
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1. Introduction

Non-commutative geometry comes in various flavours. One is based on abelian
and triangulated categories, the latter being replacements of classical schemes.
This is based on classical results of Gabriel and later extensions, in particular by
Thomason. Precisely, Gabriel [6] proved that any noetherian scheme X can be
reconstructed uniquely up to isomorphism from the abelian category, QcohX, of
quasi-coherent sheaves over X. This reconstruction result has been generalized to
quasi-compact schemes by Rosenberg in [15]. Based on Thomason’s classification
theorem, Balmer [3] reconstructs a noetherian scheme X from the triangulated
category of perfect complexes Dper(X). This result has been generalized to quasi-
compact, quasi-separated schemes by Buan-Krause-Solberg [5].

In this paper we reconstruct affine and projective schemes from appropriate
abelian categories. Our approach, similar to that used in [8, 9], is different from
Rosenberg’s [15] and less abstract. Moreover, some results of the paper are of
independent interest.

Let ModR (respectively QGrA) denote the category of R-modules (respectively
graded A-modules modulo torsion modules) with R (respectively A = ⊕n≥0An) a
commutative ring (respectively a commutative graded ring). We first demonstrate
the following result (cf. [8, 9]).

Theorem (Classification). Let R (respectively A) be a commutative ring (respec-
tively commutative graded ring which is finitely generated as an A0-algebra). Then
the maps

V 7→ S = {M ∈ ModR | suppR(M) ⊆ V }, S 7→ V =
⋃
M∈S

suppR(M)

and

V 7→ S = {M ∈ QGrA | suppA(M) ⊆ V }, S 7→ V =
⋃
M∈S

suppA(M)

induce bijections between

1. the set of all subsets V ⊆ SpecR (respectively V ⊆ ProjA) of the form
V =

⋃
i∈Ω Yi with SpecR \ Yi (respectively ProjA \ Yi) quasi-compact and

open for all i ∈ Ω,

2. the set of all torsion classes of finite type in ModR (respectively tensor tor-
sion classes of finite type in QGrA).
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This theorem says that SpecR and ProjA contain all the information about
finite localizations in ModR and QGrA respectively. The next result says that
there is a 1-1 correspondence between the finite localizations in ModR and the
triangulated localizations in Dper(R) (cf. [11, 8]).

Theorem. Let R be a commutative ring. The map

S 7→ T = {X ∈ Dper(R) | Hn(X) ∈ S for all n ∈ Z}

induces a bijection between

1. the set of all torsion classes of finite type in ModR,

2. the set of all thick subcategories of Dper(R).

Following Buan-Krause-Solberg [5] we consider the lattices Ltor(ModR) and
Ltor(QGrA) of (tensor) torsion classes of finite type in ModR and QGrA, as
well as their prime ideal spectra Spec(ModR) and Spec(QGrA). These spaces
come naturally equipped with sheaves of rings OModR and OQGrA. The following
result says that the schemes (SpecR,OR) and (ProjA,OProjA) are isomorphic to
(Spec(ModR),OModR) and (Spec(QGrA),OQGrA) respectively.

Theorem (Reconstruction). Let R (respectively A) be a commutative ring (re-
spectively commutative graded ring which is finitely generated as an A0-algebra).
Then there are natural isomorphisms of ringed spaces

(SpecR,OR) ∼−→ (Spec(ModR),OModR)

and
(ProjA,OProjA) ∼−→ (Spec(QGrA),OQGrA).

2. Torsion classes of finite type

We refer the reader to the Appendix for necessary facts about localization and
torsion classes in Grothendieck categories.

Proposition 2.1. Assume that B is a set of finitely generated ideals of a com-
mutative ring R. The set of those ideals which contain a finite products of ideals
belonging to B is a Gabriel filter of finite type.

Proof. See [17, VI.6.10].

Given a module M , we denote by suppR(M) = {P ∈ SpecR | MP 6= 0}.
Here MP denotes the localization of M at P , that is, the module of fractions
M [(R \P )−1]. Note that V (I) = {P ∈ SpecR | I ≤ P} is equal to suppR(R/I) for
every ideal I and

suppR(M) =
⋃
x∈M

V (annR(x)), M ∈ ModR.
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Recall from [10] that a topological space is spectral if it is T0, quasi-compact, if
the quasi-compact open subsets are closed under finite intersections and form an
open basis, and if every non-empty irreducible closed subset has a generic point.
Given a spectral topological space, X, Hochster [10] endows the underlying set
with a new, “dual”, topology, denoted X∗, by taking as open sets those of the
form Y =

⋃
i∈Ω Yi where Yi has quasi-compact open complement X \ Yi for all

i ∈ Ω. Then X∗ is spectral and (X∗)∗ = X (see [10, Prop. 8]). The spaces, X,
which we shall consider are not in general spectral; nevertheless we make the same
definition and denote the space so obtained by X∗.

Given a commutative ring R, every closed subset of SpecR with quasi-compact
complement has the form V (I) for some finitely generated ideal, I, of R (see [2,
Chpt. 1, Ex. 17(vii)]). Therefore a subset of Spec∗R is open if and only if it is
of the form

⋃
λ V (Iλ) with each Iλ finitely generated. Notice that V (I) with I a

non-finitely generated ideal is not open in Spec∗R in general. For instance (see [18,
3.16.2]), let R = C[x1, x2, . . .] and m = (x1, x2, . . .). It is clear that V (m) = {m}
is not open in Spec∗ C[x1, x2, . . .].

For definitions of terms used in the next result see the Appendix to this paper.

Theorem 2.2 (Classification). Let R be a commutative ring. There are bijections
between

1. the set of all open subsets V ⊆ Spec∗R,

2. the set of all Gabriel filters F of finite type,

3. the set of all torsion classes S of finite type in ModR.

These bijections are defined as follows:

V 7→
{

FV = {I ⊂ R | V (I) ⊆ V }
SV = {M ∈ ModR | suppR(M) ⊆ V }

F 7→
{
VF =

⋃
I∈F V (I)

SF = {M ∈ ModR | annR(x) ∈ F for every x ∈M}

S 7→
{

FS = {I ⊂ R | R/I ∈ S}
VS =

⋃
M∈S suppR(M)

Proof. The bijection between Gabriel filters of finite type and torsion classes of
finite type is a consequence of a theorem of Gabriel (see, e.g., [7, 5.8]).

Let F be a Gabriel filter of finite type. Then the set ΛF of finitely generated
ideals I belonging to F is a filter basis for F. Therefore VF =

⋃
I∈ΛF

V (I) is open
in Spec∗R.

Now let V be an open subset of Spec∗R. Let Λ denote the set of finitely gen-
erated ideals I such that V (I) ⊆ V . By definition of the topology V =

⋃
I∈Λ V (I)

and I1 · · · In ∈ Λ for any I1, . . . , In ∈ Λ. We denote by F′V the set of ideals I ⊂ R
such that I ⊇ J for some J ∈ Λ. By Proposition 2.1 F′V is a Gabriel filter of finite
type. Clearly, F′V ⊂ FV = {I ⊂ R | V (I) ⊆ V }. Suppose I ∈ FV \ F′V ; by [17,
VI.6.13-15] (cf. the proof of Theorem 6.4) there exists a prime ideal P ∈ V (I) such
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that P 6∈ F′V . But V (I) ⊆ V and therefore P ⊃ J for some J ∈ Λ, so P ∈ F′V , a
contradiction. Thus F′V = FV .

Clearly, V = VFV
for every open subset V ⊆ Spec∗R. Let F be a Gabriel filter

of finite type and I ∈ F. Clearly F ⊂ FVF
and, as above, there is no ideal belonging

to FVF
\ F. We have shown the bijection between the sets of all Gabriel filters of

finite type and all open subsets in Spec∗R. The description of the bijection between
the set of torsion classes of finite type and the set of open subsets in Spec∗R is
now easily checked.

3. The fg-topology

Let InjR denote the set of isomorphism classes of indecomposable injective mod-
ules. Given a finitely generated ideal I of R, we denote by SI the torsion class of
finite type corresponding to the Gabriel filter of finite type having {In}n≥1 as a
basis (see Proposition 2.1 and Theorem 2.2). Note that a module M has SI -torsion
if and only if every element x ∈M is annihilated by some power In(x) of the ideal
I. Let us set

Dfg(I) := {E ∈ InjR | E is SI -torsion free}, V fg(I) := InjR \Dfg(I)

(“fg” referring to this topology being defined using only finitely generated ideals).
Let E be any indecomposable injective R-module. Set P = P (E) to be the

sum of annihilator ideals of non-zero elements, equivalently non-zero submodules,
of E. Since E is uniform the set of annihilator ideals of non-zero elements of E
is closed under finite sum. It is easy to check ([14, 9.2]) that P (E) is a prime
ideal and P (EP ) = P . Here EP stands for the injective hull of R/P . There is an
embedding

α : SpecR→ InjR, P 7→ EP ,

which need not be surjective. We shall identify SpecR with its image in InjR.
If P is a prime ideal of a commutative ring R its complement in R is a mul-

tiplicatively closed set S. Given a module M we denote the module of fractions
M [S−1] by MP . There is a corresponding Gabriel filter

FP = {I | P /∈ V (I)}.

Clearly, FP is of finite type. The FP -torsion modules are characterized by the
property that MP = 0 (see [17, p. 151]).

More generally, let P be a subset of SpecR. To P we associate a Gabriel filter

FP =
⋂
P∈P

FP = {I | P ∩ V (I) = ∅}.

The corresponding torsion class consists of all modules M with MP = 0 for all
P ∈ P.

Given a family of injective R-modules E , denote by FE the Gabriel filter de-
termined by E . By definition, this corresponds to the localizing subcategory
SE = {M ∈ ModR | HomR(M,E) = 0 for all E ∈ E}.
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Proposition 3.1. A Gabriel filter F is of finite type if and only if it is of the form
FP with P a closed set in Spec∗R. Moreover, FP is determined by EP = {EP |
P ∈ P}: FP = {I | HomR(R/I, EP) = 0}.

Proof. This is a consequence of Theorem 2.2.

Proposition 3.2. Let P be the closure of P in Spec∗R. Then P = {Q ∈ SpecR |
Q ⊆ P}. Also FP = FP .

Proof. This is direct from the definition of the topology.

Recall that for any ideal I of a ring, R, and r ∈ R we have an isomorphism
R/(I : r) ∼= (rR + I)/I, where (I : r) = {s ∈ R | rs ∈ I}, induced by sending
1 + (I : r) to r + I.

Proposition 3.3. Let E be an indecomposable injective module and let P (E) be
the prime ideal defined before. Let I be a finitely generated ideal of R. Then
E ∈ V fg(I) if and only if EP (E) ∈ V fg(I).

Proof. Let I be such that E = E(R/I). For each r ∈ R \ I we have, by the
remark just above, that the annihilator of r+ I ∈ E is (I : r) and so, by definition
of P (E), we have (I : r) ≤ P (E). The natural projection (rR + I)/I ∼= R/(I :
r) −→ R/P (E) extends to a morphism from E to EP (E) which is non-zero on
r + I. Forming the product of these morphisms as r varies over R \ I, we obtain
a morphism from E to a product of copies of EP (E) which is monic on R/I and
hence is monic. Therefore E is a direct summand of a product of copies of EP (E)

and so E ∈ V fg(J) implies EP (E) ∈ V fg(J), where J is a finitely generated ideal.
Now, EP (E) ∈ V fg(I), where I is a finitely generated ideal, means that there is

a non-zero morphism f : R/In −→ EP (E) for some n. Since R/P (E) is essential in
EP (E) the image of f has non-zero intersection with R/P (E) so there is an ideal
J , without loss of generality finitely generated, with In < J ≤ R, J/In a cyclic
module, and such that the restriction, f ′, of f to J/In is non-zero (and the image
is contained in R/P (E)). Since J/In is a cyclic SI -torsion module, there is an
epimorphism g : R/Im → J/In for some m. By construction, R/P (E) = lim−→R/Iλ,
where Iλ ranges over the annihilators of non-zero elements of E. Since R/Im is
finitely presented, 0 6= f ′g factorises through one of the maps R/Iλ −→ R/P (E).
In particular, there is a non-zero morphism R/Im −→ E showing that E ∈ V fg(I),
as required.

Given a module M , we set

[M ] := {E ∈ InjR | HomR(M,E) = 0}, (M) := InjR \ [M ].

Remark 3.4. For any finitely generated ideal I we have: Dfg(I)∩ SpecR = D(I)
and V fg(I) ∩ SpecR = V (I). Moreover, Dfg(I) = [R/I].

If I, J are finitely generated ideals, then D(IJ) = D(I)∩D(J). It follows from
Proposition 3.3 and Remark 3.4 that Dfg(I) ∩ Dfg(J) = Dfg(IJ). Thus the sets
Dfg(I) with I running over finitely generated ideals form a basis for a topology on
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InjR which we call the fg-ideals topology. This topological space will be denoted
by Injfg R. Observe that if R is coherent then the fg-topology equals the Zariski
topology on InjR (see [14, 8]). The latter topological space is defined by taking
the [M ] with M finitely presented as a basis of open sets.

Theorem 3.5. (cf. Prest [14, 9.6]) Let R be a commutative ring, let E be an
indecomposable injective module and let P (E) be the prime ideal defined before.
Then E and EP (E) are topologically indistinguishable in Injfg R.

Proof. This follows from Proposition 3.3 and Remark 3.4.

Theorem 3.6. (cf. Garkusha-Prest [8, Thm. A]) Let R be a commutative ring.
The space SpecR is dense and a retract in Injfg R. A left inverse to the embed-
ding SpecR ↪→ Injfg R takes an indecomposable injective module E to the prime
ideal P (E). Moreover, Injfg R is quasi-compact, the basic open subsets Dfg(I),
with I finitely generated, are quasi-compact, the intersection of two quasi-compact
open subsets is quasi-compact, and every non-empty irreducible closed subset has
a generic point.

Proof. For any finitely generated ideal I we have

Dfg(I) ∩ SpecR = D(I)

(see Remark 3.4). From this relation and Theorem 3.5 it follows that SpecR is
dense in Injfg R and that α : SpecR→ Injfg R is a continuous map.

One may check (see [14, 9.2]) that

β : Injfg R→ SpecR, E 7→ P (E),

is left inverse to α. Remark 3.4 implies that β is continuous. Thus SpecR is a
retract of Injfg R.

Let us show that each basic open set Dfg(I) is quasi-compact (in particular
Injfg R = Dfg(R) is quasi-compact). LetDfg(I) =

⋃
i∈ΩD

fg(Ii) with each Ii finitely
generated. It follows from Remark 3.4 that D(I) =

⋃
i∈ΩD(Ii). Since I is finitely

generated, D(I) is quasi-compact in SpecR by [2, Chpt. 1, Ex. 17(vii)]. We see
that D(I) =

⋃
i∈Ω0

D(Ii) for some finite subset Ω0 ⊂ Ω.
Assume E ∈ Dfg(I) \

⋃
i∈Ω0

Dfg(Ii). It follows from Theorem 3.5 that EP (E) ∈
Dfg(I) \

⋃
i∈Ω0

Dfg(Ii). But EP (E) ∈ Dfg(I) ∩ SpecR = D(I) =
⋃
i∈Ω0

D(Ii), and
hence it is in D(Ii0) = Dfg(Ii0) ∩ SpecR for some i0 ∈ Ω0, a contradiction. So
Dfg(I) is quasi-compact. It also follows that the intersection Dfg(I) ∩ Dfg(J) =
Dfg(IJ) of two quasi-compact open subsets is quasi-compact. Furthermore, every
quasi-compact open subset in Injfg R must therefore have the form Dfg(I) with I
finitely generated.

Finally, it follows from Remark 3.4 and Theorem 3.5 that a subset V of Injfg R
is Zariski-closed and irreducible if and only if there is a prime ideal Q of R such
that V = {E | P (E) ≥ Q}. This obviously implies that the point EQ ∈ V is
generic.
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Notice that Injfg R is not a spectral space in general, for it is not necessarily T0.

Lemma 3.7. Let the ring R be commutative. Then the maps

Spec∗R ⊇ V
φ7→ QV = {E ∈ InjR | P (E) ∈ V }

and

(Injfg R)∗ ⊇ Q ψ7→ VQ = {P (E) ∈ Spec∗R | E ∈ Q} = Q∩ Spec∗R

induce a 1-1 correspondence between the lattices of open sets of Spec∗R and those
of (Injfg R)∗.

Proof. First note that EP ∈ QV for any P ∈ V (see [14, 9.2]). Let us check
that QV is an open set in (Injfg R)∗. Every closed subset of SpecR with quasi-
compact complement has the form V (I) for some finitely generated ideal, I, of
R (see [2, Chpt. 1, Ex. 17(vii)]), so there are finitely generated ideals Iλ ⊆ R
such that V =

⋃
λ V (Iλ). Since the points E and EP (E) are, by Theorem 3.5,

indistinguishable in (Injfg R)∗ we see that QV =
⋃
λ V

fg(Iλ), hence this set is open
in (Injfg R)∗.

The same arguments imply that VQ is open in Spec∗R. It is now easy to see
that VQV

= V and QVQ = Q.

4. Torsion classes and thick subcategories

We shall write L(Spec∗R), L((Injfg R)∗), Lthick(Dper(R)), Ltor(ModR) to denote:

• the lattice of all open subsets of Spec∗R,

• the lattice of all open subsets of (Injfg R)∗,

• the lattice of all thick subcategories of Dper(R),

• the lattice of all torsion classes of finite type in ModR, ordered by inclusion.

(A thick subcategory is a triangulated subcategory closed under direct summands).
Given a perfect complex X ∈ Dper(R) denote by supp(X) = {P ∈ SpecR |

X ⊗LR RP 6= 0}. It is easy to see that

supp(X) =
⋃
n∈Z

suppR(Hn(X)),

where Hn(X) is the nth homology group of X.

Theorem 4.1 (Thomason [18]). Let R be a commutative ring. The assignments

T ∈ Lthick(Dper(R))
µ7→

⋃
X∈T

supp(X)

and
V ∈ L(Spec∗R) ν7→ {X ∈ Dper(R) | supp(X) ⊆ V }

are mutually inverse lattice isomorphisms.
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Given a subcategory X in ModR, we may consider the smallest torsion class
of finite type in ModR containing X . This torsion class we denote by

√
X =

⋂
{S ⊆ ModR | S ⊇ X is a torsion class of finite type}.

Theorem 4.2. (cf. Garkusha-Prest [8, Thm. C]) Let R be a commutative ring.
There are bijections between

• the set of all open subsets Y ⊆ (Injfg R)∗,

• the set of all torsion classes of finite type in ModR,

• the set of all thick subcategories of Dper(R).

These bijections are defined as follows:

Y 7→
{
S = {M | (M) ⊆ Y }
T = {X ∈ Dper(R) | (Hn(X)) ⊆ Y for all n ∈ Z}

S 7→
{
Y =

⋃
M∈S(M)

T = {X ∈ Dper(R) | Hn(X) ∈ S for all n ∈ Z}

T 7→
{
Y =

⋃
X∈T ,n∈Z(Hn(X))

S =
√
{Hn(X) | X ∈ T , n ∈ Z}

Proof. That SY = {M | (M) ⊆ Y } is a torsion class follows because it is defined as
the class of modules having no non-zero morphism to a family of injective modules,
E := InjR \ Y . By Lemma 3.7, E ∩ Spec∗R = U is a closed set in Spec∗R, that
is P (E) ∈ U for all E ∈ E . SY is also determined by the family of injective
modules {EP }P∈U . Indeed, any E ∈ E is a direct summand of some power of
EP (E) by the proof of Proposition 3.3. Therefore HomR(M,EP (E)) = 0 implies
HomR(M,E) = 0. By Proposition 3.1 SY is of finite type. Conversely, given a
torsion class of finite type S, the set YS =

⋃
M∈S(M) is plainly open in (Injfg R)∗.

Moreover, SYS = S and Y = YSY
.

Consider the following diagram:

L(Spec∗R)
ν //

φ

��

Lthick(Dper(R))
µ

oo

ρ

��
L((Injfg R)∗)

ζ //

ψ

OO

Ltor(ModR),
δ

oo

σ

OO

where φ, ψ are as in Lemma 3.7, µ, ν are as in Theorem 4.1 and the remaining
maps are the corresponding maps indicated in the formulation of the theorem. We
have ν = µ−1 by Theorem 4.1, φ = ψ−1 by Lemma 3.7, and ζ = δ−1 by the above.

By construction,

σζφ(V ) = {X |
⋃
n∈Z

suppR(Hn(X)) ⊆ V } = {X | supp(X) ⊆ V }
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for all V ∈ L(Spec∗R). Thus σζφ = ν. Since ζ, φ, ν are bijections so is σ.
On the other hand,

ψδρ(T ) =
⋃

X∈T ,n∈Z
suppR(Hn(X)) =

⋃
X∈T

supp(X)

for any T ∈ Lthick(Dper(R)). We have used here the relation⋃
M∈ρ(T )

suppR(M) =
⋃

X∈T ,n∈Z
suppR(Hn(X)).

One sees that ψδρ = µ. Since δ, ψ, µ are bijections so is ρ. Obviously, σ = ρ−1

and the diagram above yields the desired bijective correspondences. The theorem
is proved.

To conclude this section, we should mention the relation between torsion classes
of finite type in ModR and the Ziegler subspace topology on InjR (we denote this
space by InjzgR). The latter topology arises from Ziegler’s work on the model the-
ory of modules [20]. The points of the Ziegler spectrum of R are the isomorphism
classes of indecomposable pure-injective R-modules and the closed subsets corre-
spond to complete theories of modules. It is well known (see [14, 9.12]) that for
every coherent ring R there is a 1-1 correspondence between the open (equivalently
closed) subsets of Injzg R and torsion classes of finite type in ModR. However, this
is not the case for general commutative rings.

The topology on InjzgR can be defined as follows. Let M be the set of those
modules M which are kernels of homomorphisms between finitely presented mod-
ules; that is M = Ker(K

f−→ L) with K,L finitely presented. The sets (M) with
M ∈M form a basis of open sets for InjzgR. We claim that there is a ring R and
a module M ∈M such that the intersection (M)∩Spec∗R is not open in Spec∗R,
and hence such that the open subset (M) cannot correspond to any torsion class
of finite type on ModR. Such a ring has been pointed out by G. Puninski.

Let V be a commutative valuation domain with value group isomorphic to
Γ = ⊕n∈ZZ, a Z-indexed direct sum of copies of Z. The order on Γ is defined as
follows. (an)n∈Z > (bn)n∈Z if ai > bi for some i and ak = bk for every k < i.
Then J2 = J where J is the Jacobson radical of V . Let r be an element with
value v(r) = (an)n∈Z where a0 = 1 and an = 0 for all n 6= 0. Consider the ring
R = V/rJ . Again J(R)2 = J(R). Denoting the image of r in R by r′, note
that annR(r′) = J(R) which is not finitely generated, and so R is not coherent
by Chase’s Theorem (see [17, 1.13.3]). Note that R is a local ring and, as already
observed, the simple module R/J(R) is isomorphic to r′R. Therefore R/J(R) =
Ker(R→ R/r′R). Thus R/J(R) ∈M. We have

(R/J(R)) ∩ Spec∗R = V (J(R)) = {J(R)}.

Suppose V (J(R)) is open in Spec∗R; then V (J(R)) =
⋃
λ V (Iλ) with each Iλ

finitely generated. Since J(R) is the largest proper ideal each V (Iλ), if non-empty,
equals {J(R)}. Therefore J(R) =

√
Iλ for some λ. But the prime radical of every
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finitely generated ideal in R is prime (since R is a valulation ring) and different
from J(R). To see the latter, we have, since Iλ is finitely generated, that all
elements of Iλ have value > (a′n)n for some (a′n)n with a′n = 0 for all n ≤ N for
some fixed N . (Recall that the valuation v on R satisfies v(r+s) ≥ min{v(r), v(s)}
and v(rs) = v(r) + v(s).) It follows that there is a prime ideal properly between
Iλ and J(R). This gives a contradiction, as required.

5. Graded rings and modules

In this section we recall some basic facts about graded rings and modules.

Definition. A (positively) graded ring is a ring A together with a direct sum
decomposition A = A0 ⊕ A1 ⊕ A2 ⊕ · · · as abelian groups, such that AiAj ⊂
Ai+j for i, j ≥ 0. A homogeneous element of A is simply an element of one of
the groups Aj , and a homogeneous ideal of A is an ideal that is generated by
homogeneous elements. A graded A-module is an A-module M together with a
direct sum decompositionM = ⊕j∈ZMj as abelian groups, such that AiMj ⊂Mi+j

for i ≥ 0, j ∈ Z. One calls Mj the jth homogeneous component of M . The elements
x ∈Mj are said to be homogeneous (of degree j).

Note that A0 is a commutative ring with 1 ∈ A0, that all summands Mj are
A0-modules, and that M = ⊕j∈ZMj is a direct sum decomposition of M as an
A0-module.

Let A be a graded ring. The category of graded A-modules, denoted by GrA, has
as objects the graded A-modules. A morphism of graded A-modules f : M → N
is an A-module homomorphism satisfying f(Mj) ⊂ Nj for all j ∈ Z. An A-module
homomorphism which is a morphism in GrA will be called homogeneous.

Let M be a graded A-module and let N be a submodule of M . Say that N
is a graded submodule if it is a graded module such that the inclusion map is a
morphism in GrA. The graded submodules of A are called graded ideals. If d is an
integer the tail M≥d is the graded submodule of M having the same homogeneous
components (M≥d)j as M in degrees j ≥ d and zero for j < d. We also denote the
ideal A≥1 by A+.

For n ∈ Z, GrA comes equipped with a shift functor M 7→M(n) where M(n) is
defined by M(n)j = Mn+j . Then GrA is a Grothendieck category with generating
family {A(n)}n∈Z. The tensor product for the category of all A-modules induces
a tensor product on GrA: given two graded A-modules M,N and homogeneous
elements x ∈ Mi, y ∈ Nj , set deg(x ⊗ y) := i + j. We define the homomorphism
A-module HomA(M,N) to be the graded A-module which is, in dimension n ∈ Z,
the group HomA(M,N)n of graded A-module homomorphisms of degree n, i.e.,

HomA(M,N)n = GrA(M,N(n)).

We say that a graded A-module M is finitely generated if it is a quotient of a
free graded module of finite rank

⊕n
s=1A(ds) where d1, . . . , ds ∈ Z. Say that M
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is finitely presented if there is an exact sequence
m⊕
t=1

A(ct) →
n⊕
s=1

A(ds) →M → 0.

The full subcategory of finitely presented graded modules will be denoted by grA.
Note that any graded A-module is a direct limit of finitely presented graded A-
modules, and therefore GrA is a locally finitely presented Grothendieck category.

Let E be any indecomposable injective graded A-module (we remind the reader
that the corresponding ungraded module,

⊕
nEn, need not be injective in the

category of ungraded A-modules). Set P = P (E) to be the sum of the annihilator
ideals annA(x) of non-zero homogeneous elements x ∈ E. Observe that each ideal
annA(x) is homogeneous. Since E is uniform the set of annihilator ideals of non-
zero homogeneous elements of E is upwards closed so the only issue is whether the
sum, P (E), of them all is itself one of these annihilator ideals.

Given a prime homogeneous ideal P , we use the notation EP to denote the
injective hull, E(A/P ), of A/P . Notice that EP is indecomposable. We also denote
the set of isomorphism classes of indecomposable injective graded A-modules by
InjA.

Lemma 5.1. If E ∈ InjA then P (E) is a homogeneous prime ideal. If the module
E has the form EP (n) for some prime homogeneous ideal P and integer n, then
P = P (E).

Proof. The proof is similar to that of [14, 9.2].

It follows from the preceding lemma that the map

P ⊂ A 7→ EP ∈ InjA

from the set of homogeneous prime ideals to InjA is injective.
A tensor torsion class in GrA is a torsion class with torsion class S ⊂ GrA

such that for any X ∈ S and any Y ∈ GrA the tensor product X ⊗ Y is in S.

Lemma 5.2. Let A be a graded ring. Then a torsion class S is a tensor torsion
class of GrA if and only if it is closed under shifts of objects, i.e. X ∈ S implies
X(n) ∈ S for any n ∈ Z.

Proof. Suppose that S is a tensor torsion class of GrA. Then it is closed under
shifts of objects, because X(n) ∼= X ⊗A(n).

Assume the converse. Let X ∈ S and Y ∈ GrA. Then there is a surjection

⊕i∈IA(i)
f
� Y . It follows that 1X ⊗ f : ⊕i∈IX(i) → X ⊗ Y is a surjection. Since

each X(i) belongs to S then so does X ⊗ Y .

Lemma 5.3. The map

S 7−→ F(S) = {a ⊆ A | A/a ∈ S}

establishes a bijection between the tensor torsion classes in GrA and the sets F of
homogeneous ideals satisfying the following axioms:



Torsion classes of finite type and spectra 13

T1. A ∈ F;

T2. if a ∈ F and a is a homogeneous element of A then (a : a) = {x ∈ A | xa ∈
a} ∈ F;

T3. if a and b are homogeneous ideals of A such that a ∈ F and (b : a) ∈ F for
every homogeneous element a ∈ a then b ∈ F.

We shall refer to such filters as t-filters. Moreover, S is of finite type if and only
if F(S) has a basis of finitely generated ideals, that is every ideal in F(S) contains
a finitely generated ideal belonging to F(S). In this case F(S) will be refered to as
a t-filter of finite type.

Proof. It is enough to observe that there is a bijection between the Gabriel filters
on the family {A(n)}n∈Z of generators closed under the shift functor (i.e., if a
belongs to the Gabriel filter then so does a(n) for all n ∈ Z) and the t-filters.

Proposition 5.4. The following statements are true:

1. Let F be a t-filter. If I, J belong to F, then IJ ∈ F.

2. Assume that B is a set of homogeneous finitely generated ideals. The set B′

of finite products of ideals belonging to B is a basis for a t-filter of finite type.

Proof. (1). For any homogeneous element a ∈ I we have (IJ : a) ⊃ J , so IJ ∈ F
by T3 and the fact that every homogeneous ideal containing an ideal from F must
belong to F.

(2). We follow [17, VI.6.10]. We must check that the set F of homogeneous
ideals containing ideals in B′ is a t-filter of finite type. T1 is plainly satisfied. Let
a be a homogeneous element in A and I ∈ F. There is an ideal I ′ ∈ B′ contained
in I. Then (I : a) ⊃ I ′ and therefore (I : a) ∈ F, hence T2 is satisfied as well.

Next we verify that F satisfies T3. Suppose that I is a homogeneous ideal and
there exists J ∈ F such that (I : a) ∈ F for every homogeneous element a ∈ J . We
may assume that J ∈ B′. Let a1, . . . , an be generators of J . Then (I : ai) ∈ F,
i ≤ n, and (I : ai) ⊃ Ji for some Ji ∈ B′. It follows that aiJi ⊂ I for each i, and
hence JJ1 · · · Jn ⊂ J(J1 ∩ . . . ∩ Jn) ⊂ I, so I ∈ F.

6. Torsion modules and the category QGr A

Let A be a commutative graded ring. In this section we introduce the category
QGrA, which is analogous to the category of quasi-coherent sheaves on a projective
variety. The non-commutative analog of the category QGrA plays a prominent
role in “non-commutative projective geometry” (see, e.g., [1, 16, 19]).

Recall that the projective scheme ProjA is a topological space whose points are
the homogeneous prime ideals not containing A+. The topology of ProjA is defined
by taking the closed sets to be the sets of the form V (I) = {P ∈ ProjA | P ⊇ I}
for I a homogeneous ideal of A. We set D(I) := ProjA \ V (I).
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In the remainder of this section the homogeneous ideal A+ ⊂ A is
assumed to be finitely generated. This is equivalent to assuming that A is a
finitely generated A0-algebra. The space ProjA is spectral and the quasi-compact
open sets are those of the form D(I) with I finitely generated (see, e.g., [9, 5.1]).
Let TorsA denote the tensor torsion class of finite type corresponding to the family
of homogeneous finitely generated ideals {An+}n≥1 (see Proposition 5.4). We refer
to the objects of TorsA as torsion graded modules.

Let QGrA = GrA/TorsA. Let Q denote the quotient functor GrA→ QGrA.
We shall identify QGrA with the full subcategory of Tors-closed modules. The
shift functor M 7→ M(n) defines a shift functor on QGrA for which we shall use
the same notation. Observe that Q commutes with the shift functor. Finally we
shall write O = Q(A). Note that QGrA is a locally finitely generated Grothendieck
category with the family, {Q(M)}M∈grA, of finitely generated generators (see [7,
5.8]).

The tensor product in GrA induces a tensor product in QGrA, denoted by �.
More precisely, one sets

X � Y := Q(X ⊗ Y )

for any X,Y ∈ QGrA.

Lemma 6.1. Given X,Y ∈ GrA there is a natural isomorphism in QGrA:
Q(X) � Q(Y ) ∼= Q(X ⊗ Y ). Moreover, the functor − � Y : QGrA → QGrA
is right exact and preserves direct limits.

Proof. See [9, 4.2].

As a consequence of this lemma we get an isomorphism X(d) ∼= O(d) �X for
any X ∈ QGrA and d ∈ Z.

The notion of a tensor torsion class of QGrA (with respect to the tensor product
�) is defined analogously to that in GrA. The proof of the next lemma is like that
of Lemma 5.2 (also use Lemma 6.1).

Lemma 6.2. A torsion class S is a tensor torsion class of QGrA if and only if
it is closed under shifts of objects, i.e. X ∈ S implies X(n) ∈ S for any n ∈ Z.

Given a prime ideal P ∈ ProjA and a graded module M , denote by MP the
homogeneous localization of M at P . If f is a homogeneous element of A, by Mf

we denote the localization of M at the multiplicative set Sf = {fn}n≥0.

Lemma 6.3. If T is a torsion module then TP = 0 and Tf = 0 for any P ∈ ProjA
and f ∈ A+. As a consequence, MP

∼= Q(M)P and Mf
∼= Q(M)f for any M ∈

GrA.

Proof. See [9, 5.5].

Denote by Ltor(GrA,TorsA) (respectively Ltor(QGrA)) the lattice of the ten-
sor torsion classes of finite type in GrA with torsion classes containing TorsA
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(respectively the tensor torsion classes of finite type in QGrA) ordered by inclu-
sion. The map

` : Ltor(GrA,TorsA) −→ Ltor(QGrA), S 7−→ S/TorsA

is a lattice isomorphism, where S/TorsA = {Q(M) | M ∈ S} (see, e.g., [7, 1.7]).
We shall consider the map ` as an identification.

Theorem 6.4 (Classification). Let A be a commutative graded ring which is finitely
generated as an A0-algebra. Then the maps

V 7→ S = {M ∈ QGrA | suppA(M) ⊆ V } and S 7→ V =
⋃
M∈S

suppA(M)

induce bijections between

1. the set of all open subsets V ⊆ Proj∗A,

2. the set of all tensor torsion classes of finite type in QGrA.

Proof. By Lemma 5.3 it is enough to show that the maps

V 7→ FV = {I ∈ A | V (I) ⊆ V } and F 7→ VF =
⋃
I∈F

V (I)

induce bijections between the set of all open subsets V ⊆ Proj∗A and the set of all
t-filters of finite type containing {An+}n≥1.

Let F be such a t-filter. Then the set ΛF of finitely generated graded ideals I
belonging to F is a basis for F. Clearly VF =

⋃
I∈ΛF

V (I), so VF is open in Proj∗A.
Now let V be an open subset of Proj∗A. Let Λ be the set of finitely generated

homogeneous ideals I such that V (I) ⊆ V . Then V =
⋃
I∈Λ V (I) and I1 · · · In ∈ Λ

for any I1, . . . , In ∈ Λ. We denote by F′V the set of homogeneous ideals I ⊂ A such
that I ⊇ J for some J ∈ Λ. By Proposition 5.4(2) F′V is a t-filter of finite type.
Clearly, F′V ⊂ FV . Suppose I ∈ FV \ F′V .

We can use Zorn’s lemma to find an ideal J ⊃ I which is maximal with respect
to J /∈ F′V (we use the fact that F′V has a basis of finitely generated ideals). We
claim that J is prime. Indeed, suppose a, b ∈ A are two homogeneous elements
not belonging to J . Then J + aA and J + bA must be members of F′V , and also
(J+aA)(J+bA) ∈ F′V by Proposition 5.4(1). But (J+aA)(J+bA) ⊂ J+abA, and
therefore ab /∈ J . We see that J ∈ V (I) ⊂ V , and hence J ∈ V (I ′) for some I ′ ∈ Λ.
But this implies J ∈ F′V , a contradiction. Thus F′V = FV . Clearly, V = VFV

for
every open subset V ⊆ Proj∗A. Let F be a t-filter of finite type and I ∈ F. Then
I ⊃ J for some J ∈ ΛF, and hence V (I) ⊂ V (J) ⊂ VF. It follows that F ⊂ FVF

. As
above, there is no ideal belonging to FVF

\F. We have shown the desired bijection
between the sets of all t-filters of finite type and all open subsets in Proj∗A.
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7. The prime spectrum of an ideal lattice

Inspired by recent work of Balmer [4], Buan, Krause, and Solberg [5] introduce the
notion of an ideal lattice and study its prime ideal spectrum. Applications arise
from abelian or triangulated tensor categories.

Definition (Buan, Krause, Solberg [5]). An ideal lattice is by definition a partially
ordered set L = (L,≤), together with an associative multiplication L × L → L,
such that the following holds.

(L1) The poset L is a complete lattice, that is,

supA =
∨
a∈A

a and inf A =
∧
a∈A

a

exist in L for every subset A ⊆ L.

(L2) The lattice L is compactly generated , that is, every element in L is the supre-
mum of a set of compact elements. (An element a ∈ L is compact, if for all
A ⊆ L with a ≤ supA there exists some finite A′ ⊆ A with a ≤ supA′.)

(L3) We have for all a, b, c ∈ L

a(b ∨ c) = ab ∨ ac and (a ∨ b)c = ac ∨ bc.

(L4) The element 1 = supL is compact, and 1a = a = a1 for all a ∈ L.

(L5) The product of two compact elements is again compact.

A morphism φ : L→ L′ of ideal lattices is a map satisfying

φ(
∨
a∈A

a) =
∨
a∈A

φ(a) for A ⊆ L,

φ(1) = 1 and φ(ab) = φ(a)φ(b) for a, b ∈ L.

Let L be an ideal lattice. Following [5] we define the spectrum of prime elements
in L. An element p 6= 1 in L is prime if ab ≤ p implies a ≤ p or b ≤ p for all
a, b ∈ L. We denote by SpecL the set of prime elements in L and define for each
a ∈ L

V (a) = {p ∈ SpecL | a ≤ p} and D(a) = {p ∈ SpecL | a 6≤ p}.

The subsets of SpecL of the form V (a) are closed under forming arbitrary inter-
sections and finite unions. More precisely,

V (
∨
i∈Ω

ai) =
⋂
i∈Ω

V (ai) and V (ab) = V (a) ∪ V (b).

Thus we obtain the Zariski topology on SpecL by declaring a subset of SpecL to
be closed if it is of the form V (a) for some a ∈ L. The set SpecL endowed with



Torsion classes of finite type and spectra 17

this topology is called the prime spectrum of L. Note that the sets of the form
D(a) with compact a ∈ L form a basis of open sets. The prime spectrum SpecL
of an ideal lattice L is spectral [5, 2.5].

There is a close relation between spectral spaces and ideal lattices. Given a
topological space X, we denote by Lopen(X) the lattice of open subsets of X and
consider the multiplication map

Lopen(X)× Lopen(X) → Lopen(X), (U, V ) 7→ UV = U ∩ V.

The lattice Lopen(X) is complete.
The following result, which appears in [5], is part of the Stone Duality Theorem

(see, for instance, [12]).

Proposition 7.1. Let X be a spectral space. Then Lopen(X) is an ideal lattice.
Moreover, the map

X → SpecLopen(X), x 7→ X \ {x},

is a homeomorphism.

We deduce from the classification of torsion classes of finite type (Theorems 2.2
and 6.4) the following.

Proposition 7.2. Let R (respectively A) be a commutative ring (respectively
graded commutative ring which is finitely generated as an A0-algebra). Then
Ltor(ModR) and Ltor(QGrA) are ideal lattices.

Proof. The spaces SpecR and ProjA are spectral. Thus Spec∗R and Proj∗A
are spectral, also Lopen(Spec∗R) and Lopen(Proj∗A) are ideal lattices by Propo-
sition 7.1. By Theorems 2.2 and 6.4 we have isomorphisms Lopen(Spec∗R) ∼=
Ltor(ModR) and Lopen(Proj∗A) ∼= Ltor(QGrA). Therefore Ltor(ModR) and Ltor(QGrA)
are ideal lattices.

Corollary 7.3. Let R (respectively A) be a commutative ring (respectively graded
commutative ring which is finitely generated as an A0-algebra). The points of
SpecLtor(ModR) (respectively SpecLtor(QGrA)) are the ∩-irreducible torsion classes
of finite type in ModR (respectively tensor torsion classes of finite type in QGrA)
and the maps

f : Spec∗R −→ SpecLtor(ModR), P 7−→ SP = {M ∈ ModR |MP = 0}
f : Proj∗A −→ SpecLtor(QGrA), P 7−→ SP = {M ∈ QGrA |MP = 0}

are homeomorphisms of spaces.

Proof. This is a consequence of Theorems 2.2, 6.4 and Propositions 7.1, 7.2.
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8. Reconstructing affine and projective schemes

Let R (respectively A) be a commutative ring (respectively graded commutative
ring which is finitely generated as an A0-algebra). We shall write Spec(ModR) :=
Spec∗ Ltor(ModR) (respectively Spec(QGrA) := Spec∗ Ltor(QGrA)) and supp(M) :=
{P ∈ Spec(ModR) | M 6∈ P} (respectively supp(M) := {P ∈ Spec(QGrA) | M 6∈
P}) for M ∈ ModR (respectively M ∈ QGrA). It follows from Corollary 7.3 that

suppR(M) = f−1(supp(M)) (respectively suppA(M) = f−1(supp(M))).

Following [4, 5], we define a structure sheaf on Spec(ModR) (Spec(QGrA)) as
follows. For an open subset U ⊆ Spec(ModR) (U ⊆ Spec(QGrA)), let

SU = {M ∈ ModR (QGrA) | supp(M) ∩ U = ∅}

and observe that SU = {M | MP = 0 for all P ∈ f−1(U)} is a (tensor) torsion
class. We obtain a presheaf of rings on Spec(ModR) (Spec(QGrA)) by

U 7→ EndModR/SU
(R) (EndQGrA/SU

(O)).

If V ⊆ U are open subsets, then the restriction map

EndModR/SU
(R) → EndModR/SV

(R) (EndQGrA/SU
(O) → EndQGrA/SV

(O))

is induced by the quotient functor ModR/SU → ModR/SV (QGrA/SU → QGrA/SV ).
The sheafification is called the structure sheaf of ModR (QGrA) and is denoted
by OModR (OQGrA). This is a sheaf of commutative rings by [13, XI.2.4]. Next
let P ∈ Spec(ModR) and P := f−1(P). We have

OModR,P = lim−→
P∈U

EndModR/SU
(R) = lim−→

f /∈P
EndModR/SD(f)

(R) ∼= lim−→
f /∈P

Rf = OR,P .

Similarly, for P ∈ Spec(QGrA) and P := f−1(P) we have

OQGrA,P ∼= OProjA,P .

The next theorem says that the abelian category ModR (QGrA) contains all
the necessary information to reconstruct the affine (projective) scheme (SpecR,OR)
(respectively (ProjA,OProjA)).

Theorem 8.1 (Reconstruction). Let R (respectively A) be a ring (respectively
graded ring which is finitely generated as an A0-algebra). The maps of Corollary 7.3
induce isomorphisms of ringed spaces

f : (SpecR,OR) ∼−→ (Spec(ModR),OModR)

and
f : (ProjA,OProjA) ∼−→ (Spec(QGrA),OQGrA).
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Proof. The proof is similar to that of [5, 9.4]. Fix an open subset U ⊆ Spec(ModR)
and consider the composition of the functors

F : ModR
g(−)−−→ QcohSpecR

(−)|f−1(U)−−−−−−−→ Qcoh f−1(U).

Here, for any R-module M , we denote by M̃ its associated sheaf. By defini-
tion, the stalk of M̃ at a prime P equals the localized module MP . We claim
that F annihilates SU . In fact, M ∈ SU implies f−1(supp(M)) ∩ f−1(U) = ∅
and therefore suppR(M) ∩ f−1(U) = ∅. Thus MP = 0 for all P ∈ f−1(U) and
therefore F (M) = 0. It follows that F factors through ModR/SU and induces
a map EndModR/SU

(R) → OR(f−1(U)) which extends to a map OModR(U) →
OR(f−1(U)). This yields the morphism of sheaves f ] : OModR → f∗OR.

By the above f ] induces an isomorphism f ]P : OModR,f(P ) → OR,P at each
point P ∈ SpecR. We conclude that f ]P is an isomorphism. It follows that f
is an isomorphism of ringed spaces if the map f : SpecR → Spec(ModR) is a
homeomorphism. This last condition is a consequence of Propositions 7.1 and 7.2.
The same arguments apply to show that

f : (ProjA,OProjA) ∼−→ (Spec(QGrA),OQGrA)

is an isomorphism of ringed spaces.

9. Appendix

A subcategory S of a Grothendieck category C is said to be Serre if for any short
exact sequence

0 → X ′ → X → X ′′ → 0

X ′, X ′′ ∈ S if and only if X ∈ S. A Serre subcategory S of C is said to be a
torsion class if S is closed under taking coproducts. An object C of C is said
to be torsionfree if (S, C) = 0. The pair consisting of a torsion class and the
corresponding class of torsionfree objects is referred to as a torsion theory. Given
a torsion class S in C the quotient category C/S is the full subcategory with objects
those torsionfree objects C ∈ C satisfying Ext1(T,C) = 0 for every T ∈ S. The
inclusion functor i : S → C admits the right adjoint t : C → S which takes every
object X ∈ C to the maximal subobject t(X) of X belonging to S. The functor t
we call the torsion functor. Moreover, the inclusion functor i : C/S → C has a left
adjoint, the localization functor (−)S : C → C/S, which is also exact. Then,

HomC(X,Y ) ∼= HomC/S(XS , Y )

for all X ∈ C and Y ∈ C/S. A torsion class S is of finite type if the functor
i : C/S → C preserves directed sums. If C is a locally coherent Grothendieck
category then S is of finite type if and only if i : C/S → C preserves direct limits
(see, e.g., [7]).
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Let C be a Grothendieck category having a family of finitely generated projec-
tive generators A = {Pi}i∈I . Let F =

⋃
i∈I Fi be a family of subobjects, where

each Fi is a family of subobjects of Pi. We refer to F as a Gabriel filter if the
following axioms are satisfied:

T1. Pi ∈ Fi for every i ∈ I;

T2. if a ∈ Fi and µ : Pj → Pi then {a : µ} = µ−1(a) ∈ Fj ;

T3. if a and b are subobjects of Pi such that a ∈ Fi and {b : µ} ∈ Fj for any
µ : Pj → Pi with Imµ ⊂ a then b ∈ Fi.

In particular each Fi is a filter of subobjects of Pi. A Gabriel filter is of finite type
if each of these filters has a cofinal set of finitely generated objects (that is, if for
each i and each a ∈ Fi there is a finitely generated b ∈ Fi with a ⊇ b).

Note that if A = {A} is a ring and a is a right ideal of A, then for every
endomorphism µ : A→ A

µ−1(a) = {a : µ(1)} = {a ∈ A | µ(1)a ∈ a}.

On the other hand, if x ∈ A, then {a : x} = µ−1(a), where µ ∈ EndA is such that
µ(1) = x.

It is well-known (see, e.g., [7]) that the map

S 7−→ F(S) = {a ⊆ Pi | i ∈ I, Pi/a ∈ S}

establishes a bijection between the Gabriel filters (respectively Gabriel filters of
finite type) and the torsion classes on C (respectively torsion classes of finite type
on C).
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