UNIVERSAL BIVARIANT ALGEBRAIC K-THEORIES

GRIGORY GARKUSHA

ABSTRACT. To any admissible category of algebras and a family of fibrations on it a
universal bivariant excisive homotopy invariant algebraic K-theory is associated. Also,
Morita invariant and stable universal bivariant K-theories are studied. We introduce
an additive category of correspondencies for non-unital algebras and study the problem
of when stable bivariant K-groups can be computed by means of correspondences.

In relation with the Atiyah-Singer theorem, Kasparov introduced bivariant Z/2-
graded abelian groups K K,(A, B) on the level of C*-algebras with remarkable formal
properties, one of which comes from the associative product K K,(A, B)x KK, (B,C) —
KK,(A,C). After Cuntz [6] and Higson [17] one can define an additive category K K by
taking separable C*-algebras as objects and K Ky(A, B) as set of morphisms between the
objects A and B. In fact, K K can be regarded as a functor from the category of separable
C*-algebras with ordinary morphisms (x¥-homomorphisms) into the category K K whose
objects are separable C*-algebras and whose morphisms are KKy(A, B). Moreover,
any morphism f : A — B naturally defines an element of K Ky(A, B) and the Kasparov
product extends the composition of morphisms. Now K K is the universal functor into an
additive category A that is homotopy invariant, C*-stable (i.e., A(A,K®B) = A(A, B)),
and split exact (i.e., A(A,E) = A(A,J)® A(A,B),if0 - J - FE — B — 0is a split
exact sequence of C*-algebras).

Using abstract ideas from category theory, Higson constructed a new theory, later
called E-theory. One takes the additive category K K and forms a category of fractions £
with morphism sets F(A, B) by inverting in K K all morphisms induced by an inclusion
I — A of a closed ideal I into a C*-algebra A, for which the quotient A/T is contractible.
The category E is additive with a natural functor from the category of separable C*-
algebras into E (which factors over KK). In E, every extension of C*-algebras (not
necessarily admitting a completely positive splitting) induces long exact sequences in
E(—,D) and E(D,—). Moreover, FE is the universal functor into an additive category
which is homotopy invariant, stable and half-exact. The categories K K and E as well
as some other variants of bivariant theories can be viewed as triangulated categories
(see [20, 22]).

Since the construction of K K-theory and E-theory used techniques which are quite
specific to C*-algebras it seemed for many years that similar theories for other topological
algebras would be impossible. However, in [7, 8, 9] Cuntz constructed a bivariant two-
periodic theory kkl°*( A, B) on the category of locally convex algebras with all the desired
properties, in particular the usual properties of (differentiable) homotopy invariance,
long exact sequences associated with extensions and stability under tensoring by the
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algebra of rapidly decreasing matrices. Similar to the triangulated categories K K and
this bivariant theory can also be thought of as a triangulated category, denoted by kk?,
whose objects are the locally convex algebras and Hom-sets are given by kk:éca(A, B).
There is as well a canonical functor from the category of locally convex algebras to the
category kk'®. This theory also allows to carry over ideas and techniques from locally
convex algebras to its possible algebraic counterpart for the category of all algebras.

Motivated by ideas and work of J. Cuntz on bivariant K-theory of locally convex alge-
bras [7, 8, 9], Cortinas and Thom [5] define bivariant graded abelian groups kk.(A, B) on
the category Alg,. of algebras over a unital ground ring k. The groups depend on a class
§ of extensions of algebras, which is either the class §surj of all surjective homomorphisms
of k-algebras or the class of k-split surjective homomorphisms §sp1. This bivariant theory
can also be thought of as a triangulated category kk, whose objects are those of Alg;
and morphisms between two algebras A, B € Alg,. are given by kko(A, B). There is a
canonical functor j : Alg, — kk sending an algebra to itself. Cortifas—Thom [5] prove
that j is the universal functor from Alg; to a triangulated category 7 that is (polyno-
mially) homotopy invariant, M-invariant (i.e., 7 (A, Mook @y B) = T (A, B) with Mk
the algebra of all finite matrices over k), and every extension 0 - J - F — B — 0in §
is mapped in a functorial way to a triangle QB % J - E—-BinT. The triangulated
category kk can be viewed as the desired algebraic counterpart of kk!® in the sense of
Cuntz.

Independent of [5] the author introduced in [10] various algebraic bivariant K -theories,
all of which are realized in triangulated categories. In particular, he recovers the cat-
egory kk of Cortinas—Thom. However [10] does not study universal bivariant theories.
The paper is to construct universal homotopy invariant, excisive algebraic bivariant
K-theories. For this we use ideas and techniques developed in [10]. We start with a
datum of an admissible category of algebras #& and a class § of fibrations on it and then
construct a triangulated category D(R,§) out of the datum (R, F) by inverting certain
arrows which we call weak equivalences. There is a canonical functor ® — D(R,§).
It is the universal functor from R to a triangulated category 7 that is (polynomially)
homotopy invariant and every extension 0 — J — F — B — 0 in § is mapped in a

functorial way to a triangle QB % JsE—-BinT (Theorem 2.6).

It should be emphasized that we do not consider any matrix-invariance in general.
This is one of the most important features of the paper. This is caused by the fact that
many interesting admissible categories of algebras deserving to be considered separately
like that of all commutative ones are not closed under matrices. The most important
classes of fibrations in practice are Fsp1 or Fsurj. We call D(R, Fsp1) and D(R, Feurj) the
unstable algebraic KK - and E-theories respectively. One could also call them “dematri-
cized” K-theories or K-theories “without matrices” as they do not involve any matrices
at all.

We next introduce matrices into the game and study universal bivariant, excisive,
homotopy invariant and “Morita invariant” algebraic K-theories. For this a triangulated
category Dpor(R,§) is constructed in an explicit way. More precisely, the objects of
Dior(R,F) are those of R and the set of morphisms between two algebras A, B € R is
defined as the colimit of the sequence of abelian groups

D(R,%)(A,B) — D(R,3)(A, MsB) — D(R, ) (A, M3B) — - --



There is a canonical functor ® — Dy (R, §). It is the universal functor from R to
a triangulated category 7 that is (polynomially) homotopy invariant, Morita invariant
(i.e., T(A,M,B) = T (A, B) for all n), and every extension 0 - J - E — B — 0in §

is mapped in a functorial way to a triangle QB % J—E—-BinT (Theorem 6.5). We
call Dypor (R, Ssp1) and Diyor (R, Ssurj) the Morita stable algebraic KK- and E-theories
respectively.

And finally, we introduce and study universal bivariant, excisive, homotopy invariant
and Mo-invariant (or “stable”) algebraic K-theories. For this a triangulated category
D4 (R, F) is constructed in an explicit way. More precisely, the objects of Dy (R, ) are
those of R and the set of morphisms between two algebras A, B € R is defined as the
colimit of the sequence of abelian groups

DR,5)(A,B) — D(R,F)(A, Mok @1 B) — D(R,F) (A, Mook @ Mook @i B) — -

There is a canonical functor ® — Dg (R, ). It is the universal functor from R to a
triangulated category 7 that is (polynomially) homotopy invariant, M-invariant, and
every extension 0 - J — F — B — 0 in § is mapped in a functorial way to a triangle

OB % J — E — Bin T (Theorem 9.3). As above, we call Dy (R, Fop1) and Dyr(R, Four;)
the stable algebraic K K- and E-theories respectively.

We show that morphisms in D, (R, §) and Dy (R, F) are closely related to additive
categories of correspondences of Kassel [19] and Grayson [15]. We also introduce an
additive category of correspondences kh for non-unital algebras and show that

colim,, kh(k, S"Q"A) = K Hy(A)

for any A € Alg;, where Q,% are the loop and suspension functors, K Hy(A) is the
zeroth homotopy K-theory group in the sense of Weibel [24] (Theorem 10.2).

We also prove a result stating when Dy (R, §)(k, A) are computed by means of corre-
spondences (Theorem 10.6). This is an extension of an important computational result
by Cortinas—Thom saying that

kk,(k, A) = K H,(A),

where the right hand side is homotopy K-theory in the sense of Weibel [24].

One should mention that our approach is entirely different from that of Cuntz—
Cortinas—Thom. In particular, it allows to consider very general classes of algebras
® and fibrations § on them.

Throughout the paper k is a fixed commutative ring with unit and Algy, is the category
of non-unital k-algebras and non-unital k-homomorphisms. By Alg) we denote the full
subcategory in Alg, of unital algebras. If there is no likelihood of confusion, we replace
®r by ®. If C is a category and A, B are objects of C, we shall often write C(A, B) to
denote the Hom-set Hom¢ (A, B).

In general, we shall not be very explicit about set-theoretical foundations, and we
shall tacitly assume we are working in some fixed universe U of sets. Members of U are
then called small sets, whereas a collection of members of U which does not itself belong
to U will be referred to as a large set or a proper class.



1. PRELIMINARIES

This section gives the preliminaries to the definition of triangulated categories for
algebras which we shall introduce in the next section.

1.1. Algebraic homotopy

Following Gersten [12] a category of non-unital k-algebras R is admissible if it is a full
subcategory of Alg; and

(1) Rin R, I a (two-sided) ideal of R then I and R/I are in R;
(2) if R is in R, then so is R[z], the polynomial algebra in one variable;
(3) given a cartesian square

p

D——A

L,

B—">C
in Alg;, with A, B,C in R, then D is in &.

Observe that every algebra which is isomorphic to an algebra from R belongs to R.
One may abbreviate 1, 2, and 3 by saying that R is closed under operations of taking
ideals, homomorphic images, polynomial extensions in a finite number of variables, and
pullbacks. For instance, the category of commutative k-algebras CAlg,, is admissible.

Recall that an algebra A is square zero if A% = 0. If we regard every k-module M as
a non-unital k-algebra with trivial multiplication m; - mo = 0 for all m1,mg € M, then
Mod k is an admissible category of k-algebras coinciding with the category of square
zero algebras.

If R is an algebra then the polynomial algebra R[x] admits two homomorphisms onto

R
03
Rlz] —= R
0;
where ‘ ‘
0vlr=1g, O.(x)=1i, i=0,1.
Of course, d}(x) = 1 has to be understood in the sense that Yr,z" — Xr,.

Definition. Two homomorphisms fy, fi : S — R are elementary homotopic, written
fo ~ fi, if there exists a homomorphism

f:S — Rz]

such that 9%f = fo and dLf = fi. A map f: S — R is called an elementary homotopy
equivalence if there is a map g : R — S such that fg and gf are elementary homotopic
to idg and idg respectively.

For example, let A be a Z,>o-graded algebra, then the inclusion 49 — A is an
elementary homotopy equivalence. The homotopy inverse is given by the projection
A — Ap. Indeed, the map A — A[z] sending a homogeneous element a,, € A,, to a,t"
is a homotopy between the composite A — Ay — A and the identity id4.

The relation “elementary homotopic” is reflexive and symmetric [12, p. 62]. One may
take the transitive closure of this relation to get an equivalence relation (denoted by



the symbol “~"). Following notation of Gersten [13], the set of equivalence classes of
morphisms R — S is written [R, S].

Lemma 1.1 (Gersten [13]). Given morphisms in Alg,,

RIss7 7ty
g/

such that g ~ ¢', then gf ~ ¢'f and hg ~ hg'.

Thus homotopy behaves well with respect to composition and we have category
H(Algy,), the homotopy category of k-algebras, whose objects are k-algebras and Homy(alg, ) (R, S) =
[R,S]. The homotopy category of an admissible category of algebras R will be denoted
by H(R). Call a homomorphism s : A — B an I-weak equivalence if its image in H(R)
is an isomorphism.
The diagram in Alg,

PNy KNG
is a short exact sequence if f is injective (= Ker f = 0), g is surjective, and the image
of f is equal to the kernel of g.

Definition. An algebra R is contractible if 0 ~ 1; that is, if there is a homomorphism
f: R — Rx] such that %f = 0 and 9. f = 1p.

For example, every square zero algebra A € Alg, is contractible by means of the
homotopy A — Alz], a € A — ax € A[x]. Therefore every k-module, regarded as a
k-algebra with trivial multiplication, is contractible.

Following Karoubi and Villamayor [18] we define E'R, the path algebra on R, as the
0

kernel of d) : R[z] — R, so ER — R[7] % R is a short exact sequence in Alg,. Also

O} : R[z] — R induces a surjection
d:ER—R
and we define the loop algebra QR of R to be its kernel, so we have a short exact sequence
81
QR — ER = R.

We call it the loop extension of R. Clearly, QR is the intersection of the kernels of 92
and O}. By [12, 3.3] ER is contractible for any algebra R.

1.2. Fibrations of algebras

Definition. Let R be an admissible category of algebras. A family § of surjective
homomorphisms of R is called fibrations if it meets the following axioms:

Ax 1) for each Rin R, R — 0 is in §;

Ax 2) § is closed under composition and any isomorphism is a fibration;

Ax 3) if the diagram

D=4
Ui f
B

.0



is cartesian in & and g € §, then p € §F;
Ax 4) any map u in R can be factored u = pi, where p is a fibration and i is an I-weak
equivalence.

We call a short exact sequence in R
AL pLtc
with f € § a §-fibre sequence.

T is said to be saturated if the homomorphism 9. : EA — A is a fibration for any
A € R. It is tensor closed if for any fibration p and any D € R the sequence

Kerp® D "L pop L ce D

is a §-fibre sequence.

The trivial case is ® = § = 0. A non-trivial example, R £ 0, of fibrations is given by
the surjective homomorphisms. Another important example of fibrations is defined by
any left exact functor. Recall that a functor F' : Alg, — Sets is left exact if F' preserves
finite limits. In particular, if A — B — C'is a short exact sequence in Alg,,, then

0—FA—FB— FC

is an exact sequence of pointed sets (since the zero algebra is a zero object in Algy, it
determines a unique element of F'A). Furthermore F' preserves cartesian squares.
For instance, any representable functor is left exact as well as the functor (see Ger-
sten [12])
R € Alg, — GL(R).

Definition. A surjective map g : B — C is said to be a F-fibration (where F' : Alg;, —
Sets is a functor) if F(E"(g)) : FE"B — FE"C is surjective for all n > 0. Observe
that nothing is said about F(g) : FB — FC. It follows that if the composite fg of two
maps is a F-fibration, then so is f. If F' = GL we refer to F-fibrations as G L-fibrations.
We also note that the family §quj of all surjective homomorphisms is the family of
F-fibrations with F' sending an algebra A to its underlying set.

By [10, 4.1] the collection of F-fibrations, where F' : 8 — Sets is left exact, enjoys
the axioms Ax 1)-4) for fibrations on R and is saturated. Similarly, it can be checked
that the collection of surjective k-split homomorphisms §p1 forms a saturated family of
fibrations. §sp is plainly tensor closed. Observe that if & is a field then Fgp1 = Ssurj-

There are plenty of fibrations between §p1 and Fqurj. For example, every proper class
w in the category of k-modules in the sense of [11] gives rise to a class of fibrations
Sspl € Sw € Ssurj- A basic example is the class §pure of those k-algebra homomorphisms
which are pure epimorphisms in Mod k.

1.3. Categories of fibrant objects

Definition. Let A be a category with finite products and a final object e. Assume that
A has two distinguished classes of maps, called weak equivalences and fibrations. A map
is called a trivial fibration if it is both a weak equivalence and a fibration. We define a
path space for an object B to be an object B! together with maps

B> Bl %, pyp



where s is a weak equivalence, (dy, d;) is a fibration, and the composite is the diagonal
map.

Following Brown [2], we call A a category of fibrant objects or a Brown category if the
following axioms are satisfied.

(A) Let f and g be maps such that gf is defined. If two of f, g, gf are weak
equivalences then so is the third. Any isomorphism is a weak equivalence.

(B) The composite of two fibrations is a fibration. Any isomorphism is a fibration.

(C) Given a diagram

A% C & B,

with v a fibration (respectively a trivial fibration), the pullback A x¢ B exists and the
map A X¢ B — A is a fibration (respectively a trivial fibration).

(D) For any object B in A there exists at least one path space B! (not necessarily
functorial in B).

(E) For any object B the map B — e is a fibration.

2. TRIANGULATED CATEGORIES OF ALGEBRAS

In this section we want to introduce a triangulated category D(R,§, W) associated
with a triple (R, §, W), where R is an admissible category of algebras, § is a saturated
family of fibrations on it and W is an arbitrary class of weak equivalences containing
A — AJt], A € R, such that (R,F,V) is a Brown category. The category D(R,§, W)
was first constructed in [10] for the case when W is the class of “§-quasi-isomorphisms”.
In practice we have to work with various families of weak equivalences. For this reason
we need to introduce D(R, §, W) for quite general classes of weak equivalences. Though
the construction of D(R,§, W) is very close to that in [10] for “§-quasi-isomorphisms”,
we give it here from scratch in order to be sure that nothing goes wrong. The main
class of weak equivalences Wa we work with is defined by means of excisive, homotopy
invariant homology theories. We start with preparations.

2.1. Left derived categories

Recall that a pair (C, W) of a category C and a class of morphisms W is said to admit
a calculus of right fractions if the following properties hold.

e IV contains all identities and is closed under composition.
e Given an arrow v : x — z in W and any arrow f : y — z, there is an arrow
v/ 1w — yin W and an arrow f’:w — z in C such that fv' = vf’.
e Given an arrow v : y — z in W and a pair of parallel morphisms f,g: 2z — y
such that vf = vg, there is an arrow u : w — x in W such that fu = gu.
If (C°P, W°P) admits a calculus of right fractions, we say that (C, W) admits a calculus
of left fractions.
Let § be a saturated family of fibrations in an admissible not necessarily small category
of algebras R and let W be a class of weak equivalences containing homomorphisms
A — Alt], A € R, such that the triple (®,§, W) is a Brown category.

Definition. The left derived category D~ (R,§, V) of R with respect to (F,WV) is the
category obtained from R by inverting the weak equivalences.



Proposition 2.1. The family of weak equivalences in the category HR admits a calcu-
lus of right fractions. The left derived category D~ (R,§, W) is obtained from HR by
inverting the weak equivalences.

Proof. The proof is similar to that of [10, Prop. 5.2]. O

We should remark that if the category R is not small then the left derived cate-
gory D™ (R, §, W) is possibly “large”, i.e. for any given pair of algebras A, B € R the
equivalence classes of fractions D~ (R, §, W)(A4, B) do not form a small set.

Below we shall need the following

Lemma 2.2. Let Ao B 5 C be a F-fibre sequence with C weakly equivalent to zero.
Then i is a weak equivalence.

Proof. Consider a commutative diagram

B-—YtsC=<—0

|

B—0~<~—0
with left vertical arrows fibrations. Our assertion now follows from [14, 11.9.10]. O

The endofunctor 2 : R — R respects weak equivalences. Indeed, let f: A — B be a
weak equivalence. Consider the following commutative diagram:

1

o}
QA= EA—> A

in E(f)i lf
0z

QB> EB—> B

Since EA, EB are isomorphic to zero in D~ (R, §, W), it follows that E(f) is a weak
equivalence. Then Qf is a weak equivalence by [2, §4, Lemma 3]. Thus Q can be
regarded as an endofunctor of D~ (R,§, W). It can be shown similar to [10, 5.4] that
if § is a saturated family of fibrations, then QA is a group object in D~ (R, F, W). We
also refer the reader to [2, §4, Cor. 2].

A group structure on QA is explicitly constructed as follows (see [10]). Let Bx] xp

Bla] := {(f(z),9(z)) | f(1) = g(0)} and let QB be the kernel of (dy, d;) : B[z] xpBlz] —
B x B, (f(x),g9(x)) — (f(0),g(1)). Consider the homomorphism « : QB — QB,
f(x) — (f(x),0). Using Lemma 2.2 and the proof of [10, 6.1], it is a weak equivalence.

Let w: QA4 x QA — QA be the evident map induced by the pullback property. Then
pa=a tw:QAx QA — QA

determines a group structure on QA (see [10, section 6]). For any n > 2 the algebra
2" A is an abelian group object in D~ (R, §, W) (see [10, 6.5]).



Given a fibration g : A — B with kernel F, consider the commutative diagram as
follows:

OB —— OB
) |
F—'>P(g) EB
[,
F—ts4—2sp

Since E'B is contractible, it follows from Lemma 2.2 that ¢ is a weak equivalence. We
deduce the sequence in D~ (R, §, W)
1y

OB~ Fp- 4% B (1)
We shall refer to such sequences as standard left triangles. Any diagram in D~ (R, §, W)
which is isomorphic to the latter sequence will be called a left triangle. One must be
careful to note that OB’ — F/ — A’ — B’ is isomorphic to a standard triangle (1) if
and only if there is a commutative diagram

OB F A B
of bl
QB’ F’ A B’

with f,a,b isomorphisms in D~ (R, §, W).
It follows that the diagram

oB L p(g) 242 B (2)

is a left triangle. If g is not a fibration then g is factored as g = ¢’¢ with ¢’ a fibration
and ¢ a weak equivalence. We get a commutative diagram

OB ——>P(g)——>A—2>B

[

OB—— P(¢) —= A’ — B.

If § is a saturated family of fibrations, then the arrow ¢ is a weak equivalence by [14,
11.9.10]. Hence the upper sequence of the diagram is a left triangle. This also verifies
that any map in D~ (R, §) fits into a left triangle.

For any algebra A the automorphism o = 04 : QA4 — QA takes a polynomial a(z)
to a(l — x). Notice that o is functorial in A and ¢ = 1. Given a morphism « in
D= (R,5, W), by —Qa denote the morphism Qa oo = oo Qa. For any n > 1 the
morphism (—1)"Qa means 0"Qa.

The proof of the following result literally repeats that of [10, 5.6].

Theorem 2.3. Let § be a saturated family of fibrations in an admissible not necessar-
ily small category of algebras RN and let W be a class of weak equivalences containing
homomorphisms A — Alt], A € R, such that the triple (R,§, W) is a Brown category.
Denote by Ltr(R,§, W) the category of left triangles having the usual set of morphisms

from QC Lo A4 LB " oo Lo LB O Then Lor(R,FW) s



a left triangulation in the sense of Beligiannis-Marmaridis [1] of the (possibly “large”)

category D~ (R, §, W), i.e. it is closed under isomorphisms and enjoys the following four

azTioms:

(LT1) for any A € R the left triangle O Doalaa % belongs to Ltr(R,F, W) and
for any morphism h : B — C' there is a left triangle in Ltr(R,F, W) of the form
oc L a4 g

(LT2) for any left triangle QC T4 B o Ltr(R,§,W), the diagram
OB =™ a0 L. A 9 B s also in Ltr(R,F,W);

(LT3) for any two left triangles QC Jo4 0 M C, Q' ANy U LN
C" in Ltr(R,F, W) and any two morphisms 3 : B — B and v : C — C' of
D= (R,§, W) with vh = I3, there is a morphism o : A — A" of D™(R,§, W)
such that the triple (o, 3,v) gives a morphism from the first triangle to the
second;

(LT4) any two morphisms B NN ) of D~ (R, 3§, W) can be fitted into a commu-
tative diagram

QF
Foe
ac—t-a—2-p-loc
\LQk «a 1Bi k
ap ——~r-">p-*p
llgzp 8 hi 1p
QD ——>E—>C~—">D
i which the rows and the second column from the left are left triangles in

Ltr(R,F,W).

The axiom (LT4) is a version of Verdier’s octahedral axiom for left triangles in

D= (R, E,W).

2.2. Stabilization

Let R be an admissible category of algebras and § a saturated family of fibrations. There
is a general method of stabilizing the loop functor Q (see Heller [16]) and producing a
triangulated (possibly “large”) category D(R,F, W) from the left triangulated structure
on D™(R,§,W).

An object of D(R,F, W) is a pair (A,m) with A € D= (R, F,W) and m € Z. If
m,n € 7Z then we consider the directed set I, , = {k € Z | m,n < k}. The set of
morphisms between (A, m) and (B,n) € D(R,§, W) is defined by

D(R, 3, W)[(A,m),(B,n)] == lim D~ (R,F,W)(Q"™"(4),Q"(B)).

ke[m,n

Morphisms of D(R,§, W) are composed in the obvious fashion. We define the loop
automorphism on D(R,§, W) by Q(A,m) := (A,m — 1). There is a natural functor
S:D(R,§,W)— D(R,F,W) defined by A+— (A4,0).

10



Since Q"B is an abelian group object for n > 2 it follows that D(R, &, W)[(A, m), (B, n)]
is an abelian group and the category D(R,J, W) is preadditive. Since it has finite di-
rect products then it is additive. We define a triangulation 77(R,§, W) of the pair
(DR, T, W), Q) as follows. A sequence
QA1) — (C,n) — (B,m) — (A,1)

belongs to 77 (R, §, W) if there is an even integer k and a left triangle of representatives
QO A)) — QF(C) — QF™(B) — QFI(A) in D~(R,§,W). Clearly, the functor
S takes left triangles in D~ (R, §, W) to triangles in D(R, §,W).

Theorem 2.4. Let § be a saturated family of fibrations in R. Then Tr(R,§,W) is a
triangulation of D(R,§, W) in the classical sense of Verdier [23].

Proof. See [10, 6.7]. O

2.3. Universal properties

Let § be a saturated family of fibrations in an admissible not necessarily small category
of algebras R and let £ be the class of all §-fibre sequences of k-algebras

(E):A— B—C. (3)

Definition. Following Cortinas-Thom [5] a (§-)excisive homology theory on R with
values in a triangulated category (7 ,€2) consists of a functor X : # — 7, together with
a collection {0 : E € £} of maps 05 = 0 € T(QX(C), X(A)). The maps g are to
satisfy the following requirements.

(1) For all E € £ as above,

OF X(f) X(9)

QX (C) — X(A) — X(B) X(C)
is a distinguished triangle in 7.
(2) If
(E) : A N B—LscC
| L,
, I g’
(E) . A’ > B’ >
is a map of §-fibre sequences, then the following diagram commutes
0x(0) -2~ x(4)
ax (’Y)l lX (a)
QX(C") —— X (A).
O

We say that the functor X : ® — 7 is homotopy invariant if it maps homotopic
homomomorphisms to equal maps, or equivalently, if for every A € Alg;, X maps the
inclusion A C A[t] to an isomorphism.

We shall denote the class of homomorphisms f such that X (f) is an isomorphism for
any excisive, homotopy invariant homology theory X : R — 7 by Wa (“A” has the
meaning that this class is determined by triangulated categories).

11



Lemma 2.5. The triple (R,§, Wa) is a Brown category.

Proof. We have to verify axioms (A)-(E) from subsection 1.3. Axiom (A) is obvious.
Axioms (B), (D), (E) follow from axioms Ax 2, Ax 4, and Ax 1 respectively (see sub-
section 1.2). Ax 3 implies that a pullback of a fibration is a fibration. The fact that
a pullback of a trivial fibration is a trivial fibration follows from standard facts for
triangulated categories. O

In what follows we shall write D~ (R, §) and D(R, §) to denote the categories D~ (R, §, Wa)
and D(R,§, Wa), dropping Wa from notation. In this paragraph we discuss universal
properties of D~ (R, §) and D(R,F).

Theorem 2.6. Let X : R — T be an excisive, homotopy invariant homology theory.
Then the following statements are true:

(1) there is a unique functor X : D=(R,§) — T such that X = X o j with j :
R — D~ (R,T) the canonical functor. Moreover, X takes left triangles in D~ (R,J) to
triangles in T ;

(2) there is a unique functor X : D(R,§) — T such that X = X o S with S :
D~ (R,3) — D(R,3) the canonical stabilization functor. Moreover, X is triangulated,
i.e. it is additive and takes triangles in D(R,§) to triangles in T .

Proof. (1). Let X : R — 7 be an excisive, homotopy invariant homology theory. By
definition of Wa the theory X takes each element of Wa to an isomorphism, and hence
there is a unique functor X : D~ (R,¥) — 7 such that X = X oj. Since the functor S
takes left triangles to triangles, the fact that X takes left triangles to triangles follows
from the second assertion we are going to prove. N

(2). The fact that there is a unique functor X : D(R,§) — 7 such that X = X o S
follows from [16, 1.1]. It follows from the definition of an excisive, homotopy invariant
homology theory that X is additive.

To show that it is triangulated, we follow some part of the proof of [5, 6.6.2]. We recall
it here for convenience of the reader. Recall that the rotation axiom for triangulated
categories says that a triangle in 7

aw v Sy tow

is distinguished if and only if so is the triangle

—Q(h _ _
av Waow oy oy

In view of the fact that every left triangle is isomorphic to a left triangle of the
form (2) and of the rotation axiom, it is enough to prove that if g € Homayg, (4, B),
then X maps

. .
QA —> QB —1=P(g) 2~ 4 (4)
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to a distinguished triangle in 7. Consider the §-fibre sequence E formed by j and gi;
we have a diagram

QX (B)
QX(9) ia
1

where J; is the connecting map associated with the F-fibre sequence

1

0y
OB — EB — B.

In the diagram above the row is a distinguished triangle and the square on the left
commutes, as do its upper and lower halves. It follows from this and the axioms of a
triangulated category, that X applied to (4) is a distinguished triangle. (|

Corollary 2.7. Let R be an admissible category of algebras and let § be a saturated
family of fibrations. Then the canonical functor j : R — D~ (R,§) reflects weak equiva-
lences from Wn, that is if a homomorphism is an isomorphism in D~ (R, ) then it is
m WAa.

Proof. Let f be an arrow in R such that j(f) is an isomorphism. Theorem 2.6(1)
implies that for any excisive, homotopy invariant homology theory X : % — 7 the
arrow X (f) = X o j(f) is an isomorphism, hence f € WA. O

Corollary 2.8. If§ is a tensor closed collection of fibrations then the tensor product ®y,
of algebras induces a tensor product on D~ (R,§) and D(R,F) making these symmetric
monoidal categories. Moreover, D @ —, — ® D, D € R, respect weak equivalences from
Wna and take (left) triangles to (left) triangles.

Proof. To any F-fibre sequence F —— A -5 B in R one associates a standard triangle
oB -5 F - 4% B

§ is tensor closed by assumption, and hence F' ® D OL ® D 9l B ® D is a §-fibre
sequence in & and

QBeD) =0BeD X Frep 2 Ao D BeD

is a standard triangle. One easily sees that if

(E) : F—>a4-—2>p
ool
(E'/): F/L>A/L>B/

13



is a map of §-fibre sequences, then the following diagram commutes

Q(B@D)&F@)D

Q(w@l)l la@l
/
Q(B & D) 8®T> A®D.

It follows that if X : & — 7 is an excisive, homotopy invariant homology theory, then
sois Xo(—® D) : R — 7. By the preceding corollary the functor — ® D respects
weak equivalences from Wa. Therefore jo (— ® D) : R — D™ (R,§) (respectively
Sojo(—=®D): R — D(R,F)) factors through D~ (R, F) (respectively D(R,F)). Clearly,
— ® D takes (left) triangles to (left) triangles. O

2.4. Unstable algebraic KK - and E-theories

We would like to discuss separately the most important in practice cases when § is
either §gp1 or §surj. Throughout this section R is an admissible category of algebras. We
assume fixed an underlying category U, which can be a full subcategory of either the
category of sets Sets or Mod k. The category U will depend on §. Namely, we shall
assume that U C Sets if § = Fsurj and U C Mod k if § = Fgp1-

Definition. Let it be an admissible category of algebras and let § be either §gp1 or Fsurj-
The pair (R,F) is said to be T'-closed if we have a faithful forgetful functor £ : ® — U

and a functor T : U — R such that T is left adjoint to F.
Throughout this section R is supposed to be T-closed.

Examples. (1) Let # = Alg;, and § = §sp1. Given an algebra A, consider the algebraic
tensor algebra

TA=ACAQAD A o ...

with the usual product given by concatenation of tensors. In Cuntz’s treatment of
bivariant K-theory [7, 8, 9], tensor algebras play a prominent role.

There is a canonical k-linear map A — T'A mapping A into the first direct summand.
Every k-linear map s : A — B into an algebra B induces a homomorphism v, : TA — B
defined by

Vs(21 @ @ wn) = s(w1)s(w2) - - 5(2n)-

The pair (R,§) is plainly T-closed.
(2) If ® = CAlg;, and § = Fsp1 then

T(A) = Sym(A) = Bn18"A, S"A=A""/{a1 @ @ an — ay1) @+ @ (),

the symmetric algebra of A, and the pair (R, §) is T-closed.

(3) Let ® = Alg;, and § = Ssurj- Given an algebra A, let T'A be the algebra consisting
of those polynomials in the non-commuting variables z,, a € A, which have no constant
term. Then the pair (R, §) is T-closed. Observe that E(k) = T'(0).

(4) Let ® = CAlg;, and § = Fsuwj. Given an algebra A, let TA be the algebra
consisting of those polynomials in the commuting variables x,, a € A, which have no
constant term. Then the pair (R,§) is T-closed.
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Recall that Kasparov’s bivariant K-theory K K is a bifunctor on pairs of C*-algebras,
associating to (A, B) a Z/2Z-graded group K K,(A, B). The Kasparov product

allows one to view the K K-groups as morphisms in a category whose objects are all
separable C*-algebras. KK is a triangulated category [20] and is universal for C*-stable,
split-exact homology theories on the category of C*-algebras.

In turn, E-theory of C*-algebras developed by Connes and Higson in [3, 17] is the
universal bivariant homology theory satisfying excision for all extensions and stability.
The triangulated category corresponding to E-theory is studied in [22].

Stabilization for non-unital algebras is the operation A € Alg, — My (A) = U, M, (A) €
Alg,.. It is not available for some interesting admissible categories of algebras like CAlg;,.
Therefore the triangulated category D(R,§) can be regarded as a sort of unstable uni-
versal bivariant homology theory.

All these remarks justify the following

Definition. (1) The unstable algebraic KK -theory for R is the triangulated category
D(R, §sp1). The unstable algebraic KK -groups are, by definition,

RRWMY(A, B) := DR, Fsp1) (A, Q"B), ne€Z, A BeR

(2) The unstable algebraic E-theory for R is the triangulated category D(R, Ssurj)-
The unstable algebraic E-groups are, by definition,

@ELnst(A7 B) — D(R&m)(& QnB), neZ, A BeR.

In the following sections we shall be introducing matrix stabilization into the play.
We shall first invert the homomorphisms A — M, (A), n > 1 (“Morita stabilization”)
and then invert the maps A — My (A) = U, M, (A) (“stabilization”). An effect of the
stabilization is that the loop functor Q2 becomes invertible.

3. THE CATEGORY Hpor(Algy,)

Many (bivariant) homology theories are Morita invariant. In order to construct uni-
versal bivariant Morita invariant theories we have to introduce a category structure
for algebras whose morphisms are obtained from algebra homomorphisms by equating
polynomially homotopic maps and inverting the maps

Spa:tA— MyA, n>0,

sending a € A to the matrix (x;;) with 211 = a and the other entries zero.
We first prove the following statement (see as well [5, 4.1.1; 5.1.2]).

Proposition 3.1. Let B be a k-algebra, A C B a subalgebra, and V,W € B elements
such that

WA, AV C A, aVWad =ad (a,d € A).
Then
eV iAS A a— WaV

is a k-algebra homomorphism, and sg 4 : A — MaA is homotopic to SQ’A(,DVJ/V.
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Proof. Let 3’27 4+ A — MyA be the homomorphism sending a € A to the matrix
( 0 2 > Consider an invertible matrix 7' € G La(k[z]) such that

0
0 (10 1 (0 -1
8I(T)—<O 1> and 8$(T)—<1 0 )
1—22 23—2
T:( x 1—m2>

-1 1= z? 2z —a?
= ( —x 1 — 22 )
Let H : A — MsA[z] be the homomorphism a T327A(a)T’1. Then sp 4 = OOH ~

1 _ o
Oy H = sh 4.
Consider a homomorphism

L fa11 a12 W 0 ailr a2 V 0
(U (G21 a22) € MyA — (0 1> (a21 a22) (0 1> € MsA.

VW __ / o
Then sp gp""" =159 4 ~ 1/132714 =8y 4 ™~ 52,4 O

The matrix

is a concrete example with

Given two algebras A, B € Alg,., we set
[Aa B]mor = h_n>1[A7 MnB]v

where the colimit is taken over the homomorphisms ¢,, : M, A — M, 1A sending M, A
into the left upper corner of M,,+1A. Define a composition law

[Aa B]mor X [Bac]mor - [A, C]mor (5)
by the rule
(o: A— M,B,6:B— MC)r— Bxa:=M,(f)oa:A— M,C.

Here M, () is the composition of the homomorphism M, B — M, M;C, induced by 3,
and the natural isomorphism M, M;C = M,,C.

The composition law (5) is consistent with polynomial homotopy. Precisely, if o ~ o/
and 8 ~ ' then fxa ~ [ xa/, and hence fxa = ' x ' in [A,Clpor. It is also
consistent with the colimit maps ¢, in the first argument. Namely if we replace a with
tpa then Bx o = B * (tpa) in [A, Clpmor. To show that it is consistent with the colimit
maps ¢; in the second argument, it is enough to observe that M, (¢;3) o « is conjugate by
a permutation matrix to My,11(8)(tp), and hence equal in [A, Clyer by the preceding
proposition.

It is easy to see that the composition law is associative giving rise to a category which
we denote by Hor(Algy). It is useful to give another description of H e (Algy). Given
k-modules My, ..., M, we set

My @ @My =M @ My® (- @ (Ms—1 @ M) ---)).

For any algebra A and n > 0 the homomorphism s, 4 is naturally isomorphic to the
homomorphism A — M, (k) ® A taking a € A to s, ;(1) ® a.
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Let
Yi={ida}U{A—-> M, (k)@ - - M, (k)® A}, A€ Alg;,ni,...,ns €N.

Definition. A functor X : Alg, — C from Alg, to a category C is Morita invariant if
X(sp,a): X(A) — X(My,A) is an isomorphism for every n > 1.

Theorem 3.2. ¥ admits a calculus of left fractions in H(Algy,) and there is a natural
isomorphism of categories

Homor (Algy,) =2 H(Alg,)[271].

Proof. Clearly, the identity of each object and the composition of two elements of %
belong to ¥. Each diagram

My (B)@ @M, (k)oAZ AL B
with ¢ € ¥ can obviously be completed to a commutative square

A ! B

| f, E

Mnl(k)®"'®Mns(k)®A*>Mn1(k)®"'®Mns(k)®B

with ¢’ € 3.

To show that > admits a calculus of left fractions, it remains to verify that if f, g are
morphisms in H(Alg;,) and o € ¥ is such that fo = go then there is ¢/ € 3 such that
o'f = o'g. Without loss of generality it is enough to show that if f,g : M, A — B are
two homomorphisms with fs, 4 = gs, a then s; pf = s; pg for some I.

Consider the diagram

Sn,A f
g
Mn(snﬁ)u Sn,Mp A isn,B
Mn(f)
M2 A M,B
SQ,AIHQAi Mn(g) iSQ,MnB
M2n2A Man
Ma2n(9g)

Observe that s, a7, is conjugate to M, (s, 4) by a permutation matrix. Proposition 3.1
implies 82, M o ASn,M,A ~ 52,Mn2AMn(3n,A)~ Thus,
son,Bf = s2.M,BSn,Bf = Man(f)s2,M »ASnM, 4 = 520, BMn(f)Mn(sn,a) =
89,M, BM(9) M (8n,4) = Man(9)S2,M, 5 ASn,M,A = S2n,BY-
It follows that sg, pf equals sg, pg in H(Algy,), hence ¥ admits a calculus of left frac-
tions. To show that Hyer(Algy) = H(Alg,)[X71], it is enough to observe that every

element of ¥ is isomorphic to some s, 4 and that every homotopy invariant Morita
invariant functor F' : Alg, — C uniquely factors through H,,or (Algy). O
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Hom-sets [A, B]mor are naturally equipped with a structure of an abelian monoid,
which is described as follows. Let f,g : A — B be two non-unital algebra homo-
morphisms and let fWg : A — My(B) be the homomorphism taking a € A to

fla) 0 )

. Then fWwg~gw f.
< 0 g9(a) JWg~gwf
Indeed, it is enough to consider the invertible matrix T' € GLa(k[x]) as above with

@@p:(é?) and %uwz<?'§).

Then A — Msy(B)[z], a — T-(fWg)(a)-T~!, yields the desired homotopy. The homotopy
of this kind is also referred to as rotational. Clearly, 0W f ~ f W0 = s gpo f. Observe
that if f~ f',g~g¢g then fWg~ ffWg.

The operation fWg is naturally extended to a commutative, associative binary opera-
tion on Hom-sets [A, B]or of Himor (Algy,) making these abelian monoids. To verify this
one should use rotational homotopy if necessary. We denote the corresponding group
completion by {A, B}mor. The composition law (5) is “bilinear” in the sense that

fr(gwg)=frgufxg, (fOf)xg=frguf xg
for any f, f' € [A, Blmor, 9,9" € [B, Clmor- To check this, one should use Proposition 3.1
and rotational homotopy.
The composition law (5) is naturally extended to an associative bilinear composition
law

{Av B}mor X {37 C}mor - {Aa C}mor-

Thus one obtains a category, denoted by H™1H,,0r(Algy,), with objects those of Alg
and morphisms sets {4, B}mor. The new category is additive with direct product being
the usual direct product of algebras.

4. ADDITIVE CATEGORIES OF CORRESPONDENCES

There is an important category HCor, closely related to the category H ™ H,nor (Algy),
whose objects are the unital algebras Alg) and whose morphisms are “correspondences
up to homotopy” K H (A, B) defined by means of bivariant Grothendieck groups K (A, B)
in the sense of Kassel [19]. We also refer the reader to [15]. The main result of this section
says that HCor can be regarded as a full subcategory of H ™ H,,,r(Alg,) by means of a
fully faithful functor. It will be used below to get some important computational results.
We start with preparations.

Let A, B be two unital algebras and let K(A, B) (respectively K% (A, B)) denote the
Grothendieck group of the exact category Rep(A, B) of those A-B-bimodules which are
finitely generated projective as right B-modules. The exact structure is given by the
short exact sequences (respectively split short exact sequences) of bimodules

0—-P —-P—P'—0.
Observe that if £ = Z then Rep(Z, B) consists of finitely generated projective right B-
modules and K(Z, B) = K®(Z, B) = Ko(B). If k is a field, then the category Rep(A, k)
is the category of finite dimensional representations A — M, (k) of A.

For example, the category Rep(Z[t], B) is equivalent to the category of pairs (M, f)
where M is a projective right B-module and f is an endomorphism of M. Similarly,
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the category Rep(Zlti,...,tn]|, B) is equivalent to the category of tuples (M, f1,..., fn)
where M is a projective right B-module and fi, ..., f, are commuting endomorphisms
of M. The category Rep(Z[t*], B) is equivalent to the category of pairs (M, f) where
M is a projective right B-module and f is an automorphism of M. The category
Rep(Z[tf, ..., tF], B) is equivalent to the category of tuples (M, f1,..., fn) where M is
a projective right B-module and fi,..., f, are commuting automorphisms of M.

The groups K (A, B) and K%(A, B) are clearly contravariant in the first argument
and covariant in the second.

Given P € Rep(A,B),Q € Rep(B,C), the object P @5 Q belongs to Rep(A4,C).
This induces the corresponding composition products

K(A,B)®z K(B,C) — K(A,0), K®(A,B)®; K®(B,C) — K®(A,0).

We may regard a class [P] of K(A,B) (respectively K®(A, B)) as a (direct sum)
Grothendieck group correspondence from A to B.

We define the additive categories of correspondences Cor and Cor?; their objects are
those of Alg)!. An arrow A — B is an element of Home,, (A, B) := K (A, B) (respectively
Homg,,e (A, B) :== K%(A, B)). The composition [Q] o [P] of correspondences is defined
to be [P®pQ]. The direct sum A® A’ of two objects is represented by the direct product
A x A'. We define A ® B := A ®y, B on objects, and extend it to a bilinear function on
arrows. It is useful to observe that two Morita equivalent algebras A, B are isomorphic
in Cor and Cor®. Indeed, there are bimodules 4Pg, pQ4 and bimodule isomorphisms
PepQ=A, Q®4P = B. The correspondences [P], [Q] give isomorphisms between A
and B.

Remark. Recall that an algebra R is flasque if there is an R-bimodule M, finitely
generated projective as a right module, and a bimodule isomorphism 6 : R® M = M.
It easily follows that [R] = 0 in Cor® if and only if R is flasque.

We shall also consider another category 7%. Its objects are those of Algj!. An arrow
in Homﬁgp(A, B) is given by the isomorphism class [P] of P € Rep(A, B). Composition
is defined by tensor product as above. Observe that the Hom-sets of 7/2\6}7 are abelian
monoids. There are natural functors

7@}7 . eor® Z, Cor.
Proposition 4.1. Let A, B be two unital algebras. Then there is a bijection between:

(1) the set of all non-unital homomorphisms f : A — B,
(2) the set of all (A, B)-bimodules 4 Pg such that Pg is an idempotent right ideal of
B.

The bijection is given by the maps
g:A— B g(1)B, 4Pp+— (AL Endg P — B),
where f is the unital homomorphism giving a left A-module structure on P.

Proof. Let p be an idempotent of B. Then the right B-module pB is finitely generated
projective and

Endp(pB) ={y € B |y = yp = py}-
Given a non-unital homomorphisms f : A — B, let p be the idempotent f(1). Then f
plainly factors through Endg(pB).
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Now let 4Pp be an (A, B)-bimodule whose left A-module structure is given by a
unital homomorphism f : A — Endg P and Pg = pB for some idempotent p. It follows
that p = f(1)p = f(1). The desired bijection is now obvious. O

If P € Ob(Rep(A, B)), then there is an algebra homomorphism v : A — Endg(P).
Choose a finitely generated projective B-module () such that P @ () = B™. One obtains
a monomorphism Endg(P) — M, (B). Composing with v, we get a homomorphism
u(P) : A — My,(B) which defines a class in [A, B]mor- Let p = w(P)(1); then p
is an idempotent and P 2= Im(B" 2> B"). Suppose P = P’ and Q = @', then
P®Q =P @Q'. Thereis W € GL,(B) such that u(P’) = W~lu(P)W. Note that the
homomorphism

acAr— <U(P(/))(a) 8) € M, (B)

is homotopic to the homomorphism

o (8 u(P('))(a))

by the rotational homotopy. Both maps equal u(P’) in [A, B]mor-
Consider a homomorphism

(b1 b2 W= 0\ (b1 b2\ (W 0
P <b21 b22> S Mgn(B) — ( 0 1> <b21 b22> (0 1> € Mgn(B)

Then,

(3 Y5 D6 )~ )20

We see that w(P') = w(P) in [A, Blmer- If we replace Q with @ & B such that P& (Q @
B) = B"*! then the homomorphism A — M, 1B corresponding to this decomposition
equals ¢, u(P), hence equals u(P) in [A, Blmor. We see that u(P) € [A, B]mor does not
depend on the isomorphism class of P and the choice of Q.

There is also an isomorphism of (A, B)-bimodules

APp = A(pM,,B @, B")B.

We see that each [P] € Hom@p(A,B) factors through M, B for some n. Given k > 1

denote by My(p) € My, (B) the idempotent matrix which places k copies of p on the
diagonal. Then there is an isomorphism of (A, B)-bimodules

APp = 4(pMnB @, B")p = A(A* @apa My (p)Myn B ©nry, 8 BB, (6)

Since Al 4 = et MpAp, 4 and Ay 4 & (1 —eq1)MyAp, 4 = M, A where eq is the
idempotent matrix with the (1,1)-entry equal to 1 and the other entries zero, it follows
that u(4A%; 4) = sn,a. On the hand u(y, 5 Bj) = 1y, B as one easily sees.

Proposition 4.2. There is a natural functor
H : Rep — Humor(Algy,)
such that for any A, B € Alg;. the induced map
H: Homﬁ;p(A,B) — [A, Blmor

s a surjective map of abelian monoids.
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Proof. If P € Ob(Rep(A, B)), then one sets H([P]) := u(P) € [A, Blmor- We have
shown above that u(P) is well-defined. Given P € Ob(Rep(A, B)) and Q € Ob(Rep(B,()),
there are idempotent matrices p = u(P)(1) € M,B,q = u(Q)(1) € M;C such that
APp = A(pMp,B ®um, B™)p and pQc = p(¢M;C Q¢ BY¢ (see above). It follows
from (9) that there is an isomorphism of (A4, C')-bimodules

P®pQ=pM,B @, B" ®p B" ®um,B Mn(q)MnC @um,,c cm.

Since rr,5B" ®p By g = m,8My B, B, one has,

P®pQ = pM,B @1, 8 My (q)MpyC @0 C™ 22 1M,y C Q1,0 C™,

where 7 = u(Q) *u(P)(1). We see that H([Q] o [P]) = u(P®p Q) = u(Q) *u(P), hence
H is a functor.

For any P’, P” € Ob(Rep(A, B)) the homomorphism u(P'&P") : A — M, (B) factors
as

A — Endp P' @ Endg P" < Endp(P' @ P") — M,(B).

Therefore u(P' @ P") = u(P") Wu(P") in [A, B]mor. This determines a map of abelian
monoids H : Hom (A B) — [A, B]mor- Let f: A — M, B be an element of [A, Bl
Using Pr0p081t10n 4 1 it follows that f = H([P]) with P = Im(f(1) : B® — B").
Therefore H is surjective. O

Let J : Cor® — H 'H,,0r(Alg,) be the natural functor induced by H. There is a
commutative diagram

Rep Cor®

n| iJ

7_{mo?" (Algk) - H_leor (Algk) .

The preceding proposition implies the following

Corollary 4.3. The functor J is additive and for any A, B € Alg), the induced map
J: K9(A,B) — {A, B}mor

is an epimorphism of abelian groups.

An elementary homotopy between correspondences from A to B in 7% (respec-
tively Cor® or Cor) is an element of Hom— (A Blz]) (respectively Home,,s (A, B[z])

or Homg,, (A, Blz])). There are two natural maps

do, dy : Homg— (A Blz]) — Homﬁ\gp(A, B),

induced by 82,9. : B[x] — B. We say that two bimodules 4P and 4Qp are elementary
homotopic in which case we shall write 4 Pg ~ 2@ p if there is an elementary homotopy
H € Homz— (A Blz]) such that do(H) = P and di(H) = Q. Elementary homotopic
blmodules in Homcmq@ (A, B) or Homg,, (A, B) are defined in a similar way. The relation
“elementary homotopic” is reflexive and symmetric. One may take the transitive closure
of this relation to get an equivalence relation (denoted by the symbol “~”). The set of
equivalence classes of correspondences A — B is denoted by ’H@(A, B) (respectively

K"®(A, B) or K" A, B)). Composition preserves the relation “~”. Equating homotopic
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correspondences we get the categories H7€e79, HC®, HCor respectively. One has natural
functors

HRep L HCor® E5 HCor.

Let H : HRep — Humor(Algy) and J : HC® — H Hpor(Alg,) be the natural
functors induced by H and J respectively. There is a commutative diagram

H7/'\’,\€?D HCor®

ﬁl lf
Hmo’/‘ (Algk) - H_leor (Algk) .

Theorem 4.4. The functors fI, J are fully faithful. In particular, for any A, B € Algy,
the induced maps

H : HRep(A, B) — [A, Blyor, J : K"®(A, B) = {A, B}or
are bijections.
Proof. Let us construct a map
I:[A, Blymor — HRep(A, B)

which is inverse to H. Let f : A — M,B be an element of [A, Bl and let P =
Im(f(1) : B® — B™). We set

I(f) = [P].
I is consistent with direct limit maps ¢, : M,B — M, 1B, because I(f) = I(tnf).
I is also consistent with homotopy, hence it defines a map. It is directly verified that
IH([P]) = I(u(P)) = [P] for any [P] € HRep(A, B). Therefore H is injective. It follows
from Proposition 4.2 that H is surjective as well, and hence it is bijective. The fact that

J: K"®(A, B) = {A, B}mor
is bijective is now obvious. O

Short exact sequences always split up to homotopy. More precisely, start with a short
exact sequence E : 0 — M’ — M — M"” — 0 of R-modules, and define an R[x]-module

M as the pull back in the following diagram.

E: M'[z] M M"[z]
S
Elz] : M'[z]>— M[z] — M"[z].

The short exact sequence E specializes to £ when z =1 and to 0 — M’ — M' o M" —
M" — 0 when z = 0, and provides the desired homotopy.

Proposition 4.5. Given two unital algebras A, B € Alg}, the natural homomorphism
a: KM®(A, B) — K"(A, B) is an isomorphism.
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Proof. One has a commutative diagram

with exact rows and columns and (£) ((€%)) standing for the subgroup generated by
[P] — [P'] — [P"] for every (split) short exact sequence P’ — P — P”. One also has a
commutative diagram with exact rows

K®(A, Blz))"“% K®(A, B) —= K"®(A, B)
K(A, B[2]) =%+ K(A, B) — K"(A, B).

If we showed that the left square is cocartesian, it would follow that « is an isomorphism.
Consider a commutative diagram

L~ K®(A, Bla]) — K(4, B[z])

ﬁl 31—30i ial —0o

L—> K®(A, B) K(A, B).

The right square is cocartesian if and only if 8 is an epimorphism. To show that it is
an epimorphism, we consider the following commutative diagram.

(E2)— () — I
81—80\L 81—80l lﬂ
(£9)—(€) —= L

Consider a generator e = [P]—[P’|—[P"] of (£) represented by a short exact sequence F :
0 — P'— P — P"” — 0 whose class in L is denoted by [e]. Let us construct a short exact
sequence E : 0 — P'[z] — P — P"[z] — 0 as above. Let é = [P]—[P'[z]]—[P"[z]] € (£):
then B([¢]) = [¢], and hence 8 : L — L is an epimorphism. O

Corollary 4.6. The natural functor G' : HCor® — HCor is an isomorphism of cate-
gories.

Let L be the inverse functor to G’. We are now in a position to state the main result
of the section.

Theorem 4.7. The functor
J o L: HCor — H ™ "Hynor(Algy,)
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s full and faithful. In particular, the map of abelian groups
JoL:K"(A B) = {A,B}mor
is an isomorphism for all A, B € Alg}..
Proof. This follows from Theorem 4.4 and Corollary 4.6. g

Given an algebra A € Alg; we set,
[Ko](A) = Coker(Ko(Alz]) 2=% Ko(A)).

Corollary 4.8. For any unital algebra A € Alg). there is a natural isomorphism of
abelian groups

{k, A}mor = [K0]<A)a

functorial in A.

Proof. Let A be a k-algebra, £ : Z — k the structure map. Composition with £ induces
a bijection
HomAlgk (k‘, A) — HomAng(Z, A)

This induces a bijection of abelian monoids

HomHmoT(Algk) (k, A) i HomHmDT(Ang) (Z, A)

Thus one obtains a bijection of their group completions

{k‘, A}mor = HomH—lHWOT(Algk)(k7 A) - HomH_leo'r(Ang)(Z’ A)

By Theorem 4.7 the right hand side is isomorphic to [Ky](A). O

5. THE CATEGORY kh

For the main computational result of the paper we have to introduce a new category
kh whose objects are those of Alg; and morphisms are defined by means of Hom-sets of
H Hpmor (Algy,). We start with preparations.

Let B € Alg;, and let By € Alg), be the unital k-algebra which is B @ k as a group
and

(z,n)(y, m) = (xy + mx + ny, nm).
The map A — A4 determines a functor Alg, — Alg).. We put € : By — k to be the
augmentation e(x,n) = n and ¢ : k — B to be the natural inclusion. Note that if B
happens to be a unital k-algebra then the map n: By — B x k, (z,n) — (x +n-1,n),
is an isomorphism of k-algebras. We do not know whether the short exact sequence of
algebras

BL B, Sk (7)
is split exact in H ™ H,nor(Alg,). However, it is the case for unital algebras.
Lemma 5.1. The sequence (7) is split evact in H™ " Hpor(Algy) for any unital algebra
B.

24



Proof. There is a commutative diagram in Algy

B d By = k
”
J p

!

B——=Bxk——k

with 7, p natural inclusion and projection respectively, 7 the isomorphism defined above.
The lower sequence of the diagram is split exact in H ™ H,,or(Algy), because B x k is a
coproduct of B and k, hence so is the upper one. O

Given A, B € Alg;, one sets
kh(A, B) := Ker({A, By }mor — {A, k}mor).

We have,
{A, By tmor = kh(A, B) ® {A, k}mor.

Corollary 5.2. For any unital algebra B and any A € Alg,, there is a natural isomor-
phism kh(A, B) = {A, B}mor-

Let H™ M 0r(Algl) be the full subcategory of H ™ H,or(Alg,) whose objects are
those of Alg¥. Let A be the idempotent completion of the additive category H ™ H,por (Algh).
Namely we introduce new objects denoted by pA whenever A € Alg)l andp: A — Ais
an idempotent, i.e., p = p?. For instance, if f : k — k[t*] is the natural inclusion and
g : k[tT] — k is the natural augmentation, then p = fg is an idempotent. We define
A(pA,qB) := q{A, B} norp, and with this definition composition is nothing new. We
define pA ® ¢B := (p ® q)(A @, B).

We identify A € Alg} with 1A, and prove easily that A = pA @ pA, where p :=
1 —p. Any functor F' from the old category to an idempotent complete category can be
extended to A by defining F(pA) := F(p)F(A).

Lemma 5.3. Given two homomorphisms f,g : A — B of k-algebras such that f(a)g(a’) =
gla)f(a') =0 for all a,a’ € A, the map f + g is an algebra homomorphism and the fol-
lowing relation holds in H ™' Hpor (Algy,):

1+ 19l =1 + 4],
where [f] stands for the class of f in H ™ Hpmor(Algy,).
Proof. It is enough to observe that A x A is a direct sum in H = H,,,o(Alg,,) of two copies

of A and that H : A x A — B, (a,d’) — f(a) + g(a’) is a k-algebra homomorphism
whose restriction to each direct factor is f or g respectively. O

Proposition 5.4. For any A € Alg;, and B € Alg} there is a split short exact sequence
of abelian groups

{k7B}mor -~ {A+7 B}mor - {A7B}mora (8)
where w is defined by restriction and £* is induced by the augmentation € : Ay — k,
(a,n) — n.
Proof. Clearly, €* is a split monomorphism. Every homomorphism f : A — B can be
extended to a unital homomorphism f : Ay — B by the rule: (a,n) — f(a) +n-1p.
Notice that if f is homotopic to g then so are f and g. Also fwWg = fwg. We
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have that every element f : A — M,B of [A, B]mor is the image of f : Ay — M,B
under the natural map [A4, Blimor — [A, Blmor of abelian monoids. Therefore 7 is an
epimorphism.

Given an idempotent matrix e € M, B let f, : A, — M, B be the homomorphism
(a,n) — n-e. Suppose f : Ay — M,B is a k-algebra homomorphism. One sets
f:=m(f) and es := f(0,1). Then ey is an idempotent matrix and

fla,n) = f(a,n) +l1—c,(a,n)
for all (a,n) € A4.

Since f(a1,n1)l1—c;(az,n2) = f(a1,n1)-es-(1=ef)-l1—c,(az2,n2) = 0and b1, (a2, n2) f(a1,n1) =
li_e;(az,m2) - (1 —ey)-ef- flar,n1) = 0, it follows from the preceding lemma that

[f] = [f] + [l1—e,]. (9)
Similarly,
(1] = [le,] + [l1—c]- (10)
Observe that 0 = £;.

Suppose f,g: A — M, B be such that [7(f)] = [7(g)]. We may choose n big enough
to find a homomorphism h : A — M, B such that =(f) W h is homotopic to 7(g) & h.

Then f & h is homotopic to § & h, hence [f] = [g].
Using relations (9) and (10) we obtain

[f1 = lg] = [le;] = le,] = €™ ([f] — [g])-
We conclude that (8) is a split short exact sequence of abelian groups, and therefore
{A, B}mor = Coker({k, B}mor — {A+, B}mor)- O
Given A € Alg,, let py be the idempotent (1—we) : Ay — Ay. Clearly, (1—pq)Ay = k.
We get an isomorphism in A
AL 2 paA,L DE.

By Proposition 5.4 and Corollary 5.2 there are natural isomorphisms for any unital
algebra B

{A, B}mor 2 kh(A,B) = A(paA+, B). (11)

Given B € Alg,, there is a commutative diagram of abelian groups

kh(k, B) {k, B4 bmor —— {k, k}mor

|

kh(Ay, B)>=—{Ay, By fmor —>= {A4, k}mor

i i i

kh(A, B) {A, By b or ——{A, k}imor-

The rows are split exact by definition. By Proposition 5.4 the right two columns are
split exact as well. Using 3 x 3-lemma for exact categories [11, 2.11] the left column is
split exact. It follows from (11) that there is a natural isomorphism

wap : kh(A, B) — A(paAs,ppBy).
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The composition law in A

A(paAy,ppBy) x A(ppBy,pcCy) — A(paA4,pcCy)

induces a composition law

kh(A, B) x kh(B,C) — kh(A,C), (f,9) = go [ = ¢i0(vBc(9)pan(f))-
This determines an additive category, denoted by kh, whose objects are those of Alg;
and morphisms are given by the abelian groups kh(A, B). Also, we obtain a natural
functor
p:kh— A
taking an algebra A € Alg, to paAy and a morphism f € kh(A, B) to oap(f) €

A(paA+,ppBy).
We have thus proved the following statement.

Proposition 5.5. The functor
p:kh— A, A—paAy,
is full and faithful.

We can think of morphisms in kh as correspondences between non-unital algebras.
We finish the section by proving the following

Theorem 5.6. For any algebra A € Alg; there is a natural isomorphism of abelian
groups

kh(k, A) = [Ko](A),
functorial in A.

Proof. By definition kh(k, A) = Ker({k, A+ }mor — {k, k}mor). There is a commutative
diagram of abelian groups with exact rows and columns

B1—0 1-0 o1 -0
Ko(A) Ko(A4) Ko(k)
[Ko](A) [Ko](A+) [Ko] (k)

The middle two rows are split exact. The map o = Ky(e[z]) with € : Ay — k the
natural projection splits. Suppose 5 = Ko(¢[z]) with ¢ : K — Ay the natural inclusion;
then a8 = 1. We have ((91 — 8%) o B)|p» = 0, hence there is ' : L” — L’ such that
i3 = B|p». One easily sees that o/3' = 1.

The Snake Lemma implies [Ky|(A) = Ker([Kp](A+) — [Ko|(k)). Now our assertion
follows from Corollary 4.8. O

The proof of the preceding theorem and the fact that Ky takes split exact sequences
in Alg, to split exact sequences [4, 2.4.3] show that the following statement is true.
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Corollary 5.7. Suppose a sequence I — R — R/I is split exact in Algy, (i.e., I is an
ideal in an algebra R, and there is a splitting homomorphism R/I — R), then

kh(k,I) — kh(k,R) — kh(k, R/I)

s a split exact sequence of abelian groups.

6. THE TRIANGULATED CATEGORY Dior (R, §)

In this section we construct explicitly a universal §-excisive, homotopy invariant and
Morita invariant homology theory R — Dypor(R,F). More precisely, we define the
category Dpor(R,F) as follows. Its objects are those of R and the set of morphisms
between two algebras A, B € R is defined as the colimit of the sequence of abelian
groups

DR, 3)(A, B) — D(R,3)(A, MyB) — D(R,§)(A, M3B) — - --

It turns out that Dy,.(R,F) is a triangulated category and, moreover, every homo-
topy invariant, Morita invariant, excisive homology theory X : ® — 7 factors through
Dypor (R, F) (Theorem 6.5).

Throughout this section R is an admissible category of k-algebras with M, A € R for
any A € Rand n > 1. We assume § to be a saturated family of fibrations satisfying
M,(f) € § for any f € §. For instance, this is the case when § is either Fsp1 or Fsurj-
We note that M, (A) 2 A ®; M,(k) € R for any n > 1 and A € R. The proof of
Corollary 2.8 shows that M, (f) = M, (k) ® f € Wa for any n > 1 and f € Wa. Note
that if B is a path object for an algebra B € ® then M, (B’) is a path algebra for
M, B.

We denote by HporR (respectively H ™ HorR) the full subcategory of Hpor(Algy)
(respectively H ™1 Hnor(Alg,)) whose objects are those of R. Let

T':HR — HporR
be the canonical functor. We set
EZmor ={L'(f) | f € Wa}.
Proposition 6.1. X,,,. admits a calculus of right fractions in HpyorR.

Proof. Clearly, the identity of each object and the composition of two elements of ¥4,
belong to X,,,-. Consider a diagram

Sn,BO

AL v BT p

with 0 : D — B from Wa. One has s, po = M, (0)s, p. We can construct a commu-
tative diagram in HyorRt

A — M, D

U,l iMn(U)
f

A—— M,B
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with ¢/ € Wa and A’ a limit in R for the diagram

A M,(B") M, D
X My %f) My
M, B M, B

To show that X,,,. admits a calculus of right fractions, it remains to verify that
if f g : A — M,B are morphisms in R and ¢ : B — M;C from Wp is such that
M,(c)f = My,(o)g then there is ¢’ € ¥ such that fo' = go’. This follows from
Proposition 2.1 and the fact that M, (o) € Wa. O

We denote by D, . (R,T) the category HumorR[E,L,]. It follows from Theorem 3.2
and Proposition 6.1 that the category is obtained from ® by inverting the maps from
Wa U {spa|n €N, Aec R} Maps between A, B € R are defined as

h_n)lD*(S%,S)(A, M, (B)) = lim hLQ[A/an(B)] = lim (A", Blmor-
n Al —AEWA N A'—AEWA

The composition of two maps A < A’ 4 M, (B) and B Lp M;(C) in D, ,.(R,T)

is a common denominator

w(B')
My(g)

/

with M, (t) € Wa and A” defined as above.
Recall that [A’, Blpmor is an abelian monoid with respect to the binary operation
fwg: A — MyM,B = Ms,B, f,g: A’ - M,B. For any A” — A’ € Wx the induced

map

My, (C)

[A,a B]mor - [AH, B]mor
is a morphism of abelian monoids. Q™A with n > 2 is an abelian group object of
D~ (R,F) (see [10, 6.5]). Let us discuss consistence of the binary operations W and that
coming from the abelian group structure for Q" A.
The binary operation W is naturally extended to a binary operation

© 2 Dyor (R, 8)(A, B) X Dy (R, 3)(A B) — Dmor(R@)(A B)
as follows. Any two maps ¢ = [A <& A" 5 Mn( )] and ¢ = [B < B2 M(0)]

’

in Dmor(% §) can be replaced with equlvalent two maps A & D & M, (B) and

BE DL M, (C). Weset o= [BE DL ().
On the other hand, for any n > 2 there is a binary operation

¢ Dy (R B)(A, 27 B) x Dy (R, 5) (4,97 B) — Dy (R, §)(A, 2" B)
induced by the abelian group structure on Q" B.

Proposition 6.2. f+g= fWg for any f,g € D, (R,5)(A,Q"B) and any n > 2.
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Proof. Since
Dior (R, 8)(A, Q"B x Q"B) = D0 (R, §) (A, " B) & Dy, (R, ) (A, 2" B)

and restrictions of both f+ g and f &g to each summand coincide, our assertion follows
from the fact two summation maps from a direct sum of abelian groups coincide if and
only if so do their restrictions to each summand. O

The following result gives a relation with correspondences.

Corollary 6.3. D, (R, §)(A4,Q"B) = Mo e {A, Q"B}mor, n=2.

Proof. Use the fact that the group completion of an abelian monoid operation commutes
with direct limits and that the left hand side is an abelian group. O

The loop functor  : D™(R,F) — D~ (R,F) can plainly be extended to D, ,.(R,F).
Let T': D-(R,¥) — D,,.,,(R,F) be the canonical functor. We say that a sequence in

Dror (R, 5)
QA —-C—-B— A

is a left triangle if it is isomorphic to

arA’ -ro¢’ —-rB’ —r4A
for some left triangle QA" — C' — B’ — A" in D~ (R, ). We denote by Ltrm,o(R,F)
the category of left triangles in D, (R, §).

Theorem 6.4. Ltr,,(R,§) is a left triangulation of the (possibly “large”) category
D, (R, ), i.e. it is closed under isomorphisms and enjoys the axioms (LT1)-(LT4) of
Theorem 2.3.

Proof. (LT1). For any A € R the left triangle 0 241 4 %0 belongs to
Ltrmor(R,F). Let h : B — C be any morphism in D, .(R,§) represented by B L
B 5 M;(C). Then h is isomorphic to the map g. By Theorem 2.3 there is a left

triangle in D~ (R, §) of the form QM;C N A% B -2 M,C. We conclude that h
can be embedded into a left triangle from Ltr,,or (R, ).

(LT2). Any left triangle QC <> 4 % B % € in Ltrmer(R,§) is by definition
isomorphic to a sequence
Qra’ —rc’ — 1B XA
for some left triangle QA" — C" — B’ — A" in D~ (R,§). By Theorem 23 QB —
QC" — A" — B'is aleft triangle in D™ (R, §). It is obvious that QB 2 0C - A—B
B =X, grer - T4 — I'B’, and hence is a left triangle in

is isomorphic to QI
DT_I'LO'I" (éR’ S) :
(LTS) Suppose we are given two left triangles QB —— F A% Band QB
F 242 B and two morphisms A— A andvy: B— B in D (R,¥) with
¥ mor
Ya = o’p. We claim that there exists a morphism y : F' — F’ such that the triple

(X, ¥, ) is a morphism from the first triangle to the second.
Wlthout loss of generality we can assume that the ﬁrst left triangle is the sequence

OB L P(9) 2% A -4 B and the second one is QM,, B’ 2 i P(M,¢') — Mny — M,A — Mng'
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M, B'. Moreover, 1 is represented by B <~ U - M, B’ and ¢ represented by A Ly
M,A.
By [10, p. 586] there is a commutative diagram in R

J g1 g

OB P(g) A B
QOB" 3" p(g//> glll A" 9" B
o N
M5’ Mg} Myg'

QM, B’ —> P(M,g') — M, A’ —> M, B’

such that ) = z6~! and ¢ = 7a~!. The desired triple (x, ¢,) is constructed.

(LT4). Since every morphism in D,,,.(%,J) is of the form poios™! with p a fibration
and ,s weak equivalences, it follows that two composable morphisms h,k fit into a
commutative diagram in D (R, F)

B—lrsc—* op

T

Mp
B —> M,C' —+ M, D

with the vertical maps isomorphisms and p, ¢ fibrations in R. It is routine to verify that

(LT4) follows from the following fact: any two fibrations B s v,0 AR D of R
can be fitted into a commutative diagram in D, (R, §)

OF

fo
aM,cL-a—2 -p—"onc
iQMnk « 1Bi iMnk
OMuD > p—" g W
CE L

QM D~ p — M0 M5 vyD

in which the rows are standard left triangles and the second column on the left is a left
triangle. The proof of this fact literally repeats the proof of a similar assertion in [10,
pp. H587-588|. O

One can stabilize the loop endofunctor 2 on D, .(R,§) (see paragraph 2.2) to get a
new category Di,or (R, §) which is clearly triangulated.
We are now in a position to prove the main result of the section.

Theorem 6.5. Let X : R — 7T be an excisive, homotopy invariant, Morita invariant
homology theory. Then the following statements are true:

(1) there is a unique functor X : D, (R, §) — T such that X = X o j with j :
R — D,...(R,T) the canonical functor. Moreover, X takes left triangles in D,,,.(R,T)
to triangles in T ;
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(2) there is a unique functor X : Dpor(R,§) — T such that X = X;o S with
S: D, (R, &) = Dpor(R,F) the canonical stabilization functor. Moreover, X is trian-

mor

gulated, i.e. it takes triangles in Dpor (R, §) to triangles in T .

Proof. (1) By Theorem 2.6 X factors through D~ (R, §). Since X is Morita invariant it
factors through D, .(R,§). It is plainly triangulated.
(2) The proof is similar to that of Theorem 2.6(2). O

Let Winor denote the class of those homomorphisms f for which X (f) is an isomor-
phism for any excisive, homotopy invariant, Morita invariant homology theory X. It
can be shown similar to Lemma 2.5 that the triple (R, §, Wmor) is a Brown category.

Theorem 6.6. If D, (R,T) is a category with small Hom-sets, then there is a natural
triangulated equivalence of the triangulated categories Door(R,§) and D(R, F, Wior)-

Proof. One can prove similar to the preceding theorem that there is a unique triangulated
functor

D;%or(%ag) - D(ER, S, Wmor)-

It is uniquely extended to a triangulated functor
T: Dmor(éR7 3) - D@%a Sa Wmor)-

On the other hand, one can prove similar to Theorem 2.6 that the category D(R, §, Winor)
is universal for excisive, homotopy invariant, Morita invariant homology theories. Since
Dipor (R, F) is a category with small Hom-sets, then ® — Dy, (R, §) is an excisive,
homotopy invariant, Morita invariant homology theory. Therefore there is a unique
triangulated functor

E: D<§R7 S, Wmor) - Dmor(%v g)
We conclude that =, Y are mutually inverse. O

Proposition 6.7. If § is a tensor closed collection of fibrations then the tensor product
Ry of algebras induces a tensor product on Do (R, §) making it a symmetric monoidal
category. Moreover, the tensor product is exact in either variable, i.e. it takes triangles
to triangles.

Proof. The proof is similar to that of Corollary 2.8. O

7. MORITA STABLE ALGEBRAIC K K- AND F-THEORIES

Let us fix an underlying category U, which can be a full subcategory of either the
category of sets Sets or Mod k. The category U will depend on §. Namely, we shall
assume that U C Sets if § = Fsurj and U C Mod k if §F = Fsp1. We also assume that R is
a T-closed admissible category of k-algebras with M, A € R for any A € ® and n > 1.
Clearly, M, (f) € § for any f € 3.

Definition. (1) The Morita stable algebraic K K -theory for R is the triangulated cate-
gory Dipor(R, Fspt). The Morita stable algebraic K K-groups are, by definition,

AR (A, B) i= Dor (R, S (A, 2"B), n€Z, A,B R

(2) The Morita stable algebraic E-theory for R is the triangulated category Dyor (R, Fsurj)-
The Morita stable algebraic E-groups are, by definition,

ngm,(Aa B) = Dmor(%a Ssurj)(A, QnB), nez, A,BeR.
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In the next two sections we study universal bivariant excisive, homotopy invariant
and Mso-invariant homology theories.

8. THE CATEGORY Hg(Algy)

Given an algebra A € Alg;, we write M A = U, M, A. One can identify M, A with
infinite matrices having finitely many non-zero entries. Note that M A = Mk ® A.
One has a natural homomorphism it 4 : A = Mk ® A, defined similar to s, 4, and a
sequence of maps

oo, Moo k® A Lo, M2k A Lo, M@ rp A

A Mok® A Mook @ Mook ® A M2k A.

Denote its composition by ¢f, 4. We set
S ={la,toon | A€ Alg,,neN}
Let Hg(Alg) be the category H(Alg,)[S™!].

Definition. A functor X : Alg, — C from Alg,. to a category C is My -invariant or
stable if X (too.4) : X(A) — X (Msok ® A) is an isomorphism.

Theorem 8.1. S admits a calculus of left fractions in H(Algy,) and every stable homo-
topy invariant functor X : Alg, — C factors through Hs (Algy).

Proof. Clearly, the identity map of each object and the composition of two elements of
S belong to S. Each diagram

LTL
MOk A=A 4l p
can obviously be completed to a commutative square

f

A B
L&,A\L iLg’c,B
ME"k @ A—— MZ"k ® B.

To show that S admits a calculus of left fractions, it remains to verify that if f, g
are morphisms in H(Alg,) and o € S is such that fo = go then there is ¢/ € S such
that o/ f = 0’g. Let us show first if f, g : M,k ® A — B are two homomorphisms with
floo,A = gloo, A then quBf = loo.BY for some n.

Consider the diagram

loo, A f
A ’ Mok® A B
1®L007All Loo, Moo k®A ! \LLOO,B
1®f
M2k ® A Mk ® B
1®g l
S2 52
i
My(ME22k ® A) Msy(Mxk ® B).
1®g
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The algebra M&2k can be regarded as a subalgebra of Endy (k™) @ k™). Let {e;}ien
denote the standard basis of kN, Then {ei ®ej}ijen is a basis of kM @ k™) There is
a permutation matrix W € C such that 1 ® 1o 4 = Wﬁl[foo,Mook(@AW- More precisely,
W swaps e1 ® e;,e; ® e1, ¢ = 1, and leaves the other basis elements unchanged. Using
Proposition 3.1 one has,

S2too Bf = (1 ® f)S2tooMokoa =~ 52(1 ® f)(1 @ too,a) =
52(1 ® g)(1 ® too,4) =~ (1 ® 9)S2t00, Mak®A = S2Loo,BY-

Composing sy with the natural embedding of My(Myk ® B) into M2?k ® B, it follows
that 12, pf equals 2, pg in H(Algy).

Let n > 1 and let fi 4, = gus 4. Using induction in n we can find a 01 € S
such that UlfLw7M§n—1k®A’: O'lgLOO:Jwggn—lk@A. By above there is a o2 € S such that
o201 f = 0201g. Hence S admits a calculus of left fractions.

To show that every stable homotopy invariant functor X : Alg, — C factors through
Hs(Algy,), it is enough to observe that X takes every element of S to an isomorphism.

O

It follows from the preceding theorem that morphisms in Hg (Alg,) are given by the
sets
[A, Blst := lim[A, MZ"k © B.
n
Note that the arrows s, 4 : A — M, A become invertible in Hg (Alg;,). Therefore the
canonical functor ® — Hg(Algy,) factors through H,or (Algy,).

9. THE TRIANGULATED CATEGORY Dg (R, §)

In this section we construct explicitly a universal §-excisive, homotopy invariant and
stable homology theory. Throughout this section R is an admissible category of k-
algebras with M A € R for any A € R. We assume § to be a saturated family of
fibrations satisfying Mk @ f € § for any f € §. For instance, this is the case when §
is either §sp1 or Fsurj. The proof of Corollary 2.8 shows that Mok ® f € Wa for any
f € Wa. Note that if B is a path object for an algebra B € R then M.k ® (B') is a
path algebra for Mk ® B.

We denote by HgR the full subcategory of Hg(Alg;,) whose objects are those of R.
Let

Fst : HéR — Hst%

be the canonical functor. We set
S =A{Ta(f) [ f € Wal.
Proposition 9.1. X, admits a calculus of right fractions in HgR.
Proof. The proof is like that of Proposition 6.1. 0

We denote by D (R,T) the category HyR[E,']. Tt follows from Theorem 8.1 and
Proposition 9.1 that the category is obtained from R by inverting the maps from Wa U
(SN MorR). Maps between A, B € R are defined as

lay D™ (R, $)(A, MPh @ B) = lm I, MZk@ B = lim (4Bl
n A'—AEWA n A'—AEWA
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Composition of two maps A < A’ ER M2k ® B and B < B' % M&'k®C in D5(R,3)
is a common denominator

A/l

T

ME"k® B’

Al
A

MZ'k® B ML ke C
with M2k @t € Wa and A” a limit in R for the diagram
A M2k ® B! M2k @ B’

Mk B M2k ® B

The loop functor 2 : D™ (R,§) — D~ (R,§) can plainly be extended to D, (R,3F).
Let T'st : D™ (R,§) — D, (R,§) be the canonical functor. We say that a sequence in
DG (R, 3)

QA—-C—-B— A
is a left triangle if it is isomorphic to

QFStA, — FstC' - FStB, — FStA,

for some left triangle QA" — C" — B’ — A" in D~ (R, §). We denote by Ltry(R,§) the
category of left triangles in D, (R, §).

Theorem 9.2. Liry(R,§) is a left triangulation of the (possibly “large”) category
D4R, ), i.e. it is closed under isomorphisms and enjoys the axioms (LT1)-(LT4)
of Theorem 2.3.

Proof. The proof is like that of Theorem 6.4. 0

One can stabilize the loop endofunctor © on D_, (R, §) (see paragraph 2.2) to get a
new category Dg(R,§) which is clearly triangulated.
We are now in a position to prove the main result of the section.

Theorem 9.3. Let X : R — T be an excisive, homotopy invariant, stable homology
theory. Then the following statements are true:

(1) there is a unique functor X : D,,(R,§) — T such that X = X o j with j :
R — D, (R,T) the canonical functor. Moreover, X takes left triangles in D4 (R, ) to
triangles in T ; N N

(2) there is a unique functor X : Dg(R,§) — T such that X = X o S with S :
D (R,§) — Dst(R,§) the canonical stabilization functor. Moreover, X is triangulated,
i.e. it takes triangles in Dg(R,F) to triangles in T .

Proof. The proof is like that of Theorem 6.5. g

Cortinias—Thom [5] constructed a universal excisive, homotopy invariant, stable ho-
mology theory Alg, — kk depending on §sp1 Or Ssurj-
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Corollary 9.4. Let § be either §sp1 or Fsurj. Then there is a natural triangle equivalence
of the triangulated categories Dy (Algy,§) and kk.

Proof. If we use the preceding theorem, then the proof is like that of [10, 7.4]. O

Let Weo denote the class of those homomorphisms f for which X (f) is an isomorphism
for any excisive, homotopy invariant, stable homology theory X. It can be shown similar
to Lemma 2.5 that the triple (R, §, W) is a Brown category. Denote by D (R,§) and
Do (R, §) the categories D™ (R, F, W) and D(R,§F, Wao) respectively.

Theorem 9.5. If Dy (R,§) is a category with small Hom-sets, then there is a natural
triangulated equivalence of the triangulated categories Dg(R,§) and Do (R, §).

Proof. The proof is like that of Theorem 6.6. g

Proposition 9.6. If § is a tensor closed collection of fibrations then the tensor product
®y of algebras induces a tensor product on Dg (R, ) making it a symmetric monoidal
category. Moreover, the tensor product is exact in either variable, i.e. it takes triangles
to triangles.

Proof. The proof is similar to that of Corollary 2.8. 0

10. COMPARISON WITH kh

In this section we prove the main computational result of the paper which is a gener-
alization of a similar result by Cortinas—Thom [5].

Let 'A, A € Alg,,, be the algebra of N x N-matrices which satisfy the following two
properties.

(i) The set {a;; | 7,7 € N} is finite.
(ii) There exists a natural number N € N such that each row and each column has
at most [NV nonzero entries.

My A CTA is an ideal. We put
YA=TA/MA.
By [5] there are natural algebra isomorphisms
FTAZTE® A, YAZXE® A.
We call the short exact sequence
MoA—TA > A
the cone extension. By [5] T'A - YA € Fqp1.

Definition. An admissible category of algebras R is I'-closed if TA € R for any A € R.
A class of fibration § in a I'-closed admissible category of algebras R is I'-saturated if
I'A —» YA€ forany A € R.

Suppose R is I'-closed then Fgp1, Ssurj are I'-saturated. Every proper class w in the
category of k-modules also gives rise to a I'-saturated class of fibrations §,, (see p. 6).
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Given A € Alg;, consider the commutative diagram as follows:

QN4 =——=QxA
J
Mo A= P() E(ZA)
| ]
Moo A r'A—>354

Note that g is a fibre product of a G L-fibration. One has a commutative diagram with
exact rows and columns

KVi(TA) = 0 =——= KV;(SA)
Ko(QSA) Ko(QSA)
e

Ko(P(7)) — Ko(E(2A))

Ko(QXA)

By [4, 5] p is a cokernel of «, tp equals the boundary map 9 : K;(3A) — Ko(Q2XA),
Ko(TA) = KVi(TA) = 0 and prv = 0. It follows that § is a cokernel of v, and hence
there is a unique 3 such that 66 = p

Lemma 10.1. The homomorphism j~1i : Ko(A) — Ko(Q3A) equals 3.

Proof. j7Yi = 13 if and only if 9 = 13§ == j~ 1§ if and only if j0 = i6. This follows
from commutativity of the following diagram induced by Mayer—Vietoris sequences

|

o(l'A)
1(EA) — Ko(P(v)) —= Ko(T'A) & l Ko(E(3A)) — Ko(XA)
1(SA4) $KD(§T2]2A) KD(ET(EA))

v

K

H(BA) — = Ky(A)
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So we obtain an infinite sequence of natural maps

Ko(A) 225 Ko(304) L0 Ky (220%4) — .. (12)

It induces an infinite sequence of natural maps

[Kol(A4) 25 (Kol (504) 225 [K)(520%4) — - (13)
Using Theorem 5.6 the latter sequence yields a sequence
kh(k, A)Y(A) 25 kh(k, £0A4) 2% kh(k, S2024) — ... (14)
Theorem 10.2. For any A € Alg, there is a natural isomorphism of abelian groups
KHy(A) = colim, kh(k,X"Q"A),
where K Hy(A) is the zeroth homotopy K -theory group in the sense of Weibel [24].
Proof. By [5, 8.1.1] KHp(A) is the colimit of the sequence

Ko(A) 2 Ko(204) 20 Ko(32024) — .-

By Lemma 10.1 it is the colimit of sequence (12). Since K Hy(A) is homotopy invariant
then K Hy(A) is the colimit of sequence (13). It remains to apply Theorem 5.6. O

Denote by W/ the class of morphisms in ® which become invertible in Dy (R, F).
One has,
Wha U {Loo,A A — My (k) ® A}AEAng C Wéo C Weo.
It can be shown similar to Lemma 2.5 that the triple (%, §, W) is a Brown category.
There is a natural functor
F:D (R, 3, W) — Du(R, ).

Proposition 10.3. If R is I'-closed and § is T'-saturated, then D_(R,F, W) is a
triangulated category and the functor
F:D (R, 3W,) — Dg(R, )

is a triangle equivalence of triangulated categories.

Proof. Since § is I'-saturated, then we have a left triangle corresponding to the cone
extension

204 =054 -5 M,A—TA— DA
By [4, 2.3.1] T'A is zero in Dy (R, §), and hence 0 — I'A € W/_. Tt follows that T'A is
zero in D™ (R, F, W.,). Since d = i~'j and i are isomorphisms in Dg (%R, F), then so is
j. We see that 0 is an isomorphism in D~ (R, §, WY.,). The isomorphism is easily seen
to be functorial in A. Since 10,4 : A — Mook ® A € W/ we obtain an isomorphism of
endofunctors )

730 = ox =g,

It follows that Q : D=(R, W, ) — D~ (R, F, W.) is an autoequivalence. Therefore
D~ (R, §, W.) is triangulated and the natural functor D_(R,§) — D~ (R, F, W) can
be extended to a triangulated functor

G : Dy(R,§) — D™ (R, W,).

One easily checks that F, G are mutually inverse equivalences. (|
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Corollary 10.4. If R is I'-closed and § is '-saturated, then
D™ (R, 3, Wo)(A, B) = h_n} {A', Blor
Al AEW!
for all A,B € R.

Proof. By the preceding proposition D~ (R, F, W.,)(A, B) is an abelian group. Now our
proof is similar to that of Corollary 6.3. O

Proposition 10.5. Let R be I'-closed and let § be I'-saturated. Suppose B € R is such
that By e R ande: By — k€ F. Then
D (R,§WL)(AB) = lm  kh(4,B)
Al AEWL,
for any A € R.
Proof. By definition, kh(A, B) = Ker({A, B+ }mor SN {A,k}mor). Taking a colimit
over the arrows A’ — A € W/_, one has a split exact sequence

lin gy FAS B dimy ) A4S B dmor —1im ) 447 Kdmor.

By the preceding proposition D~ (R,§, W) is triangulated and by our assumption
e: By — k € §. Hence one has a (split) triangle in D~ (R, §, W.))

Qk — B— By — k.
Therefore one has a split exact sequence
D™ (R, T, Wi )(A, B)=—= D~ (R, §, W, )(A4, By) —= D~ (R, § WL ) (A k).
Our assertion now follows from the preceding corollary. g
We are now in a position to prove the main computational result of the paper.

Theorem 10.6 (Cortinas—Thom). Let R be I'-closed and let § be T'-saturated. Suppose
BieRande: By — k €§ for any B € R. Then there is an isomorphism of Z-graded
abelian groups for any A € R

P KH.(A) = P Du(R, 3)(k, Q" A),
nez nez

where the left hand side is homotopy K -theory in the sense of Weibel [24]. Furthermore,
this isomorphism is functorial in A.

Proof. Let KH(A) be any functorial (non-connective) homotopy K-theory spectrum.
Then

KH(-):® — Ho(Sp), A~ KH(A),
determines an excisive, homotopy invariant, stable homology theory with values in the
homotopy category of spectra (see [24]). It follows that there is an isomorphism in
Ho(S5p)

O"KH(A) =2 KH(Q"A), AeRnel.
Thus,

KHy(—)=m(KH(-)): R— Ab

takes maps from W/ to isomorphisms and K H,(A) = KHy(Q"A) for all A € R®,n € Z.
So it is enough to prove the theorem for n = 0.
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By Theorem 10.2 there is a natural isomorphism of abelian groups
K Hy(A) = colim,, kh(k,X"Q"A),
functorial in A. By Proposition 10.5
D™ (R, 3, W.)(A, B) = lim kh(A', B).
Al AEW!,
So one gets a natural map
ot KHy(A) — colim, D™ (R, § W.)(k, S"Q"A) = D~ (R, §, W, )(k, A),

where the colimit maps on the right are induced by the isomorphism of endofunctors

780 id (see the proof of Proposition10.5).
Denote by 3 the composite of canonical maps

D™ (R, §, W.o)(k, A) — Homgz(K Ho(k), K Ho(A)) < Homgz(K Ho(Z), K Ho(A)) = K Ho(A),

where ¢ : Z — k is the canonical map and the left arrow sends a diagram k < A’ 4, A,
s € W', to KHo(f)o KHy(s)~!. If Ais unital and E € M (A) an idempotent, then
the composite Sa sends the class of E to its image in K Hy(A). By construction of «,
this is enough to prove that Sa is the identity. To complete the proof we shall show
that « is surjective.

Suppose k < A’ 4, A, s e W, isin DR, §,W,)(k,A). Since KHy(s) is an
isomorphism, there are n > 0 and a homomorphism ¢ : k — X"Q" A’ such that X"Q"(s)o
t:k— X"Q"A is the image of 1 : k — k in kh(k, X"Q"k) under the map (14). Observe
that 77 o X" (s)ot : k — k equals 1 in D™ (R, §, WL,). It follows that t € W._ because
XrOM(s) € WL.

We claim that k < A’ %5 A equals a(S"Q7(f)ot) = 7" 0 2"Q"(f)ot. But this follows
from commutativity of the diagram

k
|
srOn (k) < smgn( 4y D sngn 4

ml Tnl f l

k : Al A
The theorem is proved. g

11. STABLE ALGEBRAIC K K- AND E-THEORIES

We finish the paper by introducing stable algebraic K K- and E-theories. Throughout
this section we assume fixed an underlying category U, which can be a full subcategory
of either the category of sets Sets or Mod k. The category U will depend on §. Namely,
we shall assume that U C Sets if § = Fsurj and U C Mod k if § = Fsp1. We also assume
that an admissible category of k-algebras # is both T-closed and I'-closed. We also
assume By € R for any B € R. Then M, A € R for any A € R and M (f) € § for any
f €F. Also, § is I'-saturated.
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Definition. (1) The stable algebraic KK -theory for R is the triangulated category
Dy (R, Fsp1)- The stable algebraic KK -groups are, by definition,

AR5/ (A, B) i= Dat(R, 3sp) (A, Q"B), ne€Z, A BeR

(2) The stable algebraic E-theory for R is the triangulated category Ds; (R, §surj). The
stable algebraic E-groups are, by definition,

€A, B) := Dt (R, Fourj) (A, Q"B), ne€Z, A BeR.

Theorem 11.1 (Cortinas—Thom). There are isomorphisms of Z-graded abelian groups
for any A € R

P KH.(A) = P 8&; (%, A)

nez nel

and
P KH.(A) = P €l (k, A),
nez neL

functorial in A, where the left hand side is homotopy K -theory in the sense of Weibel [24].
Proof. This a consequence of Theorem 10.6. O

Corollary 11.2 (Cortinas-Thom [5]). There is a natural isomorphism
kki(k,A) =2 KH,(A).

Proof. This a consequence of the preceding theorem and Corollary 9.4. O
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