
UNIVERSAL BIVARIANT ALGEBRAIC K-THEORIES

GRIGORY GARKUSHA

Abstract. To any admissible category of algebras and a family of fibrations on it a
universal bivariant excisive homotopy invariant algebraic K-theory is associated. Also,
Morita invariant and stable universal bivariant K-theories are studied. We introduce
an additive category of correspondencies for non-unital algebras and study the problem
of when stable bivariant K-groups can be computed by means of correspondences.

In relation with the Atiyah-Singer theorem, Kasparov introduced bivariant Z/2-
graded abelian groups KK∗(A,B) on the level of C∗-algebras with remarkable formal
properties, one of which comes from the associative product KK∗(A,B)×KK∗(B, C) →
KK∗(A,C). After Cuntz [6] and Higson [17] one can define an additive category KK by
taking separable C∗-algebras as objects and KK0(A,B) as set of morphisms between the
objects A and B. In fact, KK can be regarded as a functor from the category of separable
C∗-algebras with ordinary morphisms (∗-homomorphisms) into the category KK whose
objects are separable C∗-algebras and whose morphisms are KK0(A,B). Moreover,
any morphism f : A → B naturally defines an element of KK0(A,B) and the Kasparov
product extends the composition of morphisms. Now KK is the universal functor into an
additive category A that is homotopy invariant, C∗-stable (i.e., A(A,K⊗B) ∼= A(A, B)),
and split exact (i.e., A(A, E) ∼= A(A, J) ⊕ A(A,B), if 0 → J → E → B → 0 is a split
exact sequence of C∗-algebras).

Using abstract ideas from category theory, Higson constructed a new theory, later
called E-theory. One takes the additive category KK and forms a category of fractions E
with morphism sets E(A,B) by inverting in KK all morphisms induced by an inclusion
I → A of a closed ideal I into a C∗-algebra A, for which the quotient A/I is contractible.
The category E is additive with a natural functor from the category of separable C∗-
algebras into E (which factors over KK). In E, every extension of C∗-algebras (not
necessarily admitting a completely positive splitting) induces long exact sequences in
E(−, D) and E(D,−). Moreover, E is the universal functor into an additive category
which is homotopy invariant, stable and half-exact. The categories KK and E as well
as some other variants of bivariant theories can be viewed as triangulated categories
(see [20, 22]).

Since the construction of KK-theory and E-theory used techniques which are quite
specific to C∗-algebras it seemed for many years that similar theories for other topological
algebras would be impossible. However, in [7, 8, 9] Cuntz constructed a bivariant two-
periodic theory kklca∗ (A,B) on the category of locally convex algebras with all the desired
properties, in particular the usual properties of (differentiable) homotopy invariance,
long exact sequences associated with extensions and stability under tensoring by the
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algebra of rapidly decreasing matrices. Similar to the triangulated categories KK and E
this bivariant theory can also be thought of as a triangulated category, denoted by kklca,
whose objects are the locally convex algebras and Hom-sets are given by kklca

0 (A,B).
There is as well a canonical functor from the category of locally convex algebras to the
category kklca. This theory also allows to carry over ideas and techniques from locally
convex algebras to its possible algebraic counterpart for the category of all algebras.

Motivated by ideas and work of J. Cuntz on bivariant K-theory of locally convex alge-
bras [7, 8, 9], Cortiñas and Thom [5] define bivariant graded abelian groups kk∗(A,B) on
the category Algk of algebras over a unital ground ring k. The groups depend on a class
F of extensions of algebras, which is either the class Fsurj of all surjective homomorphisms
of k-algebras or the class of k-split surjective homomorphisms Fspl. This bivariant theory
can also be thought of as a triangulated category kk, whose objects are those of Algk

and morphisms between two algebras A,B ∈ Algk are given by kk0(A,B). There is a
canonical functor j : Algk → kk sending an algebra to itself. Cortiñas–Thom [5] prove
that j is the universal functor from Algk to a triangulated category T that is (polyno-
mially) homotopy invariant, M∞-invariant (i.e., T (A,M∞k⊗k B) ∼= T (A,B) with M∞k
the algebra of all finite matrices over k), and every extension 0 → J → E → B → 0 in F

is mapped in a functorial way to a triangle ΩB
∂→ J → E → B in T . The triangulated

category kk can be viewed as the desired algebraic counterpart of kklca in the sense of
Cuntz.

Independent of [5] the author introduced in [10] various algebraic bivariant K-theories,
all of which are realized in triangulated categories. In particular, he recovers the cat-
egory kk of Cortiñas–Thom. However [10] does not study universal bivariant theories.
The paper is to construct universal homotopy invariant, excisive algebraic bivariant
K-theories. For this we use ideas and techniques developed in [10]. We start with a
datum of an admissible category of algebras < and a class F of fibrations on it and then
construct a triangulated category D(<, F) out of the datum (<, F) by inverting certain
arrows which we call weak equivalences. There is a canonical functor < → D(<, F).
It is the universal functor from < to a triangulated category T that is (polynomially)
homotopy invariant and every extension 0 → J → E → B → 0 in F is mapped in a
functorial way to a triangle ΩB

∂→ J → E → B in T (Theorem 2.6).
It should be emphasized that we do not consider any matrix-invariance in general.

This is one of the most important features of the paper. This is caused by the fact that
many interesting admissible categories of algebras deserving to be considered separately
like that of all commutative ones are not closed under matrices. The most important
classes of fibrations in practice are Fspl or Fsurj. We call D(<, Fspl) and D(<, Fsurj) the
unstable algebraic KK- and E-theories respectively. One could also call them “dematri-
cized” K-theories or K-theories “without matrices” as they do not involve any matrices
at all.

We next introduce matrices into the game and study universal bivariant, excisive,
homotopy invariant and “Morita invariant” algebraic K-theories. For this a triangulated
category Dmor(<, F) is constructed in an explicit way. More precisely, the objects of
Dmor(<, F) are those of < and the set of morphisms between two algebras A,B ∈ < is
defined as the colimit of the sequence of abelian groups

D(<,F)(A,B) → D(<, F)(A,M2B) → D(<, F)(A,M3B) → · · ·
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There is a canonical functor < → Dmor(<,F). It is the universal functor from < to
a triangulated category T that is (polynomially) homotopy invariant, Morita invariant
(i.e., T (A,MnB) ∼= T (A, B) for all n), and every extension 0 → J → E → B → 0 in F

is mapped in a functorial way to a triangle ΩB
∂→ J → E → B in T (Theorem 6.5). We

call Dmor(<, Fspl) and Dmor(<,Fsurj) the Morita stable algebraic KK- and E-theories
respectively.

And finally, we introduce and study universal bivariant, excisive, homotopy invariant
and M∞-invariant (or “stable”) algebraic K-theories. For this a triangulated category
Dst(<,F) is constructed in an explicit way. More precisely, the objects of Dst(<, F) are
those of < and the set of morphisms between two algebras A,B ∈ < is defined as the
colimit of the sequence of abelian groups

D(<, F)(A,B) → D(<,F)(A,M∞k ⊗k B) → D(<,F)(A,M∞k ⊗k M∞k ⊗k B) → · · ·

There is a canonical functor < → Dst(<, F). It is the universal functor from < to a
triangulated category T that is (polynomially) homotopy invariant, M∞-invariant, and
every extension 0 → J → E → B → 0 in F is mapped in a functorial way to a triangle
ΩB

∂→ J → E → B in T (Theorem 9.3). As above, we call Dst(<, Fspl) and Dst(<, Fsurj)
the stable algebraic KK- and E-theories respectively.

We show that morphisms in Dmor(<,F) and Dst(<, F) are closely related to additive
categories of correspondences of Kassel [19] and Grayson [15]. We also introduce an
additive category of correspondences kh for non-unital algebras and show that

colimn kh(k, ΣnΩnA) ∼= KH0(A)

for any A ∈ Algk, where Ω, Σ are the loop and suspension functors, KH0(A) is the
zeroth homotopy K-theory group in the sense of Weibel [24] (Theorem 10.2).

We also prove a result stating when Dst(<,F)(k, A) are computed by means of corre-
spondences (Theorem 10.6). This is an extension of an important computational result
by Cortiñas–Thom saying that

kk∗(k, A) ∼= KH∗(A),

where the right hand side is homotopy K-theory in the sense of Weibel [24].
One should mention that our approach is entirely different from that of Cuntz–

Cortiñas–Thom. In particular, it allows to consider very general classes of algebras
< and fibrations F on them.

Throughout the paper k is a fixed commutative ring with unit and Algk is the category
of non-unital k-algebras and non-unital k-homomorphisms. By Algu

k we denote the full
subcategory in Algk of unital algebras. If there is no likelihood of confusion, we replace
⊗k by ⊗. If C is a category and A,B are objects of C, we shall often write C(A, B) to
denote the Hom-set HomC(A, B).

In general, we shall not be very explicit about set-theoretical foundations, and we
shall tacitly assume we are working in some fixed universe U of sets. Members of U are
then called small sets, whereas a collection of members of U which does not itself belong
to U will be referred to as a large set or a proper class.

3



1. Preliminaries

This section gives the preliminaries to the definition of triangulated categories for
algebras which we shall introduce in the next section.

1.1. Algebraic homotopy

Following Gersten [12] a category of non-unital k-algebras < is admissible if it is a full
subcategory of Algk and

(1) R in <, I a (two-sided) ideal of R then I and R/I are in <;
(2) if R is in <, then so is R[x], the polynomial algebra in one variable;
(3) given a cartesian square

D
ρ //

σ
²²

A

f
²²

B
g // C

in Algk with A,B,C in <, then D is in <.
Observe that every algebra which is isomorphic to an algebra from < belongs to <.

One may abbreviate 1, 2, and 3 by saying that < is closed under operations of taking
ideals, homomorphic images, polynomial extensions in a finite number of variables, and
pullbacks. For instance, the category of commutative k-algebras CAlgk is admissible.

Recall that an algebra A is square zero if A2 = 0. If we regard every k-module M as
a non-unital k-algebra with trivial multiplication m1 ·m2 = 0 for all m1,m2 ∈ M , then
Mod k is an admissible category of k-algebras coinciding with the category of square
zero algebras.

If R is an algebra then the polynomial algebra R[x] admits two homomorphisms onto
R

R[x]
∂0

x //

∂1
x

// R

where
∂i

x|R = 1R, ∂i
x(x) = i, i = 0, 1.

Of course, ∂1
x(x) = 1 has to be understood in the sense that Σrnxn 7→ Σrn.

Definition. Two homomorphisms f0, f1 : S → R are elementary homotopic, written
f0 ∼ f1, if there exists a homomorphism

f : S → R[x]

such that ∂0
xf = f0 and ∂1

xf = f1. A map f : S → R is called an elementary homotopy
equivalence if there is a map g : R → S such that fg and gf are elementary homotopic
to idR and idS respectively.

For example, let A be a Zn>0-graded algebra, then the inclusion A0 → A is an
elementary homotopy equivalence. The homotopy inverse is given by the projection
A → A0. Indeed, the map A → A[x] sending a homogeneous element an ∈ An to antn

is a homotopy between the composite A → A0 → A and the identity idA.
The relation “elementary homotopic” is reflexive and symmetric [12, p. 62]. One may

take the transitive closure of this relation to get an equivalence relation (denoted by
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the symbol “'”). Following notation of Gersten [13], the set of equivalence classes of
morphisms R → S is written [R, S].

Lemma 1.1 (Gersten [13]). Given morphisms in Algk

R
f // S

g
))

g′
55 T

h // U

such that g ' g′, then gf ' g′f and hg ' hg′.

Thus homotopy behaves well with respect to composition and we have category
H(Algk), the homotopy category of k-algebras, whose objects are k-algebras and HomH(Algk)(R,S) =
[R, S]. The homotopy category of an admissible category of algebras < will be denoted
by H(<). Call a homomorphism s : A → B an I-weak equivalence if its image in H(<)
is an isomorphism.

The diagram in Algk

A
f→ B

g→ C

is a short exact sequence if f is injective (≡ Ker f = 0), g is surjective, and the image
of f is equal to the kernel of g.

Definition. An algebra R is contractible if 0 ∼ 1; that is, if there is a homomorphism
f : R → R[x] such that ∂0

xf = 0 and ∂1
xf = 1R.

For example, every square zero algebra A ∈ Algk is contractible by means of the
homotopy A → A[x], a ∈ A 7→ ax ∈ A[x]. Therefore every k-module, regarded as a
k-algebra with trivial multiplication, is contractible.

Following Karoubi and Villamayor [18] we define ER, the path algebra on R, as the

kernel of ∂0
x : R[x] → R, so ER → R[x]

∂0
x→ R is a short exact sequence in Algk. Also

∂1
x : R[x] → R induces a surjection

∂1
x : ER → R

and we define the loop algebra ΩR of R to be its kernel, so we have a short exact sequence
in Algk

ΩR → ER
∂1

x→ R.

We call it the loop extension of R. Clearly, ΩR is the intersection of the kernels of ∂0
x

and ∂1
x. By [12, 3.3] ER is contractible for any algebra R.

1.2. Fibrations of algebras

Definition. Let < be an admissible category of algebras. A family F of surjective
homomorphisms of < is called fibrations if it meets the following axioms:
Ax 1) for each R in <, R → 0 is in F;
Ax 2) F is closed under composition and any isomorphism is a fibration;
Ax 3) if the diagram

D
ρ //

σ
²²

A

f
²²

B
g // C
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is cartesian in < and g ∈ F, then ρ ∈ F;
Ax 4) any map u in < can be factored u = pi, where p is a fibration and i is an I-weak

equivalence.
We call a short exact sequence in <

A
g−→ B

f−→ C

with f ∈ F a F-fibre sequence.
F is said to be saturated if the homomorphism ∂1

x : EA → A is a fibration for any
A ∈ <. It is tensor closed if for any fibration p and any D ∈ < the sequence

Ker p⊗D
ker p⊗1−−−−→ B ⊗D

p⊗1−−→ C ⊗D

is a F-fibre sequence.

The trivial case is < = F = 0. A non-trivial example, < 6= 0, of fibrations is given by
the surjective homomorphisms. Another important example of fibrations is defined by
any left exact functor. Recall that a functor F : Algk → Sets is left exact if F preserves
finite limits. In particular, if A → B → C is a short exact sequence in Algk, then

0 → FA → FB → FC

is an exact sequence of pointed sets (since the zero algebra is a zero object in Algk, it
determines a unique element of FA). Furthermore F preserves cartesian squares.

For instance, any representable functor is left exact as well as the functor (see Ger-
sten [12])

R ∈ Algk 7−→ GL(R).

Definition. A surjective map g : B → C is said to be a F -fibration (where F : Algk →
Sets is a functor) if F (En(g)) : FEnB → FEnC is surjective for all n > 0. Observe
that nothing is said about F (g) : FB → FC. It follows that if the composite fg of two
maps is a F -fibration, then so is f . If F = GL we refer to F -fibrations as GL-fibrations.
We also note that the family Fsurj of all surjective homomorphisms is the family of
F -fibrations with F sending an algebra A to its underlying set.

By [10, 4.1] the collection of F -fibrations, where F : < → Sets is left exact, enjoys
the axioms Ax 1)-4) for fibrations on < and is saturated. Similarly, it can be checked
that the collection of surjective k-split homomorphisms Fspl forms a saturated family of
fibrations. Fspl is plainly tensor closed. Observe that if k is a field then Fspl = Fsurj.

There are plenty of fibrations between Fspl and Fsurj. For example, every proper class
ω in the category of k-modules in the sense of [11] gives rise to a class of fibrations
Fspl ⊆ Fω ⊆ Fsurj. A basic example is the class Fpure of those k-algebra homomorphisms
which are pure epimorphisms in Mod k.

1.3. Categories of fibrant objects

Definition. Let A be a category with finite products and a final object e. Assume that
A has two distinguished classes of maps, called weak equivalences and fibrations. A map
is called a trivial fibration if it is both a weak equivalence and a fibration. We define a
path space for an object B to be an object BI together with maps

B
s−→ BI (d0,d1)−−−−→ B ×B,
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where s is a weak equivalence, (d0, d1) is a fibration, and the composite is the diagonal
map.

Following Brown [2], we call A a category of fibrant objects or a Brown category if the
following axioms are satisfied.

(A) Let f and g be maps such that gf is defined. If two of f , g, gf are weak
equivalences then so is the third. Any isomorphism is a weak equivalence.

(B) The composite of two fibrations is a fibration. Any isomorphism is a fibration.
(C) Given a diagram

A
u−→ C

v←− B,

with v a fibration (respectively a trivial fibration), the pullback A×C B exists and the
map A×C B → A is a fibration (respectively a trivial fibration).

(D) For any object B in A there exists at least one path space BI (not necessarily
functorial in B).

(E) For any object B the map B → e is a fibration.

2. Triangulated categories of algebras

In this section we want to introduce a triangulated category D(<, F,W) associated
with a triple (<,F,W), where < is an admissible category of algebras, F is a saturated
family of fibrations on it and W is an arbitrary class of weak equivalences containing
A → A[t], A ∈ <, such that (<, F,W) is a Brown category. The category D(<, F,W)
was first constructed in [10] for the case when W is the class of “F-quasi-isomorphisms”.
In practice we have to work with various families of weak equivalences. For this reason
we need to introduce D(<,F,W) for quite general classes of weak equivalences. Though
the construction of D(<, F,W) is very close to that in [10] for “F-quasi-isomorphisms”,
we give it here from scratch in order to be sure that nothing goes wrong. The main
class of weak equivalences W4 we work with is defined by means of excisive, homotopy
invariant homology theories. We start with preparations.

2.1. Left derived categories

Recall that a pair (C, W ) of a category C and a class of morphisms W is said to admit
a calculus of right fractions if the following properties hold.

• W contains all identities and is closed under composition.
• Given an arrow v : x → z in W and any arrow f : y → z, there is an arrow

v′ : w → y in W and an arrow f ′ : w → x in C such that fv′ = vf ′.
• Given an arrow v : y → z in W and a pair of parallel morphisms f, g : x → y

such that vf = vg, there is an arrow u : w → x in W such that fu = gu.
If (Cop,W op) admits a calculus of right fractions, we say that (C, W ) admits a calculus
of left fractions.

Let F be a saturated family of fibrations in an admissible not necessarily small category
of algebras < and let W be a class of weak equivalences containing homomorphisms
A → A[t], A ∈ <, such that the triple (<, F,W) is a Brown category.

Definition. The left derived category D−(<,F,W) of < with respect to (F,W) is the
category obtained from < by inverting the weak equivalences.
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Proposition 2.1. The family of weak equivalences in the category H< admits a calcu-
lus of right fractions. The left derived category D−(<,F,W) is obtained from H< by
inverting the weak equivalences.

Proof. The proof is similar to that of [10, Prop. 5.2]. ¤

We should remark that if the category < is not small then the left derived cate-
gory D−(<, F,W) is possibly “large”, i.e. for any given pair of algebras A,B ∈ < the
equivalence classes of fractions D−(<, F,W)(A,B) do not form a small set.

Below we shall need the following

Lemma 2.2. Let A
i½ B

p
³ C be a F-fibre sequence with C weakly equivalent to zero.

Then i is a weak equivalence.

Proof. Consider a commutative diagram

B
p // // C

²²

0oo

B // 0 0oo

with left vertical arrows fibrations. Our assertion now follows from [14, II.9.10]. ¤

The endofunctor Ω : < → < respects weak equivalences. Indeed, let f : A → B be a
weak equivalence. Consider the following commutative diagram:

ΩA // //

Ωf
²²

EA

E(f)
²²

∂1
x // // A

f
²²

ΩB // // EB
∂1

x // // B

Since EA, EB are isomorphic to zero in D−(<, F,W), it follows that E(f) is a weak
equivalence. Then Ωf is a weak equivalence by [2, §4, Lemma 3]. Thus Ω can be
regarded as an endofunctor of D−(<,F,W). It can be shown similar to [10, 5.4] that
if F is a saturated family of fibrations, then ΩA is a group object in D−(<, F,W). We
also refer the reader to [2, §4, Cor. 2].

A group structure on ΩA is explicitly constructed as follows (see [10]). Let B[x]×B

B[x] := {(f(x), g(x)) | f(1) = g(0)} and let Ω̃B be the kernel of (d0, d1) : B[x]×BB[x] →
B × B, (f(x), g(x)) 7→ (f(0), g(1)). Consider the homomorphism α : ΩB → Ω̃B,
f(x) 7−→ (f(x), 0). Using Lemma 2.2 and the proof of [10, 6.1], it is a weak equivalence.
Let ω : ΩA× ΩA → Ω̃A be the evident map induced by the pullback property. Then

µA := α−1ω : ΩA× ΩA → ΩA

determines a group structure on ΩA (see [10, section 6]). For any n > 2 the algebra
ΩnA is an abelian group object in D−(<,F,W) (see [10, 6.5]).
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Given a fibration g : A → B with kernel F , consider the commutative diagram as
follows:

ΩB
²²

j
²²

ΩB
²²

²²
F // i // P (g) // //

g1

²²

EB

∂1
x

²²
F // ι // A

g // // B

Since EB is contractible, it follows from Lemma 2.2 that i is a weak equivalence. We
deduce the sequence in D−(<, F,W)

ΩB
i−1◦j−−−→ F

ι−→ A
g−→ B. (1)

We shall refer to such sequences as standard left triangles. Any diagram in D−(<, F,W)
which is isomorphic to the latter sequence will be called a left triangle. One must be
careful to note that ΩB′ → F ′ −→ A′ −→ B′ is isomorphic to a standard triangle (1) if
and only if there is a commutative diagram

ΩB //

Ωb
²²

F

f
²²

// A

a
²²

// B

b
²²

ΩB′ // F ′ // A′ // B′

with f, a, b isomorphisms in D−(<, F,W).
It follows that the diagram

ΩB
j−→ P (g)

g1−→ A
g−→ B (2)

is a left triangle. If g is not a fibration then g is factored as g = g′` with g′ a fibration
and ` a weak equivalence. We get a commutative diagram

ΩB // P (g)

t
²²

// A

`
²²

g // B

ΩB // P (g′) // A′
g′ // B.

If F is a saturated family of fibrations, then the arrow t is a weak equivalence by [14,
II.9.10]. Hence the upper sequence of the diagram is a left triangle. This also verifies
that any map in D−(<, F) fits into a left triangle.

For any algebra A the automorphism σ = σA : ΩA → ΩA takes a polynomial a(x)
to a(1 − x). Notice that σ is functorial in A and σ2 = 1. Given a morphism α in
D−(<, F,W), by −Ωα denote the morphism Ωα ◦ σ = σ ◦ Ωα. For any n > 1 the
morphism (−1)nΩα means σnΩα.

The proof of the following result literally repeats that of [10, 5.6].

Theorem 2.3. Let F be a saturated family of fibrations in an admissible not necessar-
ily small category of algebras < and let W be a class of weak equivalences containing
homomorphisms A → A[t], A ∈ <, such that the triple (<, F,W) is a Brown category.
Denote by Ltr(<,F,W) the category of left triangles having the usual set of morphisms

from ΩC
f−→ A

g−→ B
h−→ C to ΩC ′ f ′−→ A′ g′−→ B′ h′−→ C ′. Then Ltr(<,F,W) is

9



a left triangulation in the sense of Beligiannis-Marmaridis [1] of the (possibly “large”)
category D−(<, F,W), i.e. it is closed under isomorphisms and enjoys the following four
axioms:

(LT1) for any A ∈ < the left triangle 0 0−→ A
1A−→ A

0−→ 0 belongs to Ltr(<, F,W) and
for any morphism h : B → C there is a left triangle in Ltr(<, F,W) of the form

ΩC
f−→ A

g−→ B
h−→ C;

(LT2) for any left triangle ΩC
f−→ A

g−→ B
h−→ C in Ltr(<, F,W), the diagram

ΩB
−Ωh−−−→ ΩC

f−→ A
g−→ B is also in Ltr(<, F,W);

(LT3) for any two left triangles ΩC
f−→ A

g−→ B
h−→ C, ΩC ′ f ′−→ A′ g′−→ B′ h′−→

C ′ in Ltr(<, F,W) and any two morphisms β : B → B′ and γ : C → C ′ of
D−(<, F,W) with γh = h′β, there is a morphism α : A → A′ of D−(<, F,W)
such that the triple (α, β, γ) gives a morphism from the first triangle to the
second;

(LT4) any two morphisms B
h−→ C

k−→ D of D−(<, F,W) can be fitted into a commu-
tative diagram

ΩE

f◦Ω`
²²

ΩC
f //

Ωk
²²

A
g //

α
²²

B
h //

1B

²²

C

k
²²

ΩD
j //

1ΩD

²²

F
m //

β
²²

B
kh //

h
²²

D

1D

²²
ΩD

i // E
` // C

k // D

in which the rows and the second column from the left are left triangles in
Ltr(<, F,W).

The axiom (LT4) is a version of Verdier’s octahedral axiom for left triangles in
D−(<, F,W).

2.2. Stabilization

Let < be an admissible category of algebras and F a saturated family of fibrations. There
is a general method of stabilizing the loop functor Ω (see Heller [16]) and producing a
triangulated (possibly “large”) category D(<,F,W) from the left triangulated structure
on D−(<, F,W).

An object of D(<, F,W) is a pair (A, m) with A ∈ D−(<, F,W) and m ∈ Z. If
m,n ∈ Z then we consider the directed set Im,n = {k ∈ Z | m, n 6 k}. The set of
morphisms between (A,m) and (B, n) ∈ D(<,F,W) is defined by

D(<, F,W)[(A, m), (B, n)] := lim−→
k∈Im,n

D−(<, F,W)(Ωk−m(A), Ωk−n(B)).

Morphisms of D(<, F,W) are composed in the obvious fashion. We define the loop
automorphism on D(<,F,W) by Ω(A, m) := (A,m − 1). There is a natural functor
S : D−(<,F,W) → D(<, F,W) defined by A 7−→ (A, 0).

10



Since ΩnB is an abelian group object for n > 2 it follows that D(<, F,W)[(A,m), (B, n)]
is an abelian group and the category D(<,F,W) is preadditive. Since it has finite di-
rect products then it is additive. We define a triangulation T r(<, F,W) of the pair
(D(<, F,W), Ω) as follows. A sequence

Ω(A, l) → (C, n) → (B, m) → (A, l)

belongs to T r(<, F,W) if there is an even integer k and a left triangle of representatives
Ω(Ωk−l(A)) → Ωk−n(C) → Ωk−m(B) → Ωk−l(A) in D−(<, F,W). Clearly, the functor
S takes left triangles in D−(<,F,W) to triangles in D(<,F,W).

Theorem 2.4. Let F be a saturated family of fibrations in <. Then T r(<, F,W) is a
triangulation of D(<, F,W) in the classical sense of Verdier [23].

Proof. See [10, 6.7]. ¤

2.3. Universal properties

Let F be a saturated family of fibrations in an admissible not necessarily small category
of algebras < and let E be the class of all F-fibre sequences of k-algebras

(E) : A → B → C. (3)

Definition. Following Cortiñas–Thom [5] a (F-)excisive homology theory on < with
values in a triangulated category (T , Ω) consists of a functor X : < → T , together with
a collection {∂E : E ∈ E} of maps ∂X

E = ∂E ∈ T (ΩX(C), X(A)). The maps ∂E are to
satisfy the following requirements.
(1) For all E ∈ E as above,

ΩX(C)
∂E // X(A)

X(f) // X(B)
X(g) // X(C)

is a distinguished triangle in T .
(2) If

(E) : A
f //

α

²²

B
g //

β

²²

C

γ

²²
(E′) : A′

f ′ // B′ g′ // C ′

is a map of F-fibre sequences, then the following diagram commutes

ΩX(C)

ΩX(γ)
²²

∂E // X(A)

X(α)
²²

ΩX(C ′)
∂E′

// X(A).

We say that the functor X : < → T is homotopy invariant if it maps homotopic
homomomorphisms to equal maps, or equivalently, if for every A ∈ Algk, X maps the
inclusion A ⊂ A[t] to an isomorphism.

We shall denote the class of homomorphisms f such that X(f) is an isomorphism for
any excisive, homotopy invariant homology theory X : < → T by W4 (“4” has the
meaning that this class is determined by triangulated categories).

11



Lemma 2.5. The triple (<, F,W4) is a Brown category.

Proof. We have to verify axioms (A)-(E) from subsection 1.3. Axiom (A) is obvious.
Axioms (B), (D), (E) follow from axioms Ax 2, Ax 4, and Ax 1 respectively (see sub-
section 1.2). Ax 3 implies that a pullback of a fibration is a fibration. The fact that
a pullback of a trivial fibration is a trivial fibration follows from standard facts for
triangulated categories. ¤

In what follows we shall write D−(<, F) and D(<,F) to denote the categories D−(<, F,W4)
and D(<, F,W4), dropping W4 from notation. In this paragraph we discuss universal
properties of D−(<, F) and D(<,F).

Theorem 2.6. Let X : < → T be an excisive, homotopy invariant homology theory.
Then the following statements are true:

(1) there is a unique functor X̄ : D−(<, F) → T such that X = X̄ ◦ j with j :
< → D−(<, F) the canonical functor. Moreover, X̄ takes left triangles in D−(<, F) to
triangles in T ;

(2) there is a unique functor X̃ : D(<,F) → T such that X̄ = X̃ ◦ S with S :
D−(<, F) → D(<, F) the canonical stabilization functor. Moreover, X̃ is triangulated,
i.e. it is additive and takes triangles in D(<,F) to triangles in T .

Proof. (1). Let X : < → T be an excisive, homotopy invariant homology theory. By
definition of W4 the theory X takes each element of W4 to an isomorphism, and hence
there is a unique functor X̄ : D−(<, F) → T such that X = X̄ ◦ j. Since the functor S
takes left triangles to triangles, the fact that X̄ takes left triangles to triangles follows
from the second assertion we are going to prove.

(2). The fact that there is a unique functor X̃ : D(<, F) → T such that X̄ = X̃ ◦ S
follows from [16, 1.1]. It follows from the definition of an excisive, homotopy invariant
homology theory that X̃ is additive.

To show that it is triangulated, we follow some part of the proof of [5, 6.6.2]. We recall
it here for convenience of the reader. Recall that the rotation axiom for triangulated
categories says that a triangle in T

ΩW
f // U

g // V
h // W

is distinguished if and only if so is the triangle

ΩV
−Ω(h)// ΩW

−f // U
−g // V.

In view of the fact that every left triangle is isomorphic to a left triangle of the
form (2) and of the rotation axiom, it is enough to prove that if g ∈ HomAlgk

(A,B),
then X maps

ΩA
Ωg // ΩB

j // P (g)
g1 // A (4)

12



to a distinguished triangle in T . Consider the F-fibre sequence E formed by j and g1;
we have a diagram

ΩX(B)

∂l

²²
ΩX(A)

ΩX(g)
99sssssssss

∂E

//

∂l

²²

X(ΩB)
X(j)

// X(P (g))
X(g1) // X(A)

X(ΩA)
X(Ωg)

99sssssssss

where ∂l is the connecting map associated with the F-fibre sequence

ΩB ½ EB
∂1

x³ B.

In the diagram above the row is a distinguished triangle and the square on the left
commutes, as do its upper and lower halves. It follows from this and the axioms of a
triangulated category, that X applied to (4) is a distinguished triangle. ¤

Corollary 2.7. Let < be an admissible category of algebras and let F be a saturated
family of fibrations. Then the canonical functor j : < → D−(<,F) reflects weak equiva-
lences from W4, that is if a homomorphism is an isomorphism in D−(<,F) then it is
in W4.

Proof. Let f be an arrow in < such that j(f) is an isomorphism. Theorem 2.6(1)
implies that for any excisive, homotopy invariant homology theory X : < → T the
arrow X(f) = X̄ ◦ j(f) is an isomorphism, hence f ∈ W4. ¤

Corollary 2.8. If F is a tensor closed collection of fibrations then the tensor product ⊗k

of algebras induces a tensor product on D−(<,F) and D(<,F) making these symmetric
monoidal categories. Moreover, D ⊗ −,− ⊗D, D ∈ <, respect weak equivalences from
W4 and take (left) triangles to (left) triangles.

Proof. To any F-fibre sequence F
ι−→ A

g−→ B in < one associates a standard triangle

ΩB
∂−→ F

ι−→ A
g−→ B.

F is tensor closed by assumption, and hence F ⊗D
ι⊗1−→ A ⊗D

g⊗1−→ B ⊗D is a F-fibre
sequence in < and

Ω(B ⊗D) = ΩB ⊗D
∂⊗1−→ F ⊗D

ι⊗1−→ A⊗D
g⊗1−→ B ⊗D

is a standard triangle. One easily sees that if

(E) : F
ι //

α

²²

A
g //

β

²²

B

γ

²²
(E′) : F ′ ι′ // A′

g′ // B′

13



is a map of F-fibre sequences, then the following diagram commutes

Ω(B ⊗D)

Ω(γ⊗1)
²²

∂⊗1 // F ⊗D

α⊗1

²²
Ω(B′ ⊗D)

∂⊗1
// A⊗D.

It follows that if X : < → T is an excisive, homotopy invariant homology theory, then
so is X ◦ (− ⊗ D) : < → T . By the preceding corollary the functor − ⊗ D respects
weak equivalences from W4. Therefore j ◦ (− ⊗ D) : < → D−(<,F) (respectively
S ◦j ◦(−⊗D) : < → D(<, F)) factors through D−(<,F) (respectively D(<, F)). Clearly,
−⊗D takes (left) triangles to (left) triangles. ¤

2.4. Unstable algebraic KK- and E-theories

We would like to discuss separately the most important in practice cases when F is
either Fspl or Fsurj. Throughout this section < is an admissible category of algebras. We
assume fixed an underlying category U , which can be a full subcategory of either the
category of sets Sets or Mod k. The category U will depend on F. Namely, we shall
assume that U ⊆ Sets if F = Fsurj and U ⊆ Mod k if F = Fspl.

Definition. Let < be an admissible category of algebras and let F be either Fspl or Fsurj.
The pair (<, F) is said to be T -closed if we have a faithful forgetful functor F : < → U
and a functor T̃ : U → < such that T̃ is left adjoint to F .

Throughout this section < is supposed to be T -closed.

Examples. (1) Let < = Algk and F = Fspl. Given an algebra A, consider the algebraic
tensor algebra

TA = A⊕A⊗A⊕A⊗
3 ⊕ · · ·

with the usual product given by concatenation of tensors. In Cuntz’s treatment of
bivariant K-theory [7, 8, 9], tensor algebras play a prominent role.

There is a canonical k-linear map A → TA mapping A into the first direct summand.
Every k-linear map s : A → B into an algebra B induces a homomorphism γs : TA → B
defined by

γs(x1 ⊗ · · · ⊗ xn) = s(x1)s(x2) · · · s(xn).

The pair (<, F) is plainly T -closed.
(2) If < = CAlgk and F = Fspl then

T (A) = Sym(A) = ⊕n>1S
nA, SnA = A⊗n/〈a1 ⊗ · · · ⊗ an − aσ(1) ⊗ · · · ⊗ aσ(n)〉,

the symmetric algebra of A, and the pair (<, F) is T -closed.
(3) Let < = Algk and F = Fsurj. Given an algebra A, let TA be the algebra consisting

of those polynomials in the non-commuting variables xa, a ∈ A, which have no constant
term. Then the pair (<, F) is T -closed. Observe that E(k) = T (0).

(4) Let < = CAlgk and F = Fsurj. Given an algebra A, let TA be the algebra
consisting of those polynomials in the commuting variables xa, a ∈ A, which have no
constant term. Then the pair (<,F) is T -closed.
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Recall that Kasparov’s bivariant K-theory KK is a bifunctor on pairs of C∗-algebras,
associating to (A,B) a Z/2Z-graded group KK∗(A,B). The Kasparov product

KKi(A, B)⊗KKj(B,C) → KKi+j(A,C)

allows one to view the KK-groups as morphisms in a category whose objects are all
separable C∗-algebras. KK is a triangulated category [20] and is universal for C∗-stable,
split-exact homology theories on the category of C∗-algebras.

In turn, E-theory of C∗-algebras developed by Connes and Higson in [3, 17] is the
universal bivariant homology theory satisfying excision for all extensions and stability.
The triangulated category corresponding to E-theory is studied in [22].

Stabilization for non-unital algebras is the operation A ∈ Algk 7→ M∞(A) = ∪nMn(A) ∈
Algk. It is not available for some interesting admissible categories of algebras like CAlgk.
Therefore the triangulated category D(<, F) can be regarded as a sort of unstable uni-
versal bivariant homology theory.

All these remarks justify the following

Definition. (1) The unstable algebraic KK-theory for < is the triangulated category
D(<, Fspl). The unstable algebraic KK-groups are, by definition,

KKunst
n (A, B) := D(<, Fspl)(A, ΩnB), n ∈ Z, A, B ∈ <.

(2) The unstable algebraic E-theory for < is the triangulated category D(<, Fsurj).
The unstable algebraic E-groups are, by definition,

Eunst
n (A,B) := D(<, Fsurj)(A, ΩnB), n ∈ Z, A,B ∈ <.

In the following sections we shall be introducing matrix stabilization into the play.
We shall first invert the homomorphisms A → Mn(A), n > 1 (“Morita stabilization”)
and then invert the maps A → M∞(A) = ∪nMn(A) (“stabilization”). An effect of the
stabilization is that the loop functor Ω becomes invertible.

3. The category Hmor(Algk)

Many (bivariant) homology theories are Morita invariant. In order to construct uni-
versal bivariant Morita invariant theories we have to introduce a category structure
for algebras whose morphisms are obtained from algebra homomorphisms by equating
polynomially homotopic maps and inverting the maps

sn,A : A → MnA, n > 0,

sending a ∈ A to the matrix (xij) with x11 = a and the other entries zero.
We first prove the following statement (see as well [5, 4.1.1; 5.1.2]).

Proposition 3.1. Let B be a k-algebra, A ⊂ B a subalgebra, and V,W ∈ B elements
such that

WA,AV ⊂ A, aV Wa′ = aa′ (a, a′ ∈ A).

Then
ϕV,W : A → A, a 7→ WaV

is a k-algebra homomorphism, and s2,A : A → M2A is homotopic to s2,AϕV,W .
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Proof. Let s′2,A : A → M2A be the homomorphism sending a ∈ A to the matrix(
0 0
0 a

)
. Consider an invertible matrix T ∈ GL2(k[x]) such that

∂0
x(T ) =

(
1 0
0 1

)
and ∂1

x(T ) =
(

0 −1
1 0

)
.

The matrix

T =
(

1− x2 x3 − 2x
x 1− x2

)

is a concrete example with

T−1 =
(

1− x2 2x− x3

−x 1− x2

)
.

Let H : A → M2A[x] be the homomorphism a 7→ Ts2,A(a)T−1. Then s2,A = ∂0
xH ∼

∂1
xH = s′2,A.
Consider a homomorphism

ψ :
(

a11 a12

a21 a22

)
∈ M2A 7−→

(
W 0
0 1

)(
a11 a12

a21 a22

)(
V 0
0 1

)
∈ M2A.

Then s2,AϕV,W = ψs2,A ∼ ψs′2,A = s′2,A ∼ s2,A. ¤

Given two algebras A,B ∈ Algk, we set

[A,B]mor := lim−→
n

[A,MnB],

where the colimit is taken over the homomorphisms ιn : MnA → Mn+1A sending MnA
into the left upper corner of Mn+1A. Define a composition law

[A, B]mor × [B, C]mor → [A,C]mor (5)

by the rule

(α : A → MnB, β : B → MlC) 7−→ β ? α := Mn(β) ◦ α : A → MnlC.

Here Mn(β) is the composition of the homomorphism MnB → MnMlC, induced by β,
and the natural isomorphism MnMlC ∼= MnlC.

The composition law (5) is consistent with polynomial homotopy. Precisely, if α ∼ α′
and β ∼ β′ then β ? α ∼ β′ ? α′, and hence β ? α = β′ ? α′ in [A,C]mor. It is also
consistent with the colimit maps ιn in the first argument. Namely if we replace α with
ιnα then β ? α = β ? (ιnα) in [A, C]mor. To show that it is consistent with the colimit
maps ιl in the second argument, it is enough to observe that Mn(ιlβ)◦α is conjugate by
a permutation matrix to Mn+1(β)(ιnα), and hence equal in [A,C]mor by the preceding
proposition.

It is easy to see that the composition law is associative giving rise to a category which
we denote by Hmor(Algk). It is useful to give another description of Hmor(Algk). Given
k-modules M1, . . . , Ms, we set

M1 ⊗ · · · ⊗Ms = M1 ⊗ (M2 ⊗ (· · · ⊗ (Ms−1 ⊗Ms) · · · )).
For any algebra A and n > 0 the homomorphism sn,A is naturally isomorphic to the
homomorphism A → Mn(k)⊗A taking a ∈ A to sn,k(1)⊗ a.
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Let

Σ := {idA} ∪ {A → Mn1(k)⊗ · · · ⊗Mns(k)⊗A}, A ∈ Algk, n1, . . . , ns ∈ N.

Definition. A functor X : Algk → C from Algk to a category C is Morita invariant if
X(sn,A) : X(A) → X(MnA) is an isomorphism for every n > 1.

Theorem 3.2. Σ admits a calculus of left fractions in H(Algk) and there is a natural
isomorphism of categories

Hmor(Algk) ∼= H(Algk)[Σ
−1].

Proof. Clearly, the identity of each object and the composition of two elements of Σ
belong to Σ. Each diagram

Mn1(k)⊗ · · · ⊗Mns(k)⊗A
σ←− A

f−→ B

with σ ∈ Σ can obviously be completed to a commutative square

A
f //

σ
²²

B

σ′
²²

Mn1(k)⊗ · · · ⊗Mns(k)⊗A
f ′ // Mn1(k)⊗ · · · ⊗Mns(k)⊗B

with σ′ ∈ Σ.
To show that Σ admits a calculus of left fractions, it remains to verify that if f, g are

morphisms in H(Algk) and σ ∈ Σ is such that fσ = gσ then there is σ′ ∈ Σ such that
σ′f = σ′g. Without loss of generality it is enough to show that if f, g : MnA → B are
two homomorphisms with fsn,A = gsn,A then sl,Bf = sl,Bg for some l.

Consider the diagram

A
sn,A // MnA

Mn(sn,A)
²²
sn,MnA

²²

g
//

f //
B

sn,B

²²
Mn2A

s2,M
n2A

²²

Mn(g)
//

Mn(f) //
MnB

s2,MnB

²²
M2n2A

M2n(g)
//

M2n(f) //
M2nB.

Observe that sn,MnA is conjugate to Mn(sn,A) by a permutation matrix. Proposition 3.1
implies s2,Mn2Asn,MnA ' s2,Mn2AMn(sn,A). Thus,

s2n,Bf = s2,MnBsn,Bf = M2n(f)s2,Mn2Asn,MnA ' s2,MnBMn(f)Mn(sn,A) =

s2,MnBMn(g)Mn(sn,A) ' M2n(g)s2,Mn2Asn,MnA = s2n,Bg.

It follows that s2n,Bf equals s2n,Bg in H(Algk), hence Σ admits a calculus of left frac-
tions. To show that Hmor(Algk) ∼= H(Algk)[Σ−1], it is enough to observe that every
element of Σ is isomorphic to some sn,A and that every homotopy invariant Morita
invariant functor F : Algk → C uniquely factors through Hmor(Algk). ¤
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Hom-sets [A,B]mor are naturally equipped with a structure of an abelian monoid,
which is described as follows. Let f, g : A → B be two non-unital algebra homo-
morphisms and let f ] g : A → M2(B) be the homomorphism taking a ∈ A to(

f(a) 0
0 g(a)

)
. Then f ] g ∼ g ] f .

Indeed, it is enough to consider the invertible matrix T ∈ GL2(k[x]) as above with

∂0
x(T ) =

(
1 0
0 1

)
and ∂1

x(T ) =
(

0 −1
1 0

)
.

Then A → M2(B)[x], a 7→ T ·(f]g)(a)·T−1, yields the desired homotopy. The homotopy
of this kind is also referred to as rotational. Clearly, 0 ] f ∼ f ] 0 = s2,B ◦ f . Observe
that if f ∼ f ′, g ∼ g′ then f ] g ∼ f ′ ] g′.

The operation f ]g is naturally extended to a commutative, associative binary opera-
tion on Hom-sets [A, B]mor of Hmor(Algk) making these abelian monoids. To verify this
one should use rotational homotopy if necessary. We denote the corresponding group
completion by {A,B}mor. The composition law (5) is “bilinear” in the sense that

f ? (g ] g′) = f ? g ] f ? g′, (f ] f ′) ? g = f ? g ] f ′ ? g

for any f, f ′ ∈ [A,B]mor, g, g′ ∈ [B, C]mor. To check this, one should use Proposition 3.1
and rotational homotopy.

The composition law (5) is naturally extended to an associative bilinear composition
law

{A,B}mor × {B, C}mor → {A, C}mor.

Thus one obtains a category, denoted by H−1Hmor(Algk), with objects those of Algk

and morphisms sets {A,B}mor. The new category is additive with direct product being
the usual direct product of algebras.

4. Additive categories of correspondences

There is an important categoryHCor, closely related to the categoryH−1Hmor(Algk),
whose objects are the unital algebras Algu

k and whose morphisms are “correspondences
up to homotopy” KH(A,B) defined by means of bivariant Grothendieck groups K(A, B)
in the sense of Kassel [19]. We also refer the reader to [15]. The main result of this section
says that HCor can be regarded as a full subcategory of H−1Hmor(Algk) by means of a
fully faithful functor. It will be used below to get some important computational results.
We start with preparations.

Let A,B be two unital algebras and let K(A,B) (respectively K⊕(A,B)) denote the
Grothendieck group of the exact category Rep(A,B) of those A-B-bimodules which are
finitely generated projective as right B-modules. The exact structure is given by the
short exact sequences (respectively split short exact sequences) of bimodules

0 → P ′ → P → P ′′ → 0.

Observe that if k = Z then Rep(Z, B) consists of finitely generated projective right B-
modules and K(Z, B) = K⊕(Z, B) = K0(B). If k is a field, then the category Rep(A, k)
is the category of finite dimensional representations A → Mp(k) of A.

For example, the category Rep(Z[t], B) is equivalent to the category of pairs (M,f)
where M is a projective right B-module and f is an endomorphism of M . Similarly,
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the category Rep(Z[t1, . . . , tn], B) is equivalent to the category of tuples (M, f1, . . . , fn)
where M is a projective right B-module and f1, . . . , fn are commuting endomorphisms
of M . The category Rep(Z[t±], B) is equivalent to the category of pairs (M, f) where
M is a projective right B-module and f is an automorphism of M . The category
Rep(Z[t±1 , . . . , t±n ], B) is equivalent to the category of tuples (M,f1, . . . , fn) where M is
a projective right B-module and f1, . . . , fn are commuting automorphisms of M .

The groups K(A,B) and K⊕(A,B) are clearly contravariant in the first argument
and covariant in the second.

Given P ∈ Rep(A,B), Q ∈ Rep(B, C), the object P ⊗B Q belongs to Rep(A,C).
This induces the corresponding composition products

K(A, B)⊗Z K(B, C) → K(A,C), K⊕(A,B)⊗Z K⊕(B, C) → K⊕(A,C).

We may regard a class [P ] of K(A,B) (respectively K⊕(A,B)) as a (direct sum)
Grothendieck group correspondence from A to B.

We define the additive categories of correspondences Cor and Cor⊕; their objects are
those of Algu

k . An arrow A → B is an element of HomCor(A,B) := K(A,B) (respectively
HomCor⊕(A,B) := K⊕(A,B)). The composition [Q] ◦ [P ] of correspondences is defined
to be [P⊗B Q]. The direct sum A⊕A′ of two objects is represented by the direct product
A×A′. We define A⊗B := A⊗k B on objects, and extend it to a bilinear function on
arrows. It is useful to observe that two Morita equivalent algebras A,B are isomorphic
in Cor and Cor⊕. Indeed, there are bimodules APB, BQA and bimodule isomorphisms
P ⊗B Q ∼= A, Q⊗A P ∼= B. The correspondences [P ], [Q] give isomorphisms between A
and B.

Remark. Recall that an algebra R is flasque if there is an R-bimodule M , finitely
generated projective as a right module, and a bimodule isomorphism θ : R ⊕M ∼= M .
It easily follows that [R] = 0 in Cor⊕ if and only if R is flasque.

We shall also consider another category R̃ep. Its objects are those of Algu
k . An arrow

in HomR̃ep
(A,B) is given by the isomorphism class [P ] of P ∈ Rep(A,B). Composition

is defined by tensor product as above. Observe that the Hom-sets of R̃ep are abelian
monoids. There are natural functors

R̃ep
F−→ Cor⊕ G−→ Cor.

Proposition 4.1. Let A,B be two unital algebras. Then there is a bijection between:
(1) the set of all non-unital homomorphisms f : A → B,
(2) the set of all (A,B)-bimodules APB such that PB is an idempotent right ideal of

B.
The bijection is given by the maps

g : A → B 7→ g(1)B, APB 7→ (A
f→ EndB P ↪→ B),

where f is the unital homomorphism giving a left A-module structure on P .

Proof. Let p be an idempotent of B. Then the right B-module pB is finitely generated
projective and

EndB(pB) = {y ∈ B | y = yp = py}.
Given a non-unital homomorphisms f : A → B, let p be the idempotent f(1). Then f
plainly factors through EndB(pB).
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Now let APB be an (A,B)-bimodule whose left A-module structure is given by a
unital homomorphism f : A → EndB P and PB = pB for some idempotent p. It follows
that p = f(1)p = f(1). The desired bijection is now obvious. ¤

If P ∈ Ob(Rep(A, B)), then there is an algebra homomorphism v : A → EndB(P ).
Choose a finitely generated projective B-module Q such that P ⊕Q ∼= Bn. One obtains
a monomorphism EndB(P ) ½ Mn(B). Composing with v, we get a homomorphism
u(P ) : A → Mn(B) which defines a class in [A,B]mor. Let p = u(P )(1); then p

is an idempotent and P ∼= Im(Bn p−→ Bn). Suppose P ∼= P ′ and Q ∼= Q′, then
P ⊕Q ∼= P ′⊕Q′. There is W ∈ GLn(B) such that u(P ′) = W−1u(P )W . Note that the
homomorphism

a ∈ A 7−→
(

u(P ′)(a) 0
0 0

)
∈ M2n(B)

is homotopic to the homomorphism

a 7−→
(

0 0
0 u(P ′)(a)

)

by the rotational homotopy. Both maps equal u(P ′) in [A,B]mor.
Consider a homomorphism

ψ :
(

b11 b12

b21 b22

)
∈ M2n(B) 7−→

(
W−1 0

0 1

)(
b11 b12

b21 b22

)(
W 0
0 1

)
∈ M2n(B).

Then,(
u(P ′)(a) 0

0 0

)
= ψ

(
u(P )(a) 0

0 0

)
∼ ψ

(
0 0
0 u(P )(a)

)
∼

(
0 0
0 u(P )(a)

)
∼

(
u(P )(a) 0

0 0

)

We see that u(P ′) = u(P ) in [A,B]mor. If we replace Q with Q⊕B such that P ⊕ (Q⊕
B) ∼= Bn+1 then the homomorphism A → Mn+1B corresponding to this decomposition
equals ιnu(P ), hence equals u(P ) in [A,B]mor. We see that u(P ) ∈ [A,B]mor does not
depend on the isomorphism class of P and the choice of Q.

There is also an isomorphism of (A,B)-bimodules

APB
∼= A(pMnB ⊗MnB Bn)B.

We see that each [P ] ∈ HomR̃ep
(A,B) factors through MnB for some n. Given k > 1

denote by Mk(p) ∈ Mkn(B) the idempotent matrix which places k copies of p on the
diagonal. Then there is an isomorphism of (A,B)-bimodules

APB
∼= A(pMnB ⊗MnB Bn)B

∼= A(Ak ⊗MkA Mk(p)MknB ⊗MknB Bkn)B. (6)

Since An
MnA

∼= e11MnAMnA and An
MnA ⊕ (1 − e11)MnAMnA

∼= MnA where e11 is the
idempotent matrix with the (1, 1)-entry equal to 1 and the other entries zero, it follows
that u(AAn

MnA) = sn,A. On the hand u(MnBBn
B) = 1MnB as one easily sees.

Proposition 4.2. There is a natural functor

H : R̃ep → Hmor(Algk)

such that for any A,B ∈ Algu
k the induced map

H : HomR̃ep
(A,B) → [A,B]mor

is a surjective map of abelian monoids.
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Proof. If P ∈ Ob(Rep(A,B)), then one sets H([P ]) := u(P ) ∈ [A, B]mor. We have
shown above that u(P ) is well-defined. Given P ∈ Ob(Rep(A,B)) and Q ∈ Ob(Rep(B, C)),
there are idempotent matrices p = u(P )(1) ∈ MnB, q = u(Q)(1) ∈ MlC such that
APB

∼= A(pMnB ⊗MnB Bn)B and BQC
∼= B(qMlC ⊗MlC Bl)C (see above). It follows

from (9) that there is an isomorphism of (A,C)-bimodules

P ⊗B Q ∼= pMnB ⊗MnB Bn ⊗B Bn ⊗MnB Mn(q)MnlC ⊗MnlC Cnl.

Since MnBBn ⊗B Bn
MnB

∼= MnBMnBMnB, one has,

P ⊗B Q ∼= pMnB ⊗MnB Mn(q)MnlC ⊗MnlC Cnl ∼= rMnlC ⊗MnlC Cnl,

where r = u(Q) ? u(P )(1). We see that H([Q] ◦ [P ]) = u(P ⊗B Q) = u(Q) ? u(P ), hence
H is a functor.

For any P ′, P ′′ ∈ Ob(Rep(A,B)) the homomorphism u(P ′⊕P ′′) : A → Mn(B) factors
as

A → EndB P ′ ⊕ EndB P ′′ ↪→ EndB(P ′ ⊕ P ′′) ↪→ Mn(B).
Therefore u(P ′ ⊕ P ′′) = u(P ′) ] u(P ′′) in [A, B]mor. This determines a map of abelian
monoids H : HomR̃ep

(A,B) → [A,B]mor. Let f : A → MnB be an element of [A,B]mor.
Using Proposition 4.1 it follows that f = H([P ]) with P = Im(f(1) : Bn → Bn).
Therefore H is surjective. ¤

Let J : Cor⊕ → H−1Hmor(Algk) be the natural functor induced by H. There is a
commutative diagram

R̃ep //

H
²²

Cor⊕
J

²²
Hmor(Algk) // H−1Hmor(Algk).

The preceding proposition implies the following

Corollary 4.3. The functor J is additive and for any A,B ∈ Algu
k the induced map

J : K⊕(A,B) → {A,B}mor

is an epimorphism of abelian groups.

An elementary homotopy between correspondences from A to B in R̃ep (respec-
tively Cor⊕ or Cor) is an element of HomR̃ep

(A,B[x]) (respectively HomCor⊕(A,B[x])
or HomCor(A,B[x])). There are two natural maps

d0, d1 : HomR̃ep
(A,B[x]) → HomR̃ep

(A,B),

induced by ∂0
x, ∂1

x : B[x] → B. We say that two bimodules APB and AQB are elementary
homotopic in which case we shall write APB ∼ AQB if there is an elementary homotopy
H ∈ HomR̃ep

(A,B[x]) such that d0(H) = P and d1(H) = Q. Elementary homotopic
bimodules in HomCor⊕(A,B) or HomCor(A,B) are defined in a similar way. The relation
“elementary homotopic” is reflexive and symmetric. One may take the transitive closure
of this relation to get an equivalence relation (denoted by the symbol “'”). The set of
equivalence classes of correspondences A → B is denoted by HR̃ep(A,B) (respectively
Kh,⊕(A,B) or Kh(A, B)). Composition preserves the relation “'”. Equating homotopic
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correspondences we get the categories HR̃ep, HC⊕, HCor respectively. One has natural
functors

HR̃ep
F ′−→ HCor⊕ G′−→ HCor.

Let Ĥ : HR̃ep → Hmor(Algk) and Ĵ : HC⊕ → H−1Hmor(Algk) be the natural
functors induced by H and J respectively. There is a commutative diagram

HR̃ep //

Ĥ
²²

HCor⊕

Ĵ
²²

Hmor(Algk) // H−1Hmor(Algk).

Theorem 4.4. The functors Ĥ, Ĵ are fully faithful. In particular, for any A,B ∈ Algu
k

the induced maps

Ĥ : HR̃ep(A, B) → [A,B]mor, Ĵ : Kh,⊕(A,B) → {A,B}mor

are bijections.

Proof. Let us construct a map

I : [A,B]mor → HR̃ep(A,B)

which is inverse to H. Let f : A → MnB be an element of [A,B]mor and let P =
Im(f(1) : Bn → Bn). We set

I(f) := [P ].

I is consistent with direct limit maps ιn : MnB → Mn+1B, because I(f) ∼= I(ιnf).
I is also consistent with homotopy, hence it defines a map. It is directly verified that
IĤ([P ]) = I(u(P )) = [P ] for any [P ] ∈ HR̃ep(A,B). Therefore Ĥ is injective. It follows
from Proposition 4.2 that Ĥ is surjective as well, and hence it is bijective. The fact that

Ĵ : Kh,⊕(A,B) → {A,B}mor

is bijective is now obvious. ¤

Short exact sequences always split up to homotopy. More precisely, start with a short
exact sequence E : 0 → M ′ → M → M ′′ → 0 of R-modules, and define an R[x]-module
M̃ as the pull back in the following diagram.

Ẽ : M ′[x]

1
²²

// //
M̃

²²

// // M ′′[x]

x
²²

E[x] : M ′[x] // // M [x] // // M ′′[x].

The short exact sequence Ẽ specializes to E when x = 1 and to 0 → M ′ → M ′⊕M ′′ →
M ′′ → 0 when x = 0, and provides the desired homotopy.

Proposition 4.5. Given two unital algebras A,B ∈ Algu
k, the natural homomorphism

α : Kh,⊕(A,B) → Kh(A, B) is an isomorphism.
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Proof. One has a commutative diagram

L
²²

²²
〈E⊕〉

²²

²²

// //
⊕

P Z[APB]

1
²²

// // K⊕(A,B)

²²²²
〈E〉 // //

²²²²

⊕
P Z[APB] // // K(A,B)

L

with exact rows and columns and 〈E〉 (〈E⊕〉) standing for the subgroup generated by
[P ] − [P ′] − [P ′′] for every (split) short exact sequence P ′ ½ P ³ P ′′. One also has a
commutative diagram with exact rows

K⊕(A,B[x])

²²²²

∂1−∂0 // K⊕(A,B)

²²²²

// // Kh,⊕(A,B)

α
²²²²

K(A,B[x])
∂1−∂0 // K(A, B) // // Kh(A,B).

If we showed that the left square is cocartesian, it would follow that α is an isomorphism.
Consider a commutative diagram

L̃

β

²²

// // K⊕(A,B[x])

∂1−∂0

²²

// // K(A,B[x])

∂1−∂0

²²
L // // K⊕(A,B) // // K(A,B).

The right square is cocartesian if and only if β is an epimorphism. To show that it is
an epimorphism, we consider the following commutative diagram.

〈Ẽ⊕〉
∂1−∂0

²²

// // 〈Ẽ〉
∂1−∂0

²²

// // L̃

β

²²
〈E⊕〉 // // 〈E〉 // // L

Consider a generator e = [P ]−[P ′]−[P ′′] of 〈E〉 represented by a short exact sequence E :
0 → P ′ → P → P ′′ → 0 whose class in L is denoted by [e]. Let us construct a short exact
sequence Ẽ : 0 → P ′[x] → P̃ → P ′′[x] → 0 as above. Let ẽ = [P̃ ]−[P ′[x]]−[P ′′[x]] ∈ 〈Ẽ〉;
then β([ẽ]) = [e], and hence β : L̃ → L is an epimorphism. ¤
Corollary 4.6. The natural functor G′ : HCor⊕ → HCor is an isomorphism of cate-
gories.

Let L be the inverse functor to G′. We are now in a position to state the main result
of the section.

Theorem 4.7. The functor

Ĵ ◦ L : HCor → H−1Hmor(Algk)
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is full and faithful. In particular, the map of abelian groups

Ĵ ◦ L : Kh(A,B) → {A,B}mor

is an isomorphism for all A,B ∈ Algu
k.

Proof. This follows from Theorem 4.4 and Corollary 4.6. ¤

Given an algebra A ∈ Algk we set,

[K0](A) := Coker(K0(A[x]) ∂1−∂0−−−−→ K0(A)).

Corollary 4.8. For any unital algebra A ∈ Algu
k there is a natural isomorphism of

abelian groups
{k, A}mor

∼= [K0](A),

functorial in A.

Proof. Let A be a k-algebra, ` : Z→ k the structure map. Composition with ` induces
a bijection

HomAlgk
(k,A)

∼=−→ HomAlgZ(Z, A).

This induces a bijection of abelian monoids

HomHmor(Algk)(k,A)
∼=−→ HomHmor(AlgZ)(Z, A).

Thus one obtains a bijection of their group completions

{k,A}mor = HomH−1Hmor(Algk)(k, A)
∼=−→ HomH−1Hmor(AlgZ)(Z, A).

By Theorem 4.7 the right hand side is isomorphic to [K0](A). ¤

5. The category kh

For the main computational result of the paper we have to introduce a new category
kh whose objects are those of Algk and morphisms are defined by means of Hom-sets of
H−1Hmor(Algk). We start with preparations.

Let B ∈ Algk and let B+ ∈ Algu
k be the unital k-algebra which is B ⊕ k as a group

and
(x, n)(y, m) = (xy + mx + ny, nm).

The map A 7→ A+ determines a functor Algk → Algu
k . We put ε : B+ → k to be the

augmentation ε(x, n) = n and ι : k → B to be the natural inclusion. Note that if B
happens to be a unital k-algebra then the map η : B+ → B × k, (x, n) 7→ (x + n · 1, n),
is an isomorphism of k-algebras. We do not know whether the short exact sequence of
algebras

B
i−→ B+

ε−→ k (7)

is split exact in H−1Hmor(Algk). However, it is the case for unital algebras.

Lemma 5.1. The sequence (7) is split exact in H−1Hmor(Algk) for any unital algebra
B.
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Proof. There is a commutative diagram in Algu
k

B
i // B+

η

²²

ε // k

B
j // B × k

p // k

with j, p natural inclusion and projection respectively, η the isomorphism defined above.
The lower sequence of the diagram is split exact in H−1Hmor(Algk), because B × k is a
coproduct of B and k, hence so is the upper one. ¤

Given A,B ∈ Algk one sets

kh(A,B) := Ker({A,B+}mor
ε∗−→ {A, k}mor).

We have,
{A,B+}mor = kh(A,B)⊕ {A, k}mor.

Corollary 5.2. For any unital algebra B and any A ∈ Algk there is a natural isomor-
phism kh(A,B) ∼= {A,B}mor.

Let H−1Hmor(Algu
k) be the full subcategory of H−1Hmor(Algk) whose objects are

those of Algu
k . LetA be the idempotent completion of the additive categoryH−1Hmor(Algu

k).
Namely we introduce new objects denoted by pA whenever A ∈ Algu

k and p : A → A is
an idempotent, i.e., p = p2. For instance, if f : k → k[t±] is the natural inclusion and
g : k[t±] → k is the natural augmentation, then p = fg is an idempotent. We define
A(pA, qB) := q{A,B}morp, and with this definition composition is nothing new. We
define pA⊗ qB := (p⊗ q)(A⊗k B).

We identify A ∈ Algu
k with 1A, and prove easily that A = pA ⊕ p̄A, where p̄ :=

1− p. Any functor F from the old category to an idempotent complete category can be
extended to A by defining F (pA) := F (p)F (A).

Lemma 5.3. Given two homomorphisms f, g : A → B of k-algebras such that f(a)g(a′) =
g(a)f(a′) = 0 for all a, a′ ∈ A, the map f + g is an algebra homomorphism and the fol-
lowing relation holds in H−1Hmor(Algk):

[f ] + [g] = [f + g],

where [f ] stands for the class of f in H−1Hmor(Algk).

Proof. It is enough to observe that A×A is a direct sum inH−1Hmor(Algk) of two copies
of A and that H : A × A → B, (a, a′) 7→ f(a) + g(a′) is a k-algebra homomorphism
whose restriction to each direct factor is f or g respectively. ¤
Proposition 5.4. For any A ∈ Algk and B ∈ Algu

k there is a split short exact sequence
of abelian groups

{k, B}mor
ε∗−→ {A+, B}mor

π−→ {A,B}mor, (8)
where π is defined by restriction and ε∗ is induced by the augmentation ε : A+ → k,
(a, n) 7→ n.

Proof. Clearly, ε∗ is a split monomorphism. Every homomorphism f : A → B can be
extended to a unital homomorphism f̃ : A+ → B by the rule: (a, n) 7→ f(a) + n · 1B.
Notice that if f is homotopic to g then so are f̃ and g̃. Also f̃ ] g̃ = f̃ ] g. We
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have that every element f : A → MnB of [A,B]mor is the image of f̃ : A+ → MnB
under the natural map [A+, B]mor → [A,B]mor of abelian monoids. Therefore π is an
epimorphism.

Given an idempotent matrix e ∈ MnB let `e : A+ → MnB be the homomorphism
(a, n) 7→ n · e. Suppose f : A+ → MnB is a k-algebra homomorphism. One sets
f̄ := π̃(f) and ef := f(0, 1). Then ef is an idempotent matrix and

f̄(a, n) = f(a, n) + `1−ef
(a, n)

for all (a, n) ∈ A+.
Since f(a1, n1)`1−ef

(a2, n2) = f(a1, n1)·ef ·(1−ef )·`1−ef
(a2, n2) = 0 and `1−ef

(a2, n2)f(a1, n1) =
`1−ef

(a2, n2) · (1− ef ) · ef · f(a1, n1) = 0, it follows from the preceding lemma that

[f̄ ] = [f ] + [`1−ef
]. (9)

Similarly,
[`1] = [`ef

] + [`1−ef
]. (10)

Observe that 0̄ = `1.
Suppose f, g : A+ → MnB be such that [π(f)] = [π(g)]. We may choose n big enough

to find a homomorphism h : A → MnB such that π(f) ] h is homotopic to π(g) ] h.
Then f̄ ] h̃ is homotopic to ḡ ] h̃, hence [f̄ ] = [ḡ].

Using relations (9) and (10) we obtain

[f ]− [g] = [`ef
]− [`eg ] = ε∗ι∗([f ]− [g]).

We conclude that (8) is a split short exact sequence of abelian groups, and therefore
{A,B}mor = Coker({k, B}mor → {A+, B}mor). ¤

Given A ∈ Algk let pA be the idempotent (1−ιε) : A+ → A+. Clearly, (1−pA)A+
∼= k.

We get an isomorphism in A
A+

∼= pAA+ ⊕ k.

By Proposition 5.4 and Corollary 5.2 there are natural isomorphisms for any unital
algebra B

{A,B}mor
∼= kh(A,B) ∼= A(pAA+, B). (11)

Given B ∈ Algk there is a commutative diagram of abelian groups

kh(k, B) // //
²²

²²

{k, B+}mor
// //

²²

²²

{k, k}mor
²²

²²
kh(A+, B) // //

²²²²

{A+, B+}mor
// //

²²²²

{A+, k}mor

²²²²
kh(A, B) // // {A,B+}mor

// // {A, k}mor.

The rows are split exact by definition. By Proposition 5.4 the right two columns are
split exact as well. Using 3× 3-lemma for exact categories [11, 2.11] the left column is
split exact. It follows from (11) that there is a natural isomorphism

ϕAB : kh(A,B)
∼=−→ A(pAA+, pBB+).
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The composition law in A
A(pAA+, pBB+)×A(pBB+, pCC+) → A(pAA+, pCC+)

induces a composition law

kh(A,B)× kh(B, C) → kh(A,C), (f, g) 7→ g ◦ f := ϕ−1
AC(ϕBC(g)ϕAB(f)).

This determines an additive category, denoted by kh, whose objects are those of Algk

and morphisms are given by the abelian groups kh(A,B). Also, we obtain a natural
functor

ϕ : kh → A
taking an algebra A ∈ Algk to pAA+ and a morphism f ∈ kh(A,B) to ϕAB(f) ∈
A(pAA+, pBB+).

We have thus proved the following statement.

Proposition 5.5. The functor

ϕ : kh → A, A → pAA+,

is full and faithful.

We can think of morphisms in kh as correspondences between non-unital algebras.
We finish the section by proving the following

Theorem 5.6. For any algebra A ∈ Algk there is a natural isomorphism of abelian
groups

kh(k, A) ∼= [K0](A),
functorial in A.

Proof. By definition kh(k, A) = Ker({k, A+}mor → {k, k}mor). There is a commutative
diagram of abelian groups with exact rows and columns

L // //
²²

²²

L′
α′ //

²²
i

²²

L′′
²²

²²
K0(A[x]) // //

∂1
x−∂0

x
²²

K0((A+)[x]) α // //

∂1
x−∂0

x
²²

K0(k[x])

∂1
x−∂0

x
²²

K0(A) // //

²²²²

K0(A+) // //

²²²²

K0(k)

²²²²
[K0](A) // [K0](A+) // // [K0](k)

The middle two rows are split exact. The map α = K0(ε[x]) with ε : A+ → k the
natural projection splits. Suppose β = K0(ι[x]) with ι : k → A+ the natural inclusion;
then αβ = 1. We have ((∂1

x − ∂0
x) ◦ β)|L′′ = 0, hence there is β′ : L′′ → L′ such that

iβ′ = β|L′′ . One easily sees that α′β′ = 1.
The Snake Lemma implies [K0](A) = Ker([K0](A+) → [K0](k)). Now our assertion

follows from Corollary 4.8. ¤
The proof of the preceding theorem and the fact that K0 takes split exact sequences

in Algk to split exact sequences [4, 2.4.3] show that the following statement is true.

27



Corollary 5.7. Suppose a sequence I ½ R ³ R/I is split exact in Algk (i.e., I is an
ideal in an algebra R, and there is a splitting homomorphism R/I → R), then

kh(k, I) ½ kh(k,R) ³ kh(k, R/I)

is a split exact sequence of abelian groups.

6. The triangulated category Dmor(<, F)

In this section we construct explicitly a universal F-excisive, homotopy invariant and
Morita invariant homology theory < → Dmor(<,F). More precisely, we define the
category Dmor(<,F) as follows. Its objects are those of < and the set of morphisms
between two algebras A,B ∈ < is defined as the colimit of the sequence of abelian
groups

D(<,F)(A,B) → D(<, F)(A,M2B) → D(<, F)(A,M3B) → · · ·
It turns out that Dmor(<, F) is a triangulated category and, moreover, every homo-
topy invariant, Morita invariant, excisive homology theory X : < → T factors through
Dmor(<, F) (Theorem 6.5).

Throughout this section < is an admissible category of k-algebras with MnA ∈ < for
any A ∈ < and n > 1. We assume F to be a saturated family of fibrations satisfying
Mn(f) ∈ F for any f ∈ F. For instance, this is the case when F is either Fspl or Fsurj.
We note that Mn(A) ∼= A ⊗k Mn(k) ∈ < for any n > 1 and A ∈ <. The proof of
Corollary 2.8 shows that Mn(f) = Mn(k)⊗ f ∈ W4 for any n > 1 and f ∈ W4. Note
that if BI is a path object for an algebra B ∈ < then Mn(BI) is a path algebra for
MnB.

We denote by Hmor< (respectively H−1Hmor<) the full subcategory of Hmor(Algk)
(respectively H−1Hmor(Algk)) whose objects are those of <. Let

Γ : H< → Hmor<
be the canonical functor. We set

Σmor = {Γ(f) | f ∈ W4}.
Proposition 6.1. Σmor admits a calculus of right fractions in Hmor<.

Proof. Clearly, the identity of each object and the composition of two elements of Σmor

belong to Σmor. Consider a diagram

A
f−→ MnB

sn,Bσ←−−− D

with σ : D → B from W4. One has sn,Bσ = Mn(σ)sn,D. We can construct a commu-
tative diagram in Hmor<

A′ //

σ′
²²

MnD

Mn(σ)
²²

A
f // MnB
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with σ′ ∈ W4 and A′ a limit in < for the diagram

A
f

!!CC
CC

CC
CC

Mn(BI)
Mn(d0)

yyttttttttt Mn(d1)

%%JJJJJJJJJ
MnD

Mn(σ)

{{vvv
vv

vv
vv

MnB MnB

To show that Σmor admits a calculus of right fractions, it remains to verify that
if f, g : A → MnB are morphisms in < and σ : B → MlC from W4 is such that
Mn(σ)f = Mn(σ)g then there is σ′ ∈ Σ such that fσ′ = gσ′. This follows from
Proposition 2.1 and the fact that Mn(σ) ∈ W4. ¤

We denote by D−
mor(<, F) the category Hmor<[Σ−1

mor]. It follows from Theorem 3.2
and Proposition 6.1 that the category is obtained from < by inverting the maps from
W4 ∪ {sn,A | n ∈ N, A ∈ <}. Maps between A, B ∈ < are defined as

lim−→
n

D−(<, F)(A,Mn(B)) = lim−→
A′→A∈W4

lim−→
n

[A′,Mn(B)] = lim−→
A′→A∈W4

[A′, B]mor.

The composition of two maps A
s← A′ f→ Mn(B) and B

t← B′ g→ Ml(C) in D−
mor(<, F)

is a common denominator

A′′
u

{{ww
ww

ww
ww

w
v

%%LLLLLLLLLL

A′
s

¡¡¡¡
¡¡

¡¡
¡¡ f

##FF
FF

FF
FF
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A Mn(B) Mnl(C)

with Mn(t) ∈ W4 and A′′ defined as above.
Recall that [A′, B]mor is an abelian monoid with respect to the binary operation

f ] g : A′ → M2MnB ∼= M2nB, f, g : A′ → MnB. For any A′′ → A′ ∈ W4 the induced
map

[A′, B]mor → [A′′, B]mor

is a morphism of abelian monoids. ΩnA with n > 2 is an abelian group object of
D−(<, F) (see [10, 6.5]). Let us discuss consistence of the binary operations ] and that
coming from the abelian group structure for ΩnA.

The binary operation ] is naturally extended to a binary operation

] : D−
mor(<, F)(A,B)×D−

mor(<,F)(A,B) → D−
mor(<,F)(A,B)

as follows. Any two maps ϕ = [A s← A′ f→ Mn(B)] and ψ = [B t← B′ g→ Ml(C)]

in D−
mor(<, F) can be replaced with equivalent two maps A

s′← D
f ′→ Mn+l(B) and

B
s′← D

g′→ Mn+l(C). We set ϕ ] ψ = [B s′← D
f ′]g′−−−→ Mn+l(C)].

On the other hand, for any n > 2 there is a binary operation

+ : D−
mor(<, F)(A,ΩnB)×D−

mor(<,F)(A, ΩnB) → D−
mor(<,F)(A, ΩnB)

induced by the abelian group structure on ΩnB.

Proposition 6.2. f + g = f ] g for any f, g ∈ D−
mor(<, F)(A,ΩnB) and any n > 2.
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Proof. Since

D−
mor(<,F)(A, ΩnB × ΩnB) = D−

mor(<, F)(A, ΩnB)⊕D−
mor(<, F)(A,ΩnB)

and restrictions of both f + g and f ] g to each summand coincide, our assertion follows
from the fact two summation maps from a direct sum of abelian groups coincide if and
only if so do their restrictions to each summand. ¤

The following result gives a relation with correspondences.

Corollary 6.3. D−
mor(<, F)(A, ΩnB) = lim−→A′→A∈W4

{A′, ΩnB}mor, n > 2.

Proof. Use the fact that the group completion of an abelian monoid operation commutes
with direct limits and that the left hand side is an abelian group. ¤

The loop functor Ω : D−(<,F) → D−(<, F) can plainly be extended to D−
mor(<, F).

Let Γ : D−(<, F) → D−
mor(<, F) be the canonical functor. We say that a sequence in

D−
mor(<, F)

ΩA → C → B → A

is a left triangle if it is isomorphic to

ΩΓA′ → ΓC ′ → ΓB′ → ΓA′

for some left triangle ΩA′ → C ′ → B′ → A′ in D−(<, F). We denote by Ltrmor(<, F)
the category of left triangles in D−

mor(<, F).

Theorem 6.4. Ltrmor(<,F) is a left triangulation of the (possibly “large”) category
D−

mor(<, F), i.e. it is closed under isomorphisms and enjoys the axioms (LT1)-(LT4) of
Theorem 2.3.

Proof. (LT1). For any A ∈ < the left triangle 0 0−→ A
1A−→ A

0−→ 0 belongs to
Ltrmor(<, F). Let h : B → C be any morphism in D−

mor(<,F) represented by B
t←

B′ g→ Ml(C). Then h is isomorphic to the map g. By Theorem 2.3 there is a left

triangle in D−(<, F) of the form ΩMlC
f−→ A

u−→ B′ g−→ MlC. We conclude that h
can be embedded into a left triangle from Ltrmor(<, F).

(LT2). Any left triangle ΩC
f−→ A

g−→ B
h−→ C in Ltrmor(<, F) is by definition

isomorphic to a sequence

ΩΓA′ → ΓC ′ → ΓB′ Γh′−−→ ΓA′

for some left triangle ΩA′ → C ′ → B′ → A′ in D−(<, F). By Theorem 2.3 ΩB′ −Ωh′−−−→
ΩC ′ → A′ → B′ is a left triangle in D−(<,F). It is obvious that ΩB

−Ωh−−−→ ΩC → A → B

is isomorphic to ΩΓB′ −ΩΓh′−−−−→ ΩΓC ′ → ΓA′ → ΓB′, and hence is a left triangle in
D−

mor(<, F).

(LT3). Suppose we are given two left triangles ΩB
γ−→ F

β−→ A
α−→ B and ΩB′ γ′−→

F ′ β′−→ A′ α′−→ B′ and two morphisms ϕ : A → A′ and ψ : B → B′ in D−
mor(<, F) with

ψα = α′ϕ. We claim that there exists a morphism χ : F → F ′ such that the triple
(χ, ϕ, ψ) is a morphism from the first triangle to the second.

Without loss of generality we can assume that the first left triangle is the sequence

ΩB
j−→ P (g)

g1−→ A
g−→ B and the second one is ΩMnB′ j′−→ P (Mng′)

Mng′1−−−→ MnA′ Mng′−−−→
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MnB′. Moreover, ψ is represented by B
s←− U

u→ MnB′ and ϕ represented by A
t←− V

v→
MnA′.

By [10, p. 586] there is a commutative diagram in <

ΩB
j // P (g)

g1 // A
g // B

ΩB′′

Ωδ

OO

Ωz
²²

j′′ // P (g′′)

OO

g′′1 //

²²

A′′

α

OO

g′′ //

τ

²²

B′′

δ

OO

z

²²
ΩMnB′ Mnj′ // P (Mng′)

Mng′1 // MnA′
Mng′ // MnB′

such that ψ = zδ−1 and ϕ = τα−1. The desired triple (χ, ϕ, ψ) is constructed.
(LT4). Since every morphism in D−

mor(<,F) is of the form p◦ i◦s−1 with p a fibration
and i, s weak equivalences, it follows that two composable morphisms h, k fit into a
commutative diagram in D−

mor(<, F)

B

∼=
²²

h // C

∼=
²²

k // D

snl,D

²²
B′ p // // MnC ′ Mnq// // MnlD

with the vertical maps isomorphisms and p, q fibrations in <. It is routine to verify that
(LT4) follows from the following fact: any two fibrations B

h−→ MnC
Mnk−−−→ MnlD of <

can be fitted into a commutative diagram in D−
mor(<,F)

ΩE

f◦Ω`
²²

ΩMnC
f //

ΩMnk
²²

A
g //

α

²²

B
h //

1B

²²

MnC

Mnk
²²

ΩMnlD
v //

1
²²

F
m //

β

²²

B
Mn(k)h//

h
²²

MnlD

1
²²

ΩMnlD
u // E

` // MnC
Mnk // MnlD

in which the rows are standard left triangles and the second column on the left is a left
triangle. The proof of this fact literally repeats the proof of a similar assertion in [10,
pp. 587-588]. ¤

One can stabilize the loop endofunctor Ω on D−
mor(<, F) (see paragraph 2.2) to get a

new category Dmor(<,F) which is clearly triangulated.
We are now in a position to prove the main result of the section.

Theorem 6.5. Let X : < → T be an excisive, homotopy invariant, Morita invariant
homology theory. Then the following statements are true:

(1) there is a unique functor X̄ : D−
mor(<, F) → T such that X = X̄ ◦ j with j :

< → D−
mor(<, F) the canonical functor. Moreover, X̄ takes left triangles in D−

mor(<, F)
to triangles in T ;
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(2) there is a unique functor X̃ : Dmor(<, F) → T such that X̄ = X̃ ◦ S with
S : D−

mor(<, F) → Dmor(<, F) the canonical stabilization functor. Moreover, X̃ is trian-
gulated, i.e. it takes triangles in Dmor(<, F) to triangles in T .

Proof. (1) By Theorem 2.6 X factors through D−(<, F). Since X is Morita invariant it
factors through D−

mor(<,F). It is plainly triangulated.
(2) The proof is similar to that of Theorem 2.6(2). ¤
Let Wmor denote the class of those homomorphisms f for which X(f) is an isomor-

phism for any excisive, homotopy invariant, Morita invariant homology theory X. It
can be shown similar to Lemma 2.5 that the triple (<, F,Wmor) is a Brown category.

Theorem 6.6. If Dmor(<,F) is a category with small Hom-sets, then there is a natural
triangulated equivalence of the triangulated categories Dmor(<,F) and D(<, F,Wmor).

Proof. One can prove similar to the preceding theorem that there is a unique triangulated
functor

D−
mor(<, F) → D(<, F,Wmor).

It is uniquely extended to a triangulated functor

Υ : Dmor(<, F) → D(<,F,Wmor).

On the other hand, one can prove similar to Theorem 2.6 that the category D(<, F,Wmor)
is universal for excisive, homotopy invariant, Morita invariant homology theories. Since
Dmor(<, F) is a category with small Hom-sets, then < → Dmor(<, F) is an excisive,
homotopy invariant, Morita invariant homology theory. Therefore there is a unique
triangulated functor

Ξ : D(<, F,Wmor) → Dmor(<, F).
We conclude that Ξ, Υ are mutually inverse. ¤
Proposition 6.7. If F is a tensor closed collection of fibrations then the tensor product
⊗k of algebras induces a tensor product on Dmor(<, F) making it a symmetric monoidal
category. Moreover, the tensor product is exact in either variable, i.e. it takes triangles
to triangles.

Proof. The proof is similar to that of Corollary 2.8. ¤

7. Morita stable algebraic KK- and E-theories

Let us fix an underlying category U , which can be a full subcategory of either the
category of sets Sets or Mod k. The category U will depend on F. Namely, we shall
assume that U ⊆ Sets if F = Fsurj and U ⊆ Mod k if F = Fspl. We also assume that < is
a T -closed admissible category of k-algebras with MnA ∈ < for any A ∈ < and n > 1.
Clearly, Mn(f) ∈ F for any f ∈ F.

Definition. (1) The Morita stable algebraic KK-theory for < is the triangulated cate-
gory Dmor(<, Fspl). The Morita stable algebraic KK-groups are, by definition,

KKmor
n (A,B) := Dmor(<,Fspl)(A,ΩnB), n ∈ Z, A,B ∈ <.

(2) The Morita stable algebraic E-theory for < is the triangulated category Dmor(<, Fsurj).
The Morita stable algebraic E-groups are, by definition,

Emor
n (A, B) := Dmor(<, Fsurj)(A,ΩnB), n ∈ Z, A, B ∈ <.
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In the next two sections we study universal bivariant excisive, homotopy invariant
and M∞-invariant homology theories.

8. The category Hst(Algk)

Given an algebra A ∈ Algk we write M∞A = ∪nMnA. One can identify M∞A with
infinite matrices having finitely many non-zero entries. Note that M∞A ∼= M∞k ⊗ A.
One has a natural homomorphism ι∞,A : A → M∞k ⊗A, defined similar to sn,A, and a
sequence of maps

A
ι∞,A−−−→ M∞k⊗A

ι∞,M∞k⊗A−−−−−−−→ M∞k⊗M∞k⊗A
ι∞,M⊗2∞ k⊗A−−−−−−−→ · · ·

ι∞,M⊗n−1∞ k⊗A−−−−−−−−−→ M⊗n
∞ k⊗A.

Denote its composition by ιn∞,A. We set

S = {1A, ιn∞,A | A ∈ Algk, n ∈ N}.
Let Hst(Algk) be the category H(Algk)[S−1].

Definition. A functor X : Algk → C from Algk to a category C is M∞-invariant or
stable if X(ι∞,A) : X(A) → X(M∞k ⊗A) is an isomorphism.

Theorem 8.1. S admits a calculus of left fractions in H(Algk) and every stable homo-
topy invariant functor X : Algk → C factors through Hst(Algk).

Proof. Clearly, the identity map of each object and the composition of two elements of
S belong to S. Each diagram

M⊗n
∞ k ⊗A

ιn∞,A←−−− A
f−→ B

can obviously be completed to a commutative square

A
f //

ιn∞,A
²²

B

ιn∞,B
²²

M⊗n∞ k ⊗A
f ′ // M⊗n∞ k ⊗B.

To show that S admits a calculus of left fractions, it remains to verify that if f, g
are morphisms in H(Algk) and σ ∈ S is such that fσ = gσ then there is σ′ ∈ S such
that σ′f = σ′g. Let us show first if f, g : M∞k ⊗ A → B are two homomorphisms with
fι∞,A = gι∞,A then ιn∞,Bf = ιn∞,Bg for some n.

Consider the diagram

A
ι∞,A // M∞k ⊗A

1⊗ι∞,A

²²
ι∞,M∞k⊗A

²²

g
//

f //
B

ι∞,B

²²
M⊗2∞ k ⊗A

s2

²²

1⊗g
//

1⊗f //
M∞k ⊗B

s2

²²
M2(M⊗2∞ k ⊗A)

1⊗g
//

1⊗f //
M2(M∞k ⊗B).

33



The algebra M⊗2∞ k can be regarded as a subalgebra of Endk(k(N) ⊗ k(N)). Let {ei}i∈N
denote the standard basis of k(N). Then {ei ⊗ ej}i,j∈N is a basis of k(N) ⊗ k(N). There is
a permutation matrix W ∈ C such that 1 ⊗ ι∞,A = W−1ι∞,M∞k⊗AW . More precisely,
W swaps e1 ⊗ ei, ei ⊗ e1, i > 1, and leaves the other basis elements unchanged. Using
Proposition 3.1 one has,

s2ι∞,Bf = (1⊗ f)s2ι∞,M∞k⊗A ' s2(1⊗ f)(1⊗ ι∞,A) =

s2(1⊗ g)(1⊗ ι∞,A) ' (1⊗ g)s2ι∞,M∞k⊗A = s2ι∞,Bg.

Composing s2 with the natural embedding of M2(M∞k⊗B) into M⊗2∞ k⊗B, it follows
that ι2∞,Bf equals ι2∞,Bg in H(Algk).

Let n > 1 and let fιn∞,A = gιn∞,A. Using induction in n we can find a σ1 ∈ S
such that σ1fι∞,M⊗n−1∞ k⊗A = σ1gι∞,M⊗n−1∞ k⊗A. By above there is a σ2 ∈ S such that
σ2σ1f = σ2σ1g. Hence S admits a calculus of left fractions.

To show that every stable homotopy invariant functor X : Algk → C factors through
Hst(Algk), it is enough to observe that X takes every element of S to an isomorphism.

¤
It follows from the preceding theorem that morphisms in Hst(Algk) are given by the

sets
[A,B]st := lim−→

n

[A, M⊗n
∞ k ⊗B].

Note that the arrows sn,A : A → MnA become invertible in Hst(Algk). Therefore the
canonical functor < → Hst(Algk) factors through Hmor(Algk).

9. The triangulated category Dst(<, F)

In this section we construct explicitly a universal F-excisive, homotopy invariant and
stable homology theory. Throughout this section < is an admissible category of k-
algebras with M∞A ∈ < for any A ∈ <. We assume F to be a saturated family of
fibrations satisfying M∞k ⊗ f ∈ F for any f ∈ F. For instance, this is the case when F
is either Fspl or Fsurj. The proof of Corollary 2.8 shows that M∞k ⊗ f ∈ W4 for any
f ∈ W4. Note that if BI is a path object for an algebra B ∈ < then M∞k ⊗ (BI) is a
path algebra for M∞k ⊗B.

We denote by Hst< the full subcategory of Hst(Algk) whose objects are those of <.
Let

Γst : H< → Hst<
be the canonical functor. We set

Σst = {Γst(f) | f ∈ W4}.
Proposition 9.1. Σst admits a calculus of right fractions in Hst<.

Proof. The proof is like that of Proposition 6.1. ¤
We denote by D−

st(<, F) the category Hst<[Σ−1
st ]. It follows from Theorem 8.1 and

Proposition 9.1 that the category is obtained from < by inverting the maps from W4 ∪
(S ∩Mor<). Maps between A, B ∈ < are defined as

lim−→
n

D−(<, F)(A,M⊗n
∞ k ⊗B) = lim−→

A′→A∈W4

lim−→
n

[A′,M⊗n
∞ k ⊗B] = lim−→

A′→A∈W4

[A′, B]st.
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Composition of two maps A
s← A′ f→ M⊗n∞ k⊗B and B

t← B′ g→ M⊗l∞ k⊗C in D−
st(<, F)

is a common denominator

A′′
u

yyttttttttttt
v

''PPPPPPPPPPPP

A′

s

¡¡¢¢
¢¢

¢¢
¢¢ f

$$IIIIIIIIII M⊗n∞ k ⊗B′

M⊗n∞ k⊗t

wwooooooooooo
M⊗n∞ k⊗g

((PPPPPPPPPPP

A M⊗n∞ k ⊗B M
⊗(n+l)
∞ k ⊗ C

with M⊗n∞ k ⊗ t ∈ W4 and A′′ a limit in < for the diagram

A
f

$$IIIIIIIIII M⊗n∞ k ⊗BI

M⊗n∞ k⊗d0

wwooooooooooo
M⊗n∞ k⊗d1

''OOOOOOOOOOO
M⊗n∞ k ⊗B′

M⊗n∞ k⊗t

wwooooooooooo

M⊗n∞ k ⊗B M⊗n∞ k ⊗B

The loop functor Ω : D−(<, F) → D−(<,F) can plainly be extended to D−
st(<, F).

Let Γst : D−(<,F) → D−
st(<, F) be the canonical functor. We say that a sequence in

D−
st(<,F)

ΩA → C → B → A

is a left triangle if it is isomorphic to

ΩΓstA
′ → ΓstC

′ → ΓstB
′ → ΓstA

′

for some left triangle ΩA′ → C ′ → B′ → A′ in D−(<, F). We denote by Ltrst(<, F) the
category of left triangles in D−

st(<,F).

Theorem 9.2. Ltrst(<, F) is a left triangulation of the (possibly “large”) category
D−

st(<,F), i.e. it is closed under isomorphisms and enjoys the axioms (LT1)-(LT4)
of Theorem 2.3.

Proof. The proof is like that of Theorem 6.4. ¤
One can stabilize the loop endofunctor Ω on D−

st(<, F) (see paragraph 2.2) to get a
new category Dst(<, F) which is clearly triangulated.

We are now in a position to prove the main result of the section.

Theorem 9.3. Let X : < → T be an excisive, homotopy invariant, stable homology
theory. Then the following statements are true:

(1) there is a unique functor X̄ : D−
st(<, F) → T such that X = X̄ ◦ j with j :

< → D−
st(<,F) the canonical functor. Moreover, X̄ takes left triangles in D−

st(<, F) to
triangles in T ;

(2) there is a unique functor X̃ : Dst(<, F) → T such that X̄ = X̃ ◦ S with S :
D−

st(<,F) → Dst(<, F) the canonical stabilization functor. Moreover, X̃ is triangulated,
i.e. it takes triangles in Dst(<,F) to triangles in T .

Proof. The proof is like that of Theorem 6.5. ¤
Cortiñas–Thom [5] constructed a universal excisive, homotopy invariant, stable ho-

mology theory Algk → kk depending on Fspl or Fsurj.
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Corollary 9.4. Let F be either Fspl or Fsurj. Then there is a natural triangle equivalence
of the triangulated categories Dst(Algk, F) and kk.

Proof. If we use the preceding theorem, then the proof is like that of [10, 7.4]. ¤

LetW∞ denote the class of those homomorphisms f for which X(f) is an isomorphism
for any excisive, homotopy invariant, stable homology theory X. It can be shown similar
to Lemma 2.5 that the triple (<, F,W∞) is a Brown category. Denote by D−∞(<, F) and
D∞(<, F) the categories D−(<,F,W∞) and D(<, F,W∞) respectively.

Theorem 9.5. If Dst(<, F) is a category with small Hom-sets, then there is a natural
triangulated equivalence of the triangulated categories Dst(<, F) and D∞(<, F).

Proof. The proof is like that of Theorem 6.6. ¤

Proposition 9.6. If F is a tensor closed collection of fibrations then the tensor product
⊗k of algebras induces a tensor product on Dst(<,F) making it a symmetric monoidal
category. Moreover, the tensor product is exact in either variable, i.e. it takes triangles
to triangles.

Proof. The proof is similar to that of Corollary 2.8. ¤

10. Comparison with kh

In this section we prove the main computational result of the paper which is a gener-
alization of a similar result by Cortiñas–Thom [5].

Let ΓA, A ∈ Algk, be the algebra of N × N-matrices which satisfy the following two
properties.

(i) The set {aij | i, j ∈ N} is finite.
(ii) There exists a natural number N ∈ N such that each row and each column has

at most N nonzero entries.

M∞A ⊂ ΓA is an ideal. We put

ΣA = ΓA/M∞A.

By [5] there are natural algebra isomorphisms

ΓA ∼= Γk ⊗A, ΣA ∼= Σk ⊗A.

We call the short exact sequence

M∞A ½ ΓA
γ
³ ΣA

the cone extension. By [5] ΓA ³ ΣA ∈ Fspl.

Definition. An admissible category of algebras < is Γ-closed if ΓA ∈ < for any A ∈ <.
A class of fibration F in a Γ-closed admissible category of algebras < is Γ-saturated if
ΓA ³ ΣA ∈ F for any A ∈ <.

Suppose < is Γ-closed then Fspl, Fsurj are Γ-saturated. Every proper class ω in the
category of k-modules also gives rise to a Γ-saturated class of fibrations Fω (see p. 6).
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Given A ∈ Algk consider the commutative diagram as follows:

ΩΣA
²²

j
²²

ΩΣA
²²

²²
M∞A // i // P (γ) // //

g

²²

E(ΣA)

∂1
x

²²
M∞A // // ΓA

γ // // ΣA

Note that g is a fibre product of a GL-fibration. One has a commutative diagram with
exact rows and columns

KV1(ΓA) = 0

²²

KV1(ΣA)

²²
K0(ΩΣA)

j ∼=
²²

K0(ΩΣA)

²²
K1(E(ΣA))

α
²²

// K0(A) i // K0(P (γ)) //

²²

K0(E(ΣA))

²²
K1(ΓA) ν // K1(ΣA)

p
²²²²

δ // K0(A)

∃!βxx

// K0(ΓA) = 0
γ // K0(ΣA)

KV1(ΣA)
²²

ι
²²

K0(ΩΣA)

By [4, 5] p is a cokernel of α, ιp equals the boundary map ∂ : K1(ΣA) → K0(ΩΣA),
K0(ΓA) = KV1(ΓA) = 0 and pν = 0. It follows that δ is a cokernel of ν, and hence
there is a unique β such that βδ = p.

Lemma 10.1. The homomorphism j−1i : K0(A) → K0(ΩΣA) equals ιβ.

Proof. j−1i = ιβ if and only if ∂ = ιβδ == j−1iδ if and only if j∂ = iδ. This follows
from commutativity of the following diagram induced by Mayer–Vietoris sequences

K1(ΣA) δ // K0(A) //

i
²²

K0(ΓA)

²²

γ // K0(ΣA)

K1(ΣA) // K0(P (γ)) // K0(ΓA)⊕K0(E(ΣA)) // K0(ΣA)

K1(ΣA) ∂ // K0(ΩΣA) //

j

OO

K0(E(ΣA))

OO

// K0(ΣA)

¤
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So we obtain an infinite sequence of natural maps

K0(A)
j−1i−−−→ K0(ΣΩA)

j−1i−−−→ K0(Σ2Ω2A) → · · · (12)

It induces an infinite sequence of natural maps

[K0](A)
j−1i−−−→ [K0](ΣΩA)

j−1i−−−→ [K0](Σ2Ω2A) → · · · (13)

Using Theorem 5.6 the latter sequence yields a sequence

kh(k,A)(A)
j−1i−−−→ kh(k,ΣΩA)

j−1i−−−→ kh(k, Σ2Ω2A) → · · · (14)

Theorem 10.2. For any A ∈ Algk there is a natural isomorphism of abelian groups

KH0(A) ∼= colimn kh(k, ΣnΩnA),

where KH0(A) is the zeroth homotopy K-theory group in the sense of Weibel [24].

Proof. By [5, 8.1.1] KH0(A) is the colimit of the sequence

K0(A)
ιβ−→ K0(ΣΩA)

ιβ−→ K0(Σ2Ω2A) → · · ·
By Lemma 10.1 it is the colimit of sequence (12). Since KH0(A) is homotopy invariant
then KH0(A) is the colimit of sequence (13). It remains to apply Theorem 5.6. ¤

Denote by W ′∞ the class of morphisms in < which become invertible in Dst(<, F).
One has,

W4 ∪ {ι∞,A : A → M∞(k)⊗A}A∈Algk
⊂ W ′

∞ ⊂ W∞.

It can be shown similar to Lemma 2.5 that the triple (<, F,W ′∞) is a Brown category.
There is a natural functor

F : D−(<, F,W ′
∞) → Dst(<, F).

Proposition 10.3. If < is Γ-closed and F is Γ-saturated, then D−∞(<,F,W ′∞) is a
triangulated category and the functor

F : D−(<, F,W ′
∞) → Dst(<, F)

is a triangle equivalence of triangulated categories.

Proof. Since F is Γ-saturated, then we have a left triangle corresponding to the cone
extension

ΣΩA ∼= ΩΣA
∂−→ M∞A → ΓA → ΣA.

By [4, 2.3.1] ΓA is zero in Dst(<, F), and hence 0 → ΓA ∈ W ′∞. It follows that ΓA is
zero in D−(<,F,W ′∞). Since ∂ = i−1j and i are isomorphisms in Dst(<, F), then so is
j. We see that ∂ is an isomorphism in D−(<,F,W ′∞). The isomorphism is easily seen
to be functorial in A. Since ι∞,A : A → M∞k ⊗ A ∈ W ′∞ we obtain an isomorphism of
endofunctors

τ : ΣΩ
∼=−→ ΩΣ ι−1∞ ◦∂−−−→ id .

It follows that Ω : D−(<, F,W ′∞) → D−(<, F,W ′∞) is an autoequivalence. Therefore
D−(<, F,W ′∞) is triangulated and the natural functor D−

st(<,F) → D−(<, F,W ′∞) can
be extended to a triangulated functor

G : Dst(<,F) → D−(<,F,W ′
∞).

One easily checks that F,G are mutually inverse equivalences. ¤
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Corollary 10.4. If < is Γ-closed and F is Γ-saturated, then

D−(<,F,W ′
∞)(A,B) = lim−→

A′→A∈W ′∞

{A′, B}mor

for all A,B ∈ <.

Proof. By the preceding proposition D−(<, F,W ′∞)(A,B) is an abelian group. Now our
proof is similar to that of Corollary 6.3. ¤
Proposition 10.5. Let < be Γ-closed and let F be Γ-saturated. Suppose B ∈ < is such
that B+ ∈ < and ε : B+ → k ∈ F. Then

D−(<, F,W ′
∞)(A,B) = lim−→

A′→A∈W ′∞

kh(A′, B)

for any A ∈ <.

Proof. By definition, kh(A,B) = Ker({A,B+}mor
ε−→ {A, k}mor). Taking a colimit

over the arrows A′ → A ∈ W ′∞, one has a split exact sequence

lim−→A′→A∈W ′∞
kh(A′, B) // // lim−→A′→A∈W ′∞

{A′, B+}mor // // lim−→A′→A∈W′∞
{A′, k}mor.

By the preceding proposition D−(<, F,W ′∞) is triangulated and by our assumption
ε : B+ → k ∈ F. Hence one has a (split) triangle in D−(<,F,W ′∞)

Ωk → B → B+ → k.

Therefore one has a split exact sequence

D−(<, F,W ′∞)(A,B) // // D−(<,F,W ′∞)(A, B+) // // D−(<, F,W ′∞)(A, k).

Our assertion now follows from the preceding corollary. ¤
We are now in a position to prove the main computational result of the paper.

Theorem 10.6 (Cortiñas–Thom). Let < be Γ-closed and let F be Γ-saturated. Suppose
B+ ∈ < and ε : B+ → k ∈ F for any B ∈ <. Then there is an isomorphism of Z-graded
abelian groups for any A ∈ <⊕

n∈Z
KHn(A) ∼=

⊕

n∈Z
Dst(<, F)(k, ΩnA),

where the left hand side is homotopy K-theory in the sense of Weibel [24]. Furthermore,
this isomorphism is functorial in A.

Proof. Let KH(A) be any functorial (non-connective) homotopy K-theory spectrum.
Then

KH(−) : < → Ho(Sp), A 7→ KH(A),
determines an excisive, homotopy invariant, stable homology theory with values in the
homotopy category of spectra (see [24]). It follows that there is an isomorphism in
Ho(Sp)

ΩnKH(A) ∼= KH(ΩnA), A ∈ <, n ∈ Z.

Thus,
KH0(−) = π0(KH(−)) : < → Ab

takes maps from W ′∞ to isomorphisms and KHn(A) ∼= KH0(ΩnA) for all A ∈ <, n ∈ Z.
So it is enough to prove the theorem for n = 0.
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By Theorem 10.2 there is a natural isomorphism of abelian groups

KH0(A) ∼= colimn kh(k, ΣnΩnA),

functorial in A. By Proposition 10.5

D−(<, F,W ′
∞)(A,B) = lim−→

A′→A∈W ′∞

kh(A′, B).

So one gets a natural map

α : KH0(A) → colimn D−(<, F,W ′
∞)(k, ΣnΩnA)

∼=−→ D−(<,F,W ′
∞)(k, A),

where the colimit maps on the right are induced by the isomorphism of endofunctors
τ : ΣΩ

∼=−→ id (see the proof of Proposition10.5).
Denote by β the composite of canonical maps

D−(<, F,W ′
∞)(k, A) → HomZ(KH0(k),KH0(A)) `∗−→ HomZ(KH0(Z),KH0(A)) ∼= KH0(A),

where ` : Z→ k is the canonical map and the left arrow sends a diagram k
s← A′ f→ A,

s ∈ W ′∞, to KH0(f) ◦KH0(s)−1. If A is unital and E ∈ M∞(A) an idempotent, then
the composite βα sends the class of E to its image in KH0(A). By construction of α,
this is enough to prove that βα is the identity. To complete the proof we shall show
that α is surjective.

Suppose k
s← A′ f→ A, s ∈ W ′∞, is in D−(<,F,W ′∞)(k,A). Since KH0(s) is an

isomorphism, there are n > 0 and a homomorphism t : k → ΣnΩnA′ such that ΣnΩn(s)◦
t : k → ΣnΩnA is the image of 1 : k → k in kh(k, ΣnΩnk) under the map (14). Observe
that τn ◦ΣnΩn(s)◦ t : k → k equals 1 in D−(<, F,W ′∞). It follows that t ∈ W ′∞ because
ΣnΩn(s) ∈ W ′∞.

We claim that k
s← A′ f→ A equals α(ΣnΩn(f)◦ t) = τn ◦ΣnΩn(f)◦ t. But this follows

from commutativity of the diagram

k

t
²²

ΣnΩn(k)

τn

²²

ΣnΩn(A′)

τn

²²

ΣnΩn(s)oo ΣnΩn(f) // ΣnΩn(A)

τn

²²
k A′

soo f // A

The theorem is proved. ¤

11. Stable algebraic KK- and E-theories

We finish the paper by introducing stable algebraic KK- and E-theories. Throughout
this section we assume fixed an underlying category U , which can be a full subcategory
of either the category of sets Sets or Mod k. The category U will depend on F. Namely,
we shall assume that U ⊆ Sets if F = Fsurj and U ⊆ Mod k if F = Fspl. We also assume
that an admissible category of k-algebras < is both T -closed and Γ-closed. We also
assume B+ ∈ < for any B ∈ <. Then M∞A ∈ < for any A ∈ < and M∞(f) ∈ F for any
f ∈ F. Also, F is Γ-saturated.
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Definition. (1) The stable algebraic KK-theory for < is the triangulated category
Dst(<,Fspl). The stable algebraic KK-groups are, by definition,

KKst
n (A,B) := Dst(<, Fspl)(A, ΩnB), n ∈ Z, A, B ∈ <.

(2) The stable algebraic E-theory for < is the triangulated category Dst(<,Fsurj). The
stable algebraic E-groups are, by definition,

Est
n (A, B) := Dst(<, Fsurj)(A, ΩnB), n ∈ Z, A,B ∈ <.

Theorem 11.1 (Cortiñas–Thom). There are isomorphisms of Z-graded abelian groups
for any A ∈ < ⊕

n∈Z
KHn(A) ∼=

⊕

n∈Z
KKst

n (k,A)

and ⊕

n∈Z
KHn(A) ∼=

⊕

n∈Z
Est

n (k,A),

functorial in A, where the left hand side is homotopy K-theory in the sense of Weibel [24].

Proof. This a consequence of Theorem 10.6. ¤
Corollary 11.2 (Cortiñas–Thom [5]). There is a natural isomorphism

kk∗(k, A) ∼= KH∗(A).

Proof. This a consequence of the preceding theorem and Corollary 9.4. ¤
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