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Abstract. The additivity theorem for dérivateurs associated to complicial biWald-
hausen categories is proved. Also, to any exact category in the sense of Quillen
a K-theory space is associated. This K-theory is shown to satisfy the additivity,
approximation and resolution theorems.
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1. Introduction

It is well known due most recently to work of Schlichting [18] that, in general, there
is no K-theory for triangulated categories satisfying localization and reconstructing
Quillen’s K-theory of an exact category from its derived category. There are two
approaches to replace the naive notion of derived category by something richer,
from which the K-theory might be obtained by some explicit construction. One
approach, suggested by Dwyer and Kan [3,4], is called the “simplicial localiza-
tion”. Toën and Vezzosi [23] define a K-theory functor on the level of S-categories
and prove that, when applied to the simplicial localization of an appropriate Wald-
hausen category C , this construction yields a spectrum which is weakly equivalent
to the Waldhausen’s K-theory spectrum of C . The other, following definitions of
Grothendieck [7], Heller [8] and Franke [5] is called the “system of diagram cate-
gories” or the “dérivateur” (in French): given a closed model category C , one takes
a large system of index categories I , and forms the system of derived categories of
the diagram categories C I . One can introduce an analogue of the Q.-construction
(see [14]) or Waldhausen’s S.-construction [6] for them which might form a suit-
able definition for the K-theory of a system of diagram categories or a dérivateur.
Both definitions give equivalent K-theories by [2].
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Maltsiniotis [14] opens three conjectures, the third of which says that the K-
theory of a dérivateur (or a system of diagram categories) satisfies the additivity
theorem. A weaker version of additivity has been shown in [6]. One could try to
adapt Waldhausen’s [25] or McCarthy’s [15] proof of additivity in this context to
show the strong form of additivity. At the first glance, the machinery of dérivateurs
seems to have some of the necessary ingredients. However one thing always goes
wrong when constructing a homotopy; one lacks a component which seems to be
not deducible from dérivateurs in general (see details at the end of section 4).

In this paper we prove the strong form of additivity for dérivateurs associated to
complicial biWaldhausen categories in the sense of Thomason [22] (see the precise
definitions in section 4). Thus we can find the lacking ingredient in this case. Experts
will probably be able to show additivity for the dérivateurs represented by closed
model categories. Such dérivateurs seem to contain all the necessary information
for this. If so, it will be justifiable to say that the third Maltsiniotis conjecture is true
for the dérivatuers “having a model”. In fact, all interesting dérivatuers we have in
nature arise in this fashion.

To any exact category E one associates the dérivateur

Db(E ) : I �−→ Db(E I )

sending an index category I to the derived category of the exact diagram category
E I . It is very interesting to study its K-theory space K(Db(E )). This K-theory is
shown to satisfy the additivity, approximation and resolution theorems.

Organization of the paper. After fixing some notation and terminology (in 2.1
and 2.2), we formulate several lemmas (in 2.3) which are of great utility in proving
the additivity theorem in section 3. Our main result is then formulated in section 4,
that dealing with additivity for dérivateurs associated to complicial biWaldhau-
sen categories (Theorem 4.5). Then comes section 5 in which the K-theory space
K(Db(E )) is studied. We also prove there a couple of results which are of indepen-
dent interest. The necessary facts about dérivateurs and their K-theory are given in
Addendum.

Acknowledgements. I would like to thank Professor Haynes Miller and an anonymous
referee for helpful suggestions concerning the material of the paper.

2. Cochain complexes, homotopies, derived categories

In this section we collect some necessary facts about cochain complexes and derived
categories.

2.1. Definition of the derived category

An exact category is an additive category A with a collection of exact sequences
{E � F � G} where the first morphism E � F appearing in those exact
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sequences are called admissible monomorphisms and the second ones admissible
epimorphisms. They have to satisfy a couple of natural axioms (e.g. see [22]). Let
C = Cb(A ) denote the category of bounded complexes in an exact category A .
Recall that A can be embedded as a full subcategory in an abelian category B in
such a way that a sequence in A is exact if and only if it is exact in B. If A is
idempotent complete (or even less) this embedding can be chosen in a way that
any map in A which becomes an epimorphism in B was already an admissible
epimorphism in A (see [22]).

Let A be an exact category. Its bounded derived category Db(A ) is constructed
as follows (we follow here Keller’s definition [12]).

Let Hb(A ) be the homotopy category of the category of bounded complexes
C = Cb(A ), i.e., the quotient category of C modulo homotopy equivalence. Let
Ac(A ) denote the full subcategory of Hb(A ) consisting of acyclic complexes. A
complex

Xn −→ Xn+1 −→ Xn+2

is called acyclic if each map Xn −→ Xn+1 decomposes in A as Xn en� Dn mn�
Xn+1 where en is an epimorphism and mn is a monomorphism in such a way that

Dn mn� Xn+1 en+1� Dn+1 is an exact sequence.
If an exact category is idempotent complete then every contractible complex is

acyclic. Denote by N = N (A ) the full subcategory of Hb(A ) whose objects
are the complexes isomorphic in Hb(A ) to acyclic complexes. There is another
description of N . Let A −→ Ã be the universal additive functor to an idempo-
tent complete exact category Ã . It is exact and reflects exact sequences, and A is
closed under extensions in Ã (see [22, A.9.1]). The class of acyclic complexes in
Ã is closed under homotopy equivalence. It follows that a complex with entries
in A belongs to N if and only if its image in Hb(Ã ) is acyclic. The category
N (Ã ) = Ac(Ã ) is a thick subcategory in Hb(Ã ). Note that a complex over Ã
is acyclic if and only if it has trivial homology computed in an appropriate ambient
abelian category B (see above). It follows that N is a thick subcategory in Hb(A ).
Denote by � the multiplicative system associated to N and call the elements of �

quasi-isomorphisms. A map s is a quasi-isomorphism if and only if in any triangle

L
s−→ M −→ N −→ L[1]

the complex N belongs to N .
The derived category is defined as

Db(A ) = Hb(A )/N = Hb(A )[�−1].

Clearly, a map is a quasi-isomorphism if and only if its image in Cb(Ã ) is a
quasi-isomorphism and if and only if its image in Db(A ) is an isomorphism.

We shall work a lot with derived categories of diagram exact categories A I

where I is a small category. It is easily seen that a cochain map f : A −→ B in
Cb(A I ) is a quasi-isomorphisms if and only if each fi : Ai −→ Bi, i ∈ I , is so
in Cb(A ).
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2.2. Homotopy pullbacks and homotopy pushouts

Let f : F −→ A and g : G −→ A be cochain maps. One has a canonical
homotopy pullback

(
F

h∏
A

G
)n = Fn ⊕ An−1 ⊕Gn

d(x, a, y) = (dF x,−dAa + f x − gy, dGy).

(We describe d as if objects of A had “elements”, by the standard abuse). The
square

F
h∏
A

G

hom. comm.g′

��

f ′ �� G

g

��
F

f
�� A

with f ′(x, a, y) = y and g′(x, a, y) = x is homotopy commutative, that is gf ′ ∼
fg′. Note that f ′ is a quasi-isomorphism whenever f is. Cochain maps from a
complex C to this canonically homotopy pullback correspond bijectively to data
(h, p, k) where h : C −→ F and p : C −→ G are cochain maps and k is a
cochain homotopy f h ∼ gp : C −→ A. Thus k consists of maps Cn −→ An−1

for all n such that dk + kd = f h− gp. To (h, p, k) corresponds the cochain map

t : C −→ F
h∏
A

G defined as t (c) = (hc, kc, pc). Then f ′t = p and g′t = h.

When f : F −→ A is the identity map, the canonically homotopy pullback is the
mapping cocylinder Cocyl(g) of g : G −→ A.

Dually, given f : A −→ F and g : A −→ G the canonically homotopy
pushout is the complex defined by

(
F

h∐
A

G
)n = Fn ⊕ An+1 ⊕Gn

d(x, a, y) = (dF x + f a,−dAa, dGy − ga).

This indeed has all the dual properties as the homotopy pullback. As special cases,
when f : A −→ F is the identity map, the homotopy pushout is the mapping cyl-
inder Cyl(g) of g : A −→ G. If f : A −→ F = 0 is the map to 0, the homotopy
pushout is the mapping cone C(g) of g : A −→ G.

Let wC denote the category whose objects are those of C and morphisms
are quasi-isomorphisms. It is a complical biWaldhausen category (see definitions
in [22,25]). It has also cylinder and cocylinder functors satisfying the cylinder and
cocylinder axioms.
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2.3. Getting rid of homotopy commutative squares

Results of this technical paragraph are of great utility in proving the “additivity
theorem” in the next section. To construct a homotopy in that proof we will want to
replace some homotopy commutative diagrams by strictly commutative ones. Given
a non-negative integer n, by �n denote the totally ordered set {0 < 1 < · · · < n}.

Suppose we are given a homotopy commutative square with entries (X0, Y ,
A0, A1)

X1

l��

g′′

��

X0

h. comm.

f ′′
��

g′
��

f ′ �� Y

g

��
A0

f
�� A1

We want to replace it by a strictly commutative square with entries (X0, X1, A0, A1).
Let X1 = Cocyl(g); then gl ∼ g′′. Note that a homotopy is given by the maps

zn : Xn
1 −→ An−1

1 mapping (x, a, y) ∈ Xn
1 to a. Since gf ′ ∼ fg′ there is a map

f ′′ : X0 −→ X1 such that lf ′′ = f ′ and g′′f ′′ = fg′. A cochain map f ′′ is
defined by f ′′(x) = (f ′(x), k(x), fg′(x)) where maps kn : Xn

0 −→ An−1
1 give a

homotopy gf ′ ∼ fg′.

Lemma 2.1. Suppose that in the diagram

X0

h′
��
g′

��

f ′ �� Y

g

��
A0

f �� A1

the maps h′, g′ are homotopic and the square with g′ deleted is genuinely commu-
tative. Then one can produce a pair of genuinely commutative squares

X0

h′
��
g′

��

f ′′ �� X1

gl

��
g′′

��
A0

f �� A1

such that the map (g′, g′′) : X = (X0
f ′′−→ X1) −→ A = (A0

f−→ A1) is
homotopic to the map (h′, gl) : X −→ A in C �1 = Cb(A �1

).

Proof. Since fg′ ∼ gf ′ one can construct a diagram as above with X1 = Cocyl(g).
By construction, f ′′(x) = (f ′(x), f m(x), fg′(x)) where maps mn : Xn

0 −→
An−1

0 yield a homotopy g′ ∼ h′. For any n the square
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Xn
0

f
′′n

−−−−→ Xn
1

mn

�
�zn

An−1
0

f n−1

−−−−→ An−1
1

is commutative and the maps (mn, zn) : Xn −→ An−1 give the desired homotopy.
��

A map X −→ Y in Db(A ) is the equivalence class of a diagram in Cb(A )

X
s←− Z

f−→ Y

with s a quasi-isomorphism. It is equivalent to X
t←− W

g−→ Y if these fit into a
homotopy commutative diagram

V

u

����
��

��
�

v

���
��

��
��

Z

s

����
��

��
�

f

������������������������ Wt

		���������������������
g

���
��

��
��

�

X Y

with u and v quasi-isomorphisms.

Lemma 2.2. Let f s−1 : A −→ C be a map in Db(A �1
) represented by a com-

mutative diagram

A1
s1←−−−− Y1

f1−−−−→ C1

a

�
�y

�c

A0
s0←−−−− Y0

f0−−−−→ C0

(1)

with s0, s1 quasi-isomorphisms and let A0
t←− U

h−→ C0 be another representa-

tive for A0
f0s
−1
0−−−→ C0 in Db(A ) with a common denominator

X0

u

����
��

��
�� v

���
��

��
��

�

Y0

s0

����
��

��
��

f0

������������������������ Ut

		�����������������������
h

���
��

��
��

�

A0 C0



Systems of diagram categories and K-theory. II 647

Then there exists a complex X1 and a commutative diagram

A1
q←−−−− X1

g−−−−→ C1

a

�
�x

�c

A0
tv←−−−− X0

hv−−−−→ C0

(2)

representing the same morphism f s−1 in Db(A �1
). If f0, f1 are quasi-isomor-

phisms then so is g. Moreover, X1 can be chosen in such a way that x is a mono-
morphism in C .

Proof. Applying the preceding lemma first to the diagram

X0

s0u

��
tv

��

yu �� Y1

s1

��
A0

a �� A1

one obtains a diagram

X0

s0u

��
tv

��

p1 �� Y2

s1l1

��
q1

��
A0

a �� A1

and then to the diagram

X0

f0u

��
hv

��

p1 �� Y2

f1l1

��
C0

c �� C1

resulting a diagram

X0

f0u

��
hv

��

x �� X1

f1l1l2

��
g

��
C0

c �� C1

We put q = q1l2. The diagram (2) is constructed. It is equivalent to (1), hence rep-
resents the map f s−1 in Db(A �1

). The fact that the map g is a quasi-isomorphism
if f0, f1 are is obvious.

Finally, to show that X1 can be chosen in such a way that x is a monomorphism
in C it is enough to observe that any cochain map z : X0 −→ Y3 is the composite
X0

x−→ X1
w−→ Y3 of a monomorphism x followed by a quasi-isomorphism w

and X1 = Cyl(z). ��
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Let � be the poset �1 × �1 and let � ⊂ � be the subposet � \ (1, 1). Then
the exact diagram category A � consists of the diagrams in A

A(1,0)←− A(0,0) −→ A(0,1).

Let Ã � be the full subcategory in A � with A(0,0) −→ A(0,1) an admissible mono-
morphism. In turn, the exact diagram category A � consists of the commutative
squares

A(0,0)

��

�� A(0,1)

��
A(1,0)

�� A(1,1)

Denote by Ã � the full subcategory in A � with A(0,0) −→ A(0,1) and A(1,0) −→
A(1,1) admissible monomorphisms in A and the square above is cocartesian.

It follows that Ã � is an exact subcategory of A � and Ã � is an exact subcat-
egory of A �. Therefore one can consider their derived categories Db(Ã �) and
Db(Ã �). We claim that they are naturally equivalent. To see this, consider the
functor i∗� : Ã � −→ Ã � taking a square

A(0,0)

��

�� �� A(0,1)

��
A(1,0)

�� �� A(1,1)

to A(1,0) ← A(0,0) � A(0,1) as well as the functor j : Ã � −→ Ã � taking a
diagram A(1,0)← A(0,0) � A(0,1) to

A(0,0)

��

�� �� A(0,1)

��
A(1,0)

�� �� A(1,0)

∐
A(0,0)

A(0,1)

Then i∗� and j are exact functors and plainly mutual inverses with i∗�j = id. These
induce the desired equivalence of derived categories.

Corollary 2.3. Given two squares of cochain complexes

A(0,0)

A

��

�� �� A(0,1)

��
A(1,0)

�� �� A(1,1)

B(0,0)

B

��

�� �� B(0,1)

��
B(1,0)

�� �� B(1,1)

in Db(Ã �) and a morphism α : i∗� (A) −→ i∗� (B) in Db(Ã �), there exists a
unique map a : A −→ B such that i∗� (a) = α. If α is an isomorphism then so is a.
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3. The additivity theorem

In this section we prove a sort of the additivity theorem. It assumes the role of a basic
result in algebraic K-theory. We refer the reader to Staffeldt’s work [21]. The author
knows two proofs of that theorem for Waldhausen’s categories: by Waldhausen [25]
and by McCarthy [15]. We shall follow Waldhausen’s proof.

Waldhausen [24,25] constructs a simplicial exact category S.A = {SnA }n�0
in which the face and the degeneracy maps are exact functors. Let Ar �n be the
poset of pairs (i, j), 0 � i � j � n, where (i, j) � (i′, j ′) if and only if i � i′ and
j � j ′. An object of SnA is a functor A : Ar �n −→ A such that Aii = 0 and

Aij −→ Aik −→ Ajk

is a short exact sequence in A for any 0 � i � j � k � n. Observe (exercise!)
that a cochain map f : A −→ A′ in Cb(SnA ) is a quasi-isomorphism if and only
if each fij : Aij −→ A′ij is so in Cb(A ).

For any n � 1 the exact category SnA is equivalent to the exact category
Fn−1A of composable monomorphisms in A

A0 � A1 � · · ·� An−1.

This equivalence is given by the the exact functor forgetting quotients.
Denote by i.S.A the bisimplicial set

�m ×�n �−→ imSnA = imDb(SnA ).

The (m, n)-simplices are represented by the strings of isomorphisms in SnA =
Db(SnA )

A0
∼−→ A1

∼−→ · · · ∼−→ Am.

Note that every exact functor f : A −→ A ′ induces a simplicial map f∗ :
i.S.A −→ i.S.A ′. We also observe that coproduct gives a unitial and associative
H -space structure to |i.S.A | via the map

|i.S.A | × |i.S.A | ∼−→ |i.S.A × i.S.A |
∐
−→ |i.S.A |.

The category S0A is the trivial category with one object and one morphism.
Hence the geometric realization |i.S0A | is the one-point space. The category S1A
is isomorphic to the derived category Db(A ). Hence the category of isomorphisms
iS1A may be identified to iDb(A ).

Consider |i.S.A |. The “1-skeleton” in the S.-direction is obtained from the
“0-skeleton” (which is |i.S0A |) by attaching of |i.S1A | × |�[1]| (where |�[1]|
denotes the topological space 1-simplex). It follows that the “1-skeleton” is nat-
urally isomorphic to the suspension S1 ∧ |i.Db(A )|. One obtains an inclusion
S1 ∧ |i.Db(A )| −→ |i.S.A |, and by adjointness an inclusion of |i.Db(A )| into
the loop space of |i.S.A |,

|i.Db(A )| −→ �|i.S.A |.
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We can apply the S.-construction to produce a bisimplicial category, S.S.A =
Db(S.S.A ), and more generally a multisimplicial category, S.nA = Db(S.nA ).
There results a spectrum

n �−→ |i.S.nA |
whose structure maps are defined as the map |i.Db(A )| −→ �|i.S.A | above.

It turns out that the spectrum is a �-spectrum beyond the first term (the addi-
tivity theorem is needed to show this, below). As the spectrum is connective (the
nth term is (n− 1)-connected) an equivalent assertion is that in the sequence

|i.Db(A )| −→ �|i.S.A | −→ ��|i.S.S.A | −→ · · ·
all maps except the first are homotopy equivalences.

Let A be an exact category and let E be its extension category. There are three
natural simplicial maps s∗, t∗, q∗ : i.S.E −→ i.S.A induced by s, t, q : E −→ A
that take a short exact sequence

A �� �� C �� �� B

to A, C and B respectively.

Theorem 3.1 (Additivity). Let A be an exact category and let E be its extension
category. Then the map

i.S.E
(s∗,q∗)−−−→ i.S.A × i.S.A

is a homotopy equivalence.

Before proving the theorem we recall the reader certain simplicial facts.

Lemma 3.2 ([20]). Let X.. −→ Y.. be a map of bisimplicial sets. Suppose that for
every n, the map X.n −→ Y.n is a homotopy equivalence. Then X.. −→ Y.. is a
homotopy equivalence.

Lemma 3.3 ([24]). Let X.. −→ Y.. −→ Z.. be a sequence of bisimplicial sets so
that X.. −→ Z.. is constant. Suppose that X.n −→ Y.n −→ Z.n is a fibration up
to homotopy, for every n. We also require a compatibility with n. Suppose further
that Z.n is connected for every n. Then X.. −→ Y.. −→ Z.. is a fibration up to
homotopy.

Let�[n] denote the simplicial set standardn-simplex,�m �−→Hom�(�m,�n).
Let f : X −→ Y be a map of simplicial sets and let y be a n-simplex of Y . Define
a simplicial set f/(n, y) as the pullback

f/(n, y) −−−−→ X�
�f

�[n]
y−−−−→ Y.

Lemma B ([25]). If for every u : �m −→ �n, and every y ∈ Yn, the induced
map from f/(m, u∗y) to f/(n, y) is a homotopy equivalence then for every (n, y)

the pullback diagram above is homotopy cartesian.
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Lemma 3.4. For every k � 0, the map f : ikS.E −→ ikS.A sending a string E to
the string A = A0

∼−→ A1
∼−→ · · · ∼−→ Ak satisfies the hypothesis of Lemma B.

By Lemma B we obtain a homotopy fibration f/(n, A) −→ ikS.E −→ ikS.A
for every simplex A of ikS.A . In particular the sequence f/(0, 0) −→ ikS.E −→
ikS.A is a homotopy fibration for the unique 0-simplex. The term f/(0, 0) can be
identified to the simplicial set ikS.E ′ consisting of the strings E ∈ ikS.E such that
Aj = 0 and Cj −→ Bj , j � k, is an isomorphism. The latter simplicial set is
homotopy equivalent to ikS.A by the sublemma below via the exact equivalence
E ∈ E ′ −→ B ∈ A . The simplicial set ikS.A is connected and therefore the
sequence

i.S.A
g−→ i.S.E

f−→ i.S.A

with B
g�−→ 0 � B � B is a fibration by Lemma 3.3.

Finally, consider a morphism of the latter fibration sequence to the trivial prod-
uct fibration sequence,

i.S.A −−−−→ i.S.E −−−−→ i.S.A

id

�
�(s,q)

�id

i.S.A −−−−→ i.S.A × i.S.A −−−−→ i.S.A .

The map is a homotopy equivalence on the fibre and on the base, and hence is so
on the total spaces. Thus Lemma 3.4 implies the additivity theorem.

Let C and D be two simplicial objects in a category C and let �/�1 denote
the category of objects over �1 in �; the objects are the maps �n −→ �1. For
any simplicial object C in C let C∗ denote the composed functor

(�/�1)op −→ �op C−→ C

(�n −→ �1) �−→ �n �−→ Cn.

Then a simplicial homotopy of maps from C to D is a natural transformation
C∗ −→ D∗ [25, p. 335].

Sublemma. Let A and A ′ be two exact categories. Then an isomorphism between
two exact functors f, g : A −→ A ′ induces a homotopy between f∗ and g∗ :
ikS.A −→ ikS.A ′ for every k � 0. In particular, every exact equivalence A −→
A ′ induces a homotopy equivalence ikS.A −→ ikS.A ′.

Proof. The proof is similar to that of [25, 1.4.1]. ��
Proof of Lemma 3.4. To simplify the notation the maps Ar �m −→ Ar �n induced
by the maps u : �m −→ �n we denote by the same letter. We must show that
for every A′ ∈ ikSnA and u : �m −→ �n in �, the map u∗ : f/(m, u∗A′) −→
f/(n, A′) is a homotopy equivalence. Since there are maps v : �0 −→ �n and
w : �0 −→ �m such that uw = v, it suffices to consider the special class of maps
�0 −→ �n. Indeed, if we proved that both v∗ and w∗ are homotopy equivalences,
then it would follow that u∗ is a homotopy equivalence, too.
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So we must prove the following special case: let A′ be a n-simplex of ikS.A ,
for some n, and let vi : �0 −→ �n be the map taking 0 to i. Then for every i the
map

vi∗ : f/(0, 0) −→ f/(n, A′)

is a homotopy equivalence.
A m-simplex of f/(n, A′) consists of a m-simplex E of ikSmE together with

a map u : Ar �m −→ Ar �n such that u∗A′ = E(0,0). The map sending E to
E(1,1) induces a map p : f/(n, A′) −→ ikS.A . It will suffice to show that p is a
homotopy equivalence. Indeed, p is left inverse to the composed map

ikS.A
β∗−→ f/(0, 0)

vi∗−→ f/(n, A),

therefore if p is a homotopy equivalence then so is vi∗β and hence also vi∗, since
the map β taking B to 0 � B � B is a homotopy equivalence by the sublemma
above. This implies vi∗ is a homotopy equivalence, too. To prove that p is a ho-
motopy equivalence, it suffices to show that the particular map vn∗ is a homotopy
equivalence, because pvn∗β = 1.

We shall construct the homotopy by lifting the simplicial homotopy that con-
tracts �[n] to its last vertex. This simplicial homotopy is given by a map of the
composed functors

(�/�1)op −→ �op −→ Sets

(�m −→ �1) �−→ �m �−→ Hom�(�m, �n)

to itself. Precisely, the functor takes v : �m −→ �1 to

(u : �m −→ �n) �−→ (ū : �m −→ �n)

where ū is defined as the composite

�m (u,v)−−→ �n ×�1 w−→ �n

and where w(j, 0) = j and w(j, 1) = n.
A lifting of this homotopy to one on f/(n, A′) is a map taking v : �m −→ �1

to
(E, u) −→ (Ē, ū)

with Ē(0,0) = ū∗A′. We shall depict the elements of ikSmE as diagrams

A0
��

��

a1 �� A1
��

��

a2 �� · · · ak �� Ak
��

��
C0

����

c1 �� C1

����

c2 �� · · · ck �� Ck

����
B0

b1 �� B1
b2 �� · · · bk �� Bk
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with Ai = u∗A′i , ai = u∗(a′i : A′i−1 −→ A′i ), and (ai, ci, bi) : Ei−1 −→ Ei iso-
morphisms in Db(SmE ), i � k. Each vertical map is represented by a commutative
diagram

Ai−1 �� �� Ci−1 �� �� Bi−1

Yi
�� ��

si





ti

��

Zi
�� ��

s′i





t ′i
��

Wi

s′′i





t ′′i
��

Ai
�� �� Ci

�� �� Bi

in Cb(SmA ) with the vertical maps quasi-isomorphisms and tis
−1
i = ai .

Since u � ū by construction, it follows that there is a bimorphism ϕ : u −→ ū.
This bimorphism is actually unique, because we deal with maps of posets. This
yields a map ϕ∗Ai

: Ai −→ Āi for every i where Āi = ū∗A′i . By assumption,
each morphism ai : Ai−1 −→ Ai equals to u∗(a′i ) where a′i : A′i−1 −→ A′i is an
isomorphism in Db(SnA ) represented by the equivalence class of a diagram

A′i−1

p′i←− X′i
q ′i−→ A′i

with p′i , q
′
i quasi-isomorphisms in Cb(SnA ). Then ai = qip

−1
i where pi = u∗(p′i )

and qi = u∗(q ′i ).
There is a common denominator

Vi

ui

����
��

��
�

vi

���
��

��
��

�

Yi

si

����
��

��
��

ti

������������������������ Xipi

		����������������������
qi

���
��

��
��

�

Ai−1 Ai

(3)

By Lemma 2.2 there exists a complex Ui ∈ Cb(SmA ) and a commutative diagram

Ci−1 Ui
σi�� τi �� Ci

Ai−1









Vipivi

��




xi





qivi

��
Ai









representing the same morphism in Db([SmA ]�
1
)

Ci−1 Zi

s′i��
t ′i �� Ci

Ai−1









Yisi
��









ti
��
Ai







 (4)
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Let āi : Āi−1 −→ Āi be the map represented by the equivalence class of the
diagram

Āi−1
p̄i←− X̄i = ū∗X′i

q̄i−→ Āi

with p̄i = ū∗(p′i ), q̄i = ū∗(q ′i ). Then āi is an isomorphism since a′i is so.
We obtain a commutative diagram

Ci−1 Ui
σi�� τi �� Ci

Ai−1









ϕ∗Ai−1
��

Vipivi

��




xi





ϕ∗Xi
vi

��

qivi

��
Ai









ϕ∗Ai

��
Āi−1 X̄ip̄i

��
q̄i

�� Āi

(5)

giving an isomorphism (āi , ai, ci) in Db( ˜[SmA ]�).

Sublemma. The map (āi , ai, ci) represented by diagram (5) is well defined that is
it does not depend on:

(1) the choice of a common denominator (3);
(2) the choice of a representative for (ai, ci, bi) : Ei−1 −→ Ei;
(3) the choice of a representative for a′i : A′i−1 −→ A′i .

Proof. Let us check (1). Suppose we are given the following diagram.

Vi

ui

����
��

��
�� vi



															 V ′i
wi

��















zi

���
��

��
��

Yi

si

����
��

��
��

ti

�������������������������������� Xipi

��������������������������������
qi

���
��

��
��

�

Ai−1 Ai

We have to show that

Ci−1 Ui
σi�� τi �� Ci

Ai−1









ϕ∗Ai−1
��

Vipivi

��




xi





ϕ∗Xi
vi

��

qivi

��
Ai









ϕ∗Ai

��
Āi−1 X̄ip̄i

��
q̄i

�� Āi

is equivalent to Ci−1 U ′i
σ ′i��

τ ′i �� Ci

Ai−1









ϕ∗Ai−1
��

V ′ipizi

��




x′i





ϕ∗Xi
zi

��

qizi

��
Ai









ϕ∗Ai

��
Āi−1 X̄ip̄i

��
q̄i

�� Āi

(6)
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By Lemma 2.2 there is a common denominator

U ′′i
li

����
��

��
�� fi

���
��

��
��

Ui

σi

����
��

��
��

�
τi

��

U ′iσ ′i

		

τ ′i

��















Ci−1 V ′′i
ci

����
��

��
��



 x
′′
i





di

��














Ci

Vi

pivi

����
��

��
��

�





xi





qivi

��

V ′ipizi

		





x′i





qizi

��















Ai−1









Ai









Fix homotopies (en, gn) : (V
′′n
i

x′′i−→ U
′′n
i ) −→ (An−1

i−1 −→ Cn−1
i−1 ) and (hn, mn) :

(V
′′n
i

x′′i−→ U
′′n
i ) −→ (An−1

i −→ Cn−1
i ) for (pivici, σi li) ∼ (pizidi, σ

′
i fi) and

(qivici, τi li ) ∼ (qizidi, τ
′
i fi) respectively. The latter diagram fits into the diagram

U ′′i
li

����
��

��
�� fi

���
��

��
��

Ui

σi

����
��

��
��

�
τi

��

U ′iσ ′i

		

τ ′i

��















Ci−1 V ′′i
ci

����
��

��
��



 x
′′
i





id

��

di

��














Ci

Vi

pivi

����
��

��
��

�





xi





ϕ∗Xi
vi

��

qivi

��

V ′ipizi

		





x′i





ϕ∗Xi
zi

��

qizi

��















Ai−1









ϕ∗Ai−1

��

V ′′iϕ∗Xi
vici

����
��

��
��

ϕ∗Xi
zidi

���
��

��
��

� Ai









ϕ∗Ai

��

X̄i

p̄i

����
��

��
��

q̄i

������������������������� X̄ip̄i

		�����������������������
q̄i

���
��

��
��

Āi−1 Āi

(7)
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We want to show that this diagram is a common denominator for (6). Put
kn = ϕ∗n−1

Ai−1
◦ en : V

′′n −→ Ān−1
i−1 . Then

p̄iϕ
∗
Xi

vici − p̄iϕ
∗
Xi

zidi = ϕ∗Ai−1
pivici − ϕ∗Ai−1

pizidi =

= ϕ∗Ai−1
e∂ + ϕ∗Ai−1

∂e = k∂ + ∂ϕ∗Ai−1
e = k∂ + ∂k.

This shows that (σi li , pivici, p̄iϕ
∗
Xi

vici)
(g,e,k)∼ (σ ′i fi, pizidi, p̄iϕ

∗
Xi

zidi). A ho-
motopy between (τi li , qivici, q̄iϕ

∗
Xi

vici) and (τ ′i fi, qizidi, q̄iϕ
∗
Xi

zidi) is similarly
checked.

Let us check (2). Suppose

Ci−1 Z′i
α′i��

β ′i �� Ci

Ai−1









Y ′iαi

��








βi

��
Ai









is equivalent to (4). There is a homotopy commutative diagram

Vi

ui

����
��

��
��

�
vi

���
��

��
��

� V ′i
zi

����
��

��
�� wi

���
��

��
��

�

Yi

si

��

ti

���������������������������������� Xipi

����������������� qi



															 Y ′iαi

��������������������������������

βi

��
Ai−1 Ai

We have to show that

Ci−1 Ui
σi�� τi �� Ci

Ai−1









ϕ∗Ai−1
��

Vipivi

��




xi





ϕ∗Xi
vi

��

qivi

��
Ai









ϕ∗Ai

��
Āi−1 X̄ip̄i

��
q̄i

�� Āi

is equivalent to Ci−1 U ′i
σ ′i��

τ ′i �� Ci

Ai−1









ϕ∗Ai−1
��

V ′ipizi

��




x′i





ϕ∗Xi
zi

��

qizi

��
Ai









ϕ∗Ai

��
Āi−1 X̄ip̄i

��
q̄i

�� Āi

(8)
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It follows from Lemma 2.2 and our assumption that

Ci−1 Ui

σi�� τi �� Ci

Ai−1









Vipivi

��




xi





qivi

��
Ai







 is equivalent to Ci−1 Zi
�� �� Ci

Ai−1









Yisi

��








ti

��
Ai







 is equivalent to

Ci−1 Z′i�� �� Ci

Ai−1









Y ′iαi

��








βi

��
Ai







 is equivalent to Ci−1 U ′i�� �� Ci

Ai−1









V ′ipi zi

��




x′
i





qi zi

��
Ai









One can now construct the diagram (7) yielding a common denominator for (8).
This implies (2). It remains to check (3).

Let A′i−1

r ′i←− W ′i
n′i−→ A′i be another representative for a′i . There is a homotopy

commutative diagram

Vi

vi

����
��

��
�� ui

���
��

��
��

� V ′i
wi

����
��

��
�

zi

���
��

��
��

�

Xi

pi

��

qi

��������������������������������� Yisi

����������������� ti



��������������� Wiri

��������������������������������

ni

��
Ai−1 Ai

with ri = u∗(r ′i ), ni = u∗(n′i ). We have to show that

Ci−1 Ui
σi�� τi �� Ci

Ai−1




(I)





ϕ∗Ai−1
��

Vipivi

��




xi





ϕ∗Xi
vi

��

qivi

��
Ai









ϕ∗Ai

��
Āi−1 X̄ip̄i

��
q̄i

�� Āi

is equivalent to Ci−1 U ′i
σ ′i��

τ ′i �� Ci

Ai−1




(II)





ϕ∗Ai−1
��

V ′iri zi

��




x′i





ϕ∗Xi
zi

��

nizi

��
Ai









ϕ∗Ai

��
Āi−1 X̄ir̄i

��
n̄i

�� Āi
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There are common denominators in Cb(SnA ) and in Cb(SmA ), respectively.

T ′
i

f ′
i

����
��

��
�

g′
i

���
��

��
��

X′
i

p′
i

����
��

��
��

q′
i

����������������������� W ′
ir′

i

		���������������������
n′
i

���
��

��
��

A′
i−1 A′

i

V ′′
i

ci

����
��

��
��

��
��

��
��

�
di

���
��

��
��

Ti

fi

����
��

��
�

gi

���
��

��
��

Yi

si

��

ti

������������������������������ Xipi

��












 qi



														 Wiri

�����������������������������

ni

��
Ai−1 Ai

It follows from (1) that

(I) ∼ Ci−1 Ei
πi�� ρi �� Ci

Ai−1




(III)





ϕ∗Ai−1
��

V ′′ipifidi

��




κi





ϕ∗Xi
fidi

��

qifidi

��
Ai









ϕ∗Ai

��
Āi−1 X̄ip̄i

��
q̄i

�� Āi

and (II) ∼ Ci−1 E′i
π ′i��

ρ′i �� Ci

Ai−1




(IV)





ϕ∗Ai−1
��

V ′′irigidi

��




κ
′
i





ϕ∗Wi
gidi

��

nigidi

��
Ai









ϕ∗Ai

��
Āi−1 W̄ir̄i

��
n̄i

�� Āi

Since ϕ∗Xi
fi = f̄iϕ

∗
Ti

and ϕ∗Wi
gi = ḡiϕ

∗
Ti

, it follows that

(III) ∼ Ci−1 Ei

πi�� ρi �� Ci

Ai−1




(V)





ϕ∗
Ai−1

��

V ′′ipifidi

��




κi





ϕ∗
Ti

di

��

qifidi

��
Ai









ϕ∗
Ai

��
Āi−1 T̄i

p̄i f̄i

��
q̄i f̄i

�� Āi

and (IV) ∼ Ci−1 E′i
π ′

i��
ρ′
i �� Ci

Ai−1




(VI)





ϕ∗
Ai−1

��

V ′′iri gidi

��




κ
′
i





ϕ∗
Ti

di

��

nigidi

��
Ai









ϕ∗
Ai

��
Āi−1 T̄ir̄i ḡi

��
n̄i ḡi

�� Āi

Fix homotopies p′if
′
i

k′∼ r ′ig
′
i , n
′
ig
′
i

e′∼ q ′if
′
i . Then (k, e) = (u∗(k′), u∗(e′)) and

(k̄, ē) = (ū∗(k′), ū∗(e′)) give homotopies pifi
k∼ rigi, nigi

e∼ qifi and p̄i f̄i
k̄∼

r̄i ḡi , n̄i ḡi
ē∼ q̄i f̄i . The proof of Lemma 2.2 shows that (V) can be embedded into

the diagram
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E′′i
li

����
��

��
�� 1

���
��

��
��

Ei

πi

����
��

��
��

�
ρi

��

E′′iδi

		

γi

���
��

��
��

�

Ci−1 V ′′i
1

����
��

��
�



 κ
′′
i





ϕ∗Ti
di

��

1

��












Ci

V ′′ipifidi

����
��

��
��

�





κi





ϕ∗Ti
di

��

qifidi

��

V ′′irigidi

		





κ
′′
i





ϕ∗Ti
di

��

nigidi

��












Ai−1









ϕ∗Ai−1

��

T̄i

1

����
��

��
�� 1

���
��

��
��

� Ai









ϕ∗Ai

��

T̄i

p̄i f̄i

����
��

��
��

q̄i f̄i

�������������������������� T̄ir̄i ḡi

		������������������������
n̄i ḡi

���
��

��
��

�

Āi−1 Āi

in such a way that the upper “roof” is a common denominator with homotopies

(pifidi, πi li)
(kdi ,h)∼ (rigidi, δi) and (nigidi, γi)

(edi ,�)∼ (qifidi, ρi li). We have ho-

motopies (p̄i f̄i , pifidi, πi li)
(k̄,kdi ,h)∼ (r̄i ḡi , rigidi, δi) and (n̄i ḡi , nigidi, γi)

(ē,edi ,�)∼
(q̄i f̄i , qifidi, ρi li) showing that

Ci−1 Ei
πi�� ρi �� Ci

Ai−1




(V)





ϕ∗Ai−1
��

V ′′ipifidi

��




κi





ϕ∗Ti
di

��

qifidi

��
Ai









ϕ∗Ai

��
Āi−1 T̄i

p̄i f̄i

��
q̄i f̄i

�� Āi

is equivalent to Ci−1 E′′i
δi�� γi �� Ci

Ai−1




(VII)





ϕ∗Ai−1
��

V ′′irigidi

��




κ
′′
i





ϕ∗Ti
di

��

nigidi

��
Ai









ϕ∗Ai

��
Āi−1 T̄ir̄i ḡi

��
n̄i ḡi

�� Āi

The proof of (1) shows that (VI) ∼ (VII), hence (I) ∼ (III) ∼ (V) ∼ (VII) ∼
(VI) ∼ (IV) ∼ (II) as required. ��

For every i � k, we can construct a pushout diagram in Cb(SmA )

Ai
�� ��

ϕ∗
��

Ci
�� ��

��

Bi

Āi
�� �� C̄i

�� �� B̄i

(9)
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The diagrams (5) give a string of isomorphisms in Db( ˜[SmA ]�)

C0
c1 �� C1

c2 �� · · · ck �� Ck

A0









ϕ∗

��

a1 ��
A1









ϕ∗

��

a2 �� · · · ak ��
Ak









ϕ∗

��
Ā0

ā1 �� Ā1
ā2 �� · · · āk �� Āk

By Corollary 2.3 one can fit it into a string of isomorphisms in Db( ˜[SmA ]�)

C0
c1 ��

��

C1

��

c2 ��

��

C2

��

c3 ��

��

· · · ck �� Ck

��
A0

��
�����

��

��

A1

��
�����

��

�����
��

��

A2

��
�����

��

�����
��

��

· · · �� Ak

��
�����

��
C̄0 c̄1

�� C̄1 c̄2

�� C̄2 c̄3

�� · · ·
c̄k

�� C̄k

Ā0 ā1

��
��
�����

Ā1

��
�����

ā2

�� Ā2

��
�����

ā3

�� · · ·
āk

�� Āk

��
�����

Finally, we consider the diagram constructed as above

C̄0
c̄1 ��

����

C̄1

����

c̄2 ��

����

C̄2

����

c̄3 ��

����

· · · c̄k �� C̄k

����
Ā0

��
�����

��

��

Ā1

��
�����

��

�����
��

��

Ā2

��
�����

��

�����
��

��

· · · �� Āk

��
�����

��

B̄0
b̄1

�� B̄1
b̄2

�� B̄2
b̄3

�� · · ·
b̄k

�� B̄k

0 ��

�����
0

�����
�� 0

�����
�� · · · �� 0

�����

Construction of the simplex (Ē, ū) is completed. It is given by the diagram

Ā0
��

��

ā1 �� Ā1
��

��

ā2 �� · · · āk �� Āk
��

��
C̄0

����

c̄1 �� C̄1

����

c̄2 �� · · · c̄k �� C̄k

����
B̄0

b̄1 �� B̄1
b̄2 �� · · · b̄k �� B̄k

with Āi = ū∗A′i and (āi , c̄i , b̄i ) : Ēi−1 −→ Ēi isomorphisms in Db(SmE ), i � k.
We have to verify that the construction of the simplex (Ē, ū) is compatible

with the structure maps of the category �/�1; that is, if we replace �m by �m′
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throughout, by means of some map �m′ −→ �m, then the strucure map in ikS.E
induced by �m′ −→ �m takes one simplex to the other.

To see this, we repeat the steps of the construction. The first step was the defi-
nition of the map ϕ∗ : A −→ Ā. The definition is compatible with structure maps
because the bimorphism ϕ : u −→ ū is uniquely defined.

The second step was the choice of pushout diagrams (9). But this choice is made
in C = Cb(A ), and an element of SmC is a certain diagram in C on which the
simplicial structure maps in S.C operate by omission and/or reduplicating of data.
So again there is the required compatibility.

The third step was construction of the isomorphisms (āi , c̄i , b̄i ) : Ēi−1 −→ Ēi .
The desired compatibility follows from the fact that the maps (āi , ai, ci) represented
by diagrams (5) are well defined.

With an extra care one can arrange the choices so that the homotopy starts from
the identity map (namely if A −→ Ā is an identity map we insist that C −→ C̄

is also an identity map); and that the image of vn∗j∗ is fixed under the homotopy
(namely if Ā = 0 we insist that C̄ −→ B̄ is the identity map on B̄). We have now
constructed the desired homotopy. This completes the proof. ��

Now we discuss some immediate consequences of the additivity theorem. Let A
and A ′ be two exact categories. By an exact sequence of exact functors A −→ A ′
is meant a sequence of natural transformations F ′ −→ F −→ F ′′ such that for
every A ∈ A the sequence F ′(A) −→ F(A) −→ F ′′(A) is exact in A ′.

If A ′, A ′′ are fully exact subcategories of an exact category A by E (A ′,
A , A ′′) denote the exact subcategory of the exact extension category E = E (A )

with the source and target entries in A ′ and A ′′ respectively.

Proposition 3.5 (Equivalent formulations of the additivity theorem). Each of the
following conditions is equivalent to the additivity theorem (Theorem 3.1).

(1) The following projection is a homotopy equivalence,

i.S.E (A ′, A , A ′′) −→ i.S.A ′ × i.S.A ′′, A � C � B �−→ (A, B).

(2) The following two maps are homotopic,

i.S.E −→ i.S.A , A � C � B �−→ C, respectively A⊕ B.

(3) If F ′ −→ F −→ F ′′ is an exact sequence of exact functors A −→ A ′ then
there exists a homotopy

|i.S.F | � |i.S.F ′| ∨ |i.S.F ′′|.
Proof. The proof is similar to that of [25, 1.3.2]. ��

If F : A −→ C and G : B −→ C be two arbitrary functors with common
codomain, the fibre product

∏
(F, G) is defined as the category of triples

(A, c, B), A ∈ A , B ∈ B, c : F(A) −→ G(B) is an isomorphism.

This is equivalent to the pullback category in special cases, for example if one of
F and G is a retraction, but not in general. It follows from [24, p. 180] that if
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F and G are exact functors then
∏

(F, G) is an exact category in a natural way,
and the projections to A and B are exact functors. This is directly extended to
the definition of the fibred product for simplicial exact functors of simplicial exact
categories.

Let B be an exact category and P(S.B) be the path space for the simpli-
cial exact category S.B. One has the simplicial map ∂0 : P(S.B) −→ S.B.
Let F : A −→ B be an exact functor with A an exact category. Denote by
S.(A −→ B) the fibred product of the diagram

S.A
F−→ S.B

∂0←− P(S.B).

Each Sn(A −→ B), n � 0, consists of the triples

(A, c, B), A ∈ SnA , B ∈ Sn+1B, c : FA
∼−→ ∂0B.

It is an exact category by above.
Considering B as a simplicial category in a trivial way we have an inclusion

B −→ P(S.B) whose composition with the projection to S.B is trivial. Lifting
this inclusion to S.(A −→ B), and combining with the other projection, we then
obtain a sequence

Db(B) −→ S.(A −→ B) −→ S.A

in which S.(A −→ B) = Db(S.(A −→ B)) and the composed map is trivial.

Proposition 3.6. The sequence

i.S.B −→ i.S.S.(A −→ B) −→ i.S.S.A ,

in which S.S.(A −→ B) = Db(S.(S.A −→ S.B)) is a fibration up to homotopy.

Proof. The proof is similar to that of [25, 1.5.5]. ��
Similarly, there is a sequence

i.S.B −→ P(i.S.S.B) −→ i.S.S.B

where the “P ” refers to the first S.-direction, say. As a special case of the preceding
proposition this sequence is a fibration up to homotopy.

Thus |i.S.B| −→ �|i.S.S.B| is a homotopy equivalence and more generally,
in view of Lemma 3.2, also the map |i.S.nB| −→ �|i.S.n+1B| for every n � 1,
proving the postponed claim that the spectrum n �−→ |i.S.nB| is a �-spectrum
beyond the first term.

Corollary 3.7. Suppose we are given a sequence A −→ B −→ C of exact func-
tors between exact categories. Then the square

i.S.B −−−−→ i.S.S.(A −→ B)�
�

i.S.C −−−−→ i.S.S.(A −→ C )

is homotopy cartesian.
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Proof. See [25, 1.5.6]. ��

Corollary 3.8. The following two assertions are valid.

(1) To an exact functor there is associated a fibration

i.S.B −→ i.S.C −→ i.S.S.(B −→ C ).

(2) If C is a retract of B (by exact functors) there is a splitting

i.S.B � i.S.C × i.S.S.(C −→ B).

Proof. [25, 1.5.7, 1.5.8]. ��

By a nice complicial biWaldhausen category C formed from the category of
complexes Cb(B) with B an abelian category will be meant a complicial biWald-
hausen category in the sense of Thomason [22] which is closed under the formation
of canonical homotopy pushouts and canonical homotopy pullbacks. For example,
let A be an exact category and A −→ B be the Gabriel-Quillen embedding [22,
Appendix A]. Then Cb(A ) is a nice complicial biWaldhausen category formed
from Cb(B).

It is directly verified that for any n the category SnC is a nice complicial bi-
Waldhausen category which is formed from the category of complexes Cb(BAr �n

)

with BAr �n
the abelian functor category Hom(Ar �n, B). The relevant subcat-

egories of bifibrations and weak equivalences are defined componentwise. In a
similar way, given a small category I the diagram category C I . is a nice complicial
biWaldhausen category. There results a simplicial nice complicial biWaldhausen
category

S. : �n �−→ SnC .

Let w−1C denote the derived category obtained from C by inverting weak equi-
valences. It is canonically triangulated and the homotopy category C / � admits
both left and right calculus of fractions [22, p. 269]. One obtains the following
bisimplicial object

i.S. : �m ×�n �−→ imw−1SnC .

Denote by E (C ) the extension category of C . Then the proof of the following
statement is similar to complexes (all tricks of paragraph 2.3 are also valid for this
case).

Corollary 3.9. Let C be a nice complicial biWaldhausen category. Then the map

i.S.E (C )
(s∗,q∗)−−−→ i.S.C × i.S.C

is a homotopy equivalence.
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4. Dérivateurs associated to complicial biWaldhausen categories

In this section we show that the additivity theorem is valid for dérivateurs associ-
ated to nice complicial biWaldhausen categories. Logically, one should now read
Addendum, and then return to this section.

Let C be a nice complicial biWaldhausen category. One of the most important
for applications dérivateurs (of the domain Dirf ) is given by the hyperfunctor

DC : I ∈ Dirf �−→ w−1C I

with w−1C I the derived category of the nice complicial biWaldhausen diagram
category C I . [1,12]. If C = Cb(A ) with A an exact category, the corresponding
dérivateur is denoted by Db(A ).

Definition. A left pointed dérivateur D of the domain Ord is represented by a
nice complicial biWaldhausen category C if there is a right exact equivalence
F : DC −→ D. This equivalence induces a homotopy equivalence of bisimplicial
sets F : i.S.DC −→ i.S.D. If C = Cb(A ) with A an exact category, we shall
say that D is represented by A .

Lemma 4.1. The inclusion FnC −→ C �n
induces an equivalence of derived cat-

egories w−1FnC
∼−→ w−1C �n

.

Proof. Since a map in FnC is a weak equivalence if and only if it is so in C �n
,

it suffices to show that given an object A = A0 −→ · · · −→ An in C �n
there is

a quasi-isomorphism from an object in FnC to A. Let us consider the following
diagram in C .

Here T (−) stands for the cylinder object of a morphism, the arrows labelled with
“∼” are weak equivalences, and all the squares of the diagram are commutative. This
diagram yields a weak equivalence from the object A0 � T a0 � · · ·� T an−1

0
of FnC to the object A0 −→· · · −→An of C �n

, whence the assertion. ��
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Lemma 4.2. If D is a dérivateur represented by a nice complicial biWaldhausen
category C , then SnD is represented by the nice complicial biWaldhausen category
SnC for all n.

Proof. The image of each cocartesian square in C with two parallel arrows cofibra-
tions is cocartesian in DC�. This yields a right exact morphism DSnC −→ SnDC .
Consider the commutative diagram of left pointed dérivateurs

DFn−1C −−−−→ DC (�n−1)

∼
�

�∼
DSnC −−−−→ SnDC

∼−−−−→ SnD

in which the morphisms marked with “∼” are right exact equivalences. The equiva-
lence on the left is induced by the equivalence SnC −→ Fn−1C and the equivalence
on the right is a consequence of [6, 3.1].

The upper arrow is an equivalence by Lemma 4.1. We see from the commutative
diagram above that DSnC −→ SnDC is a right exact equivalence. Therefore the
composed map DSnC −→ SnD produces a Waldhausen model for SnD. ��
Corollary 4.3. A natural map of bisimplicial sets i.S.C −→ i.S.DC is a homotopy
equivalence.

Proof. By the proof of the preceding lemma the functor w−1SnC −→ SnDC is
an equivalence of categories for every n. Lemma 3.2 implies the claim. ��

Let E denote the extension category of C .

Corollary 4.4. If D has a Waldhausen model then so does E = E(D).

Proof. It is enough to consider the commutative diagram

DS2C
∼−−−−→ S2D

∼
�

�∼
DE −−−−→ E

in which the left arrow is a right exact equivalence by the exact equivalence of S2 C
and E , the upper arrow is a right exact equivalence by the preceding lemma, and
the right arrow is a right exact equivalence by [6, 6.2]. ��

There are three natural right exact maps s, t, q : E −→ D taking E to E(0,0),
E(0,1) and E(1,1) respectively. The following result states that the additivity theorem
holds for dérivateurs represented by nice complicial biWaldhausen categories.

Theorem 4.5. Let D be a dérivateur represented by a nice complicial biWaldhausen
category. Then the map

i.S.E
(s∗,q∗)−−−→ i.S.D× i.S.D

is a homotopy equivalence.
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Proof. Let DC
∼−→ D be a Waldhausen model for D and let E be the extension

category of C . By Corollary 4.4 DE
∼−→ E is a Waldhausen model for E. Consider

the following commutative diagram

i.S.E
(s∗,q∗)−−−−→ i.S.C × i.S.C�

�
i.S.DE

(s∗,q∗)−−−−→ i.S.DC × i.S.DC�
�

i.S.E
(s∗,q∗)−−−−→ i.S.D× i.S.D.

The vertical arrows are homotopy equivalences. By Corollary 3.9 the map i.S.E−→
i.S.C × i.S.C is a homotopy equivalence. This implies the claim. ��

Let D be a dérivateur represented by a nice complicial biWaldhausen category.
We can apply the S.-construction to each SnD, obtaining a bisimplicial left pointed
dérivateur represented by a nice complicial biWaldhausen category. Iterating this
construction, we can form the multisimplicial object S.nD = S.S. · · ·S.D and the
multisimplicial categories iS.nD of isomorphisms. The assertion below shows that
|i.S.nD| is the loop space of |i.S.n+1D| for any n � 1 and that the sequence

�|i.S.D|, �|i.S.S.D|, . . . , �|i.S.nD|, . . .
forms a connective �-spectrum KD (see the definition of the structure maps in [6]).
In this case, one can think of the K-theory of D in terms of this spectrum. This does
not affect the K-groups, because:

πi(KD) = πi(K(D)) = Ki(D), i � 0.

Corollary 4.6. Let D be a dérivateur represented by a nice complicial biWaldhau-
sen category. Then

n �−→ i.S.nD

is a �-spectrum beyond the first term. In particular, the K-theory of D can equiv-
alently be defined as the space

�∞|i.S.∞D| = lim
n

�n|i.S.nD|.

Proof. For every n � 0, it follows from Lemma 4.2 that SnD is a dérivateur rep-
resented by a nice complicial biWaldhausen category. By Theorem 4.5 the class
of such dérivateurs satisfies the addivity theorem. The claim now follows from [6,
section 6]. ��

Let us say a few words what thing goes wrong when conforming Waldhau-
sen’s [25] or McCarthy’s [15] proof of additivity — in fact, both have the same
complexity — to dérivateurs (or systems of diagram categories).
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The first step is to show that additivity follows from the fact that for any Wald-
hausen category C the map

s.E (C ) −→ s.C × s.C

with s.C = Ob S.C is a homotopy equivalence (just apply the same map to the
Waldhausen category wnC , n � 0, of strings of weak equivalences and then apply
Lemma 3.2). The same applies to left pointed dérivateurs: it suffices to show that
for any left pointed dérivateur D the map

s.E(D) −→ s.D× s.D

with s.D = Ob S.D is a homotopy equivalence. This is because the hyperfunctor
I �−→ inDI taking an index category to the category of strings of isomorphisms is
a left pointed dérivateur, too.

The second step consists of choices of pushouts (we neglect quotients here). Pre-
cisely, we are given two maps with common source f : A −→ C and ϕ : A −→ Ā

and f a cofibration representing some simplex.Afterwards one constructs a pushout
square

A
f−−−−→ C

ϕ

�
�

Ā
f̄−−−−→ C̄

to get a simplex Ā � C̄ from the simplex A � C. However it is not immediately
clear that the same procedure applies to dérivateurs. Normally we are given, as
above, two objects X, Y in D�1 with common “source” X0 = Y0 and X some sim-
plex. To get a “new” simplex X̄ from X and Y in the same way one should construct
a cocartesian square whose projection on (0, 0) −→ (0, 1) is the X and that on
(1, 0) −→ (1, 1) is the X̄. It seems that dérivateurs do not have enough information
to do so. We were able to do that for dérivateurs represented by nice complicial
biWaldhausen categories by using certain tricks of paragraph 2.3, but it is not clear
how to construct the necessary homotopy for all (left pointed) dérivateurs basing
only on the known proofs of additivity for Waldhausen categories.

To conclude this section, we would like to invite experts to prove additivity for
dérivateurs represented by closed model categories. A similar technique used in
this paper should be applicable for this case as well.

5. The derived K-theory of an exact category

In this section we define the derived K-theory DK(A ) of an exact category A .
Though it is homotopy equivalent to the K-theory of its dérivateur Db(A ) it is
more convenient for practical reasons to deal with the space DK(A ) than with the
space K(Db(A )).
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Definition. The Algebraic DK-theory of an exact category A is defined as the
pointed space

DK(A ) = �|i.S.A |.
The DK-groups of A are the homotopy groups of DK(A )

DK∗(A ) = π∗(�|i.S.A |) = π∗+1(|i.S.A |).
Let (ExCats) denote the category of exact categories and exact functors. There

results a functor
DK : (ExCats) −→ (Spaces)

It follows from Corollary 4.3 that a natural map DK(A ) −→ K(Db(A )) is a
homotopy equivalence. Hence the DK-theories DK(A ) and DK(A ′) of exact cat-
egories A and A ′ are homotopy equivalent whenever K(Db(A )) and K(Db(A ′))
are. It also follows (see [6]) that DK0(A ) is isomorphic to the Grothendieck group
K0(A ).

We prove below some basic results about DK-theory. The first result is the
Additivity Theorem.

Theorem 5.1 (Additivity). Let A be an exact category and E its extension cate-
gory. Then the map

DK(s, q) : DK(E ) −→ DK(A )×DK(A )

is a homotopy equivalence. If F ′ −→ F −→ F ′′ is an exact sequence of exact
functors A −→ A ′ then there is a homotopy of maps

DK(F) � DK(F ′) ∨DK(F ′′) : DK(A ) −→ DK(A ′).

The DK-theory of A can equivalently be defined as the space

�∞|i.S.∞A | = lim
n

�n|i.S.nA |.

One can also think of the DK-theory in terms of the �-spectrum

�|i.S.A |, �|i.S.S.A |, . . . , �|i.S.nA |, . . .
Proof. These follow from results of section 3. ��

5.1. Approximation and resolution theorems

In this paragraph we prove a modified Approximation Theorem and Resolution
Theorem.

Theorem 5.2 (Approximation). Let A and A ′ be two exact categories and let wC
and wC ′ denote the Waldhausen categories of quasi-isomorphisms in C = Cb(A )

and in C ′ = Cb(A ′) respectively. Suppose further that F : wC −→ wC ′ is an
exact functor of Waldhausen categories such that it induces an equivalence of the
derived categories Db(A )

∼−→ Db(A ′). Then DK(A ) is homotopy equivalent
to DK(A ′). If F is induced by an exact functor f : A −→ A ′, this homotopy
equivalence is given by the induced map DK(f ) : DK(A ) −→ DK(A ′).
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We postpone the proof and first define some new concepts and prove certain
technical lemmas.

Definition. Under the notation of Theorem 5.2 we say that F has the approxima-
tion property (respectively h-approximation property) if it meets the axioms App1
and App2 below (respectively the axioms App1 and HApp2).

App1 A map in C is a quasi-isomorphism if and only if its image is a quasi-iso-
morphism in C ′.
App2 Any map f : FX −→ Y in C ′, X ∈ C , fits into a commutative diagram

FX
f−−−−→ Y

Fp

�
�s

FX′ t−−−−→ Y ′

in which p : X −→ X′ is a map in C and s, t are quasi-isomorphisms in C ′.
HApp2Any map f : FX −→ Y in C ′, X ∈ C , fits into a homotopy commutative
diagram

FX
f−−−−→ Y

Fp

�
�s

FX′ t−−−−→ Y ′

with s and t quasi-isomorphisms in C ′.

F has the dual approximation property (respectively dual h-approximation
property) if the axiom App1 and the dual axiom App2op obtained by reversing
the direction of arrows in App2 (respectively the axiom App1 and the dual ax-
iom HApp2op) are satisfied. These are a modification for the Waldhausen axioms
WApp1−WApp2 [25, p. 352].

The next statement is due to Cisinski [1]. In fact, he proves it in a more general
setting.

Proposition 5.3. Under the notation of Theorem 5.2 the following are equivalent:

(1) the functor F induces an equivalence of the derived categories Db(A ) −→
Db(A ′);
(2) the functor F has the approximation property;
(3) the functor F has the h-approximation property;
(2op) the functor F has the dual approximation property;
(3op) the functor F has the dual h-approximation property.

Proof. It is enough to show (1)⇐⇒ (2op)⇐⇒ (3op) (the equivalences (1)⇐⇒
(2)⇐⇒ (3) are dually proved).
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(2op) �⇒ (3op) is obvious. Let us show (3op) �⇒ (2op). Any arrow f : Y −→
FX can be fitted into the following diagram:

FX′′

F l��

Fg′

��

Y ′

h. comm.

t ′
��

s

��

t �� FX′

Fg

��
Y

f
�� FX

where the homotopy commutative square with the entries (Y ′, FX′, Y, FX) exists
by assumption, X′′ = Cocyl(g) and the square with the entries (Y ′, FX′′, Y, FX)

is commutative (see paragraph 2.3).
(1) �⇒ (3op). The axiom App1 is obvious. Check the axiom HApp2. Let

α : Y −→ FX be an arrow in C ′. There exists an isomorphism ts−1 : FX′ −→ Y

in Db(A ′) resulting a map FX′ −→ FX. Let this map be the image of a map

X′ −→ X in Db(A ) represented by a diagram X′
q←− X′′

f−→ X.
There is a common denominator

Y ′′
s′

����
��

��
�� f ′

���
��

��
��

�

U

s

����
��

��
��

αt

��������������������������� FX′′Fq

		����������������������
Ff

���
�������

FX′ FX

yielding a homotopy commutative square

Y ′′

h. comm.ts′
��

f ′ �� FX′′

Ff

��
Y α

�� FX

It remains thus to show (2op) �⇒ (1). Given an object Y ∈ Db(A ′) there is a
diagram

Y ′

s

��

t �� FX

��
Y �� 0

with s, t quasi-isomorphisms. We see that Db(A ) −→ Db(A ′) is essentially sur-
jective. Let us show that it is full.
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Let α : FX −→ FX′ be a map in Db(A ′) represented by a diagram FX
s←−

Y
f−→ FX′. There is a commutative diagram

Y ′
q−−−−→ FZ

t

�
�(Fu,Fv)t

Y
(s,f )t−−−−→ F(X ×X′)

with q, t quasi-isomorphisms. It follows that Fu is a quasi-isomorphism. We get a
denominator

Y ′
t

����
��

��
�

q

���
��

��
��

�

Y

s

����
��

��
��

f

������������������������� FZFu

		����������������������
Fv

���
�������

FX FX′

This shows that α is the image of vu−1 : X −→ X′.
To show that the functor in question is faithful we shall need the following

Sublemma. Let two maps u, v : X −→ Y in C be such that there is a quasi-iso-
morphism q : U −→ FX and Fu ◦ q and Fv ◦ q are homotopic in C ′. Then there
exists a quasi-isomorphism s : T ′ −→ X in C such that us is homotopic to vs.

Proof. Let Cocyl(Y ) denote the cocylinder of the map 1Y and write d0, d1 :
Cocyl(Y ) −→ Y for the natural projections. The map (d0, d1) : Cocyl(Y ) −→
Y × Y is an epimorphism in C . Construct a cartesian diagram

T
σ−−−−→ Cocyl(Y )

π

�
�(d0,d1)

X
(u,v)−−−−→ Y × Y.

Since Fu ◦ q, Fv ◦ q are homotopic, there is a map α : U −→ F [Cocyl(Y )] =
Cocyl(FY ) such that (Fd0, Fd1)◦α = (Fu, Fv)◦q. There results a commutative
diagram

U
α−−−−→ F [Cocyl(Y )]

q

�
�(Fd0,Fd1)

FX
(Fu,Fv)−−−−−→ FY.

There is a unique map v : U −→ FT such that F(σ) ◦ v = α and F(π) ◦ v = q.
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The map v fits into a commutative square

U ′ c−−−−→ FT ′

d

�
�Fδ

U
v−−−−→ FT

with c, d quasi-isomorphisms. We see that F(πδ)◦c = qd is a quasi-isomorphism,
and so is F(πδ). By App1 the map πδ is a quasi-isomorphism. It follows that u(πδ)

is homotopic to v(πδ), hence the required map s is πδ. ��

Now prove that the functor Db(A ) −→ Db(A ′) is faithful. It suffices to show
that if Ff = 0 in Db(A ′) with f : X −→ Y a map in C , then f equals to zero in
Db(A ).

The property for a map α in Db(A ′) of being equal to zero is equivalent to
saying that there is a quasi-isomorphism q such that αq is homotopic to zero. By
our assumption Ff ◦ q ∼ 0, and so there exists a quasi-isomorphism s in C with
f s ∼ 0 by the sublemma above. It follows that f equals to zero in Db(A ). We are
done. ��

The last proposition also applies to nice complicial biWaldhausen categories
A and B and a complicial exact functor between them. The following shows to
which extent the Thomason Approximation Theorem [22, 1.9.8] for nice compli-
cial biWaldhausen categories is a modification of the Waldhausen Approximation
Theorem [25, 1.6.7]

Corollary 5.4. Let A and B be nice complicial biWaldhausen categories and let
F : A −→ B be a complicial exact functor. Suppose that F has the approximation
or the h-approximation property (the axioms App1−App2 or App1−HApp2).
Then F induces a homotopy equivalence of K-theory spaces

K(F) : K(A ) −→ K(B).

Proof. By Proposition 5.3 F induces an equivalence of the derived categories
w−1F : w−1A −→ w−1B. Then K(F) is a homotopy equivalence by [22,
1.9.8]. ��

Lemma 5.5. An exact functor F : wC −→ wC ′ meets the axiom App2 if and
only if any arrow f : FX −→ Y in C ′, X ∈ C , fits into a commutative diagram

FX
��

Fj1

��

�� Y
��
t

��
FX′ s

�� Y ′

in which j1, t are cofibrations and s, t are quasi-isomorphisms in C ′.
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Proof. If F meets the axiom App2, then any arrow f : FX −→ Y in C ′ fits into
a commutative diagram

FX
f−−−−→ Y

Fa

�
�p

FX′
q−−−−→ Y ′

in which p, q are quasi-isomorphisms. Let T = Cyl(a), then a = rj1 with j1 :
X −→ T a cofibration and r : T −→ X′ a quasi-isomorphism. Construct a
cocartesian square

FX
��

Fj1

��

f �� Y
��
u

��
FT

f ′
�� V

There exists a unique map v : V −→ Y ′ such that q ◦ Fr = vf ′ and vu = p. The
map v factors as V

m−→ T ′ n−→ Y ′ with T ′ = Cyl(v), m a cofibration and n a
quasi-isomorphism. There results a commutative diagram

FX �� Fj1 ��

f

��

FT

mf ′
��

Fr �� FX′

q

��
Y �� mu �� V

n �� Y ′

Since p = nmu and p, n are quasi-isomorphisms, we see that mu is a quasi-iso-
morphism. Also, mf ′ is a quasi-isomorphism because n, q, F r are. We are done.
��
Proof of Theorem 5.2. In view of Lemma 3.2 and Proposition 5.2 it suffices to check
that for any n � 0 the induced functor wSnC −→ wSnC ′ has the approximation
property. This is so for n = 0. Obviously, it is enough to check the approximation
property for the map wFnC −→ wFnC ′ and n � 0. For n = 0 it follows from our
assumption and Proposition 5.2. If we show this for n = 1 the general case will
follow by induction.

Let the diagram represent a map a : FX −→ Y in F1C = Cb(F1A ),

FX0

a0

��

�� �� FX1

��
Y0 �� �� Y1

Then a0 fits into a commutative square

FX0

Fq0
��

a0 �� Y0

��
FX′0 �� Y ′0
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One can construct the following commutative diagram

Y0 �� ��

��

Y1

��

FX0

a0 �����
�� ��

Fq0

��

FX1

�����

��

Y ′0 �� �� Y

FX′0 �� ��

�����
FX

α

������

with X = X′0
∐

X0
X1 and Y = Y ′0

∐
Y0

Y1. By Lemma 5.5 α fits into a commutative
diagram

FX
��

Fj1

��

α �� Y
��

t

��
FX′1 s

�� Y ′1

in which j1, t are cofibrations and s, t are quasi-isomorphisms in C ′. We get the
commutative diagram

Y0 �� ��

��

Y1

��
FX0

a0 �����
�� ��

Fq0

��

FX1

�����

��
Y ′0 �� �� Y ′1

FX′0 �� ��

����
FX′1

s

�����

that shows App2. The axiom App1 is obvious. The theorem is proved. ��
Theorem 5.6 (Resolution). Let P be an extension closed full exact subcategory
of an exact category M . Assume further that

(1) if M ′ � M � M ′′ is exact in M and M, M ′′ ∈P , then M ′ ∈P and
(2) for any object M ∈ M there is a finite resolution 0 −→ Pn −→ Pn−1 −→
· · · −→ P0 −→ M −→ 0 with Pi ∈P .

Then DK(P) −→ DK(M ) is a homotopy equivalence (and thus DKi(P) �
DKi(M ) for all i).

Proof. By [11, 12.1] an extension closed full exact subcategory P of an exact cat-
egory M induces a fully faithful canonical functor between their bounded derived
categories if for any exact sequence M ′′ � M ′ � P in M with P ∈P , there is
a commutative diagram

0 −−−−→ P ′′ −−−−→ P ′ −−−−→ P −−−−→ 0�
�

∥∥∥
0 −−−−→ M ′′ −−−−→ M ′ −−−−→ P −−−−→ 0
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with P ′, P ′′ ∈ P and in which the first row is also exact. This condition follows
from our assumptions. Indeed, by (2) one can choose an admissible epimorphism
P ′ −→ M ′ and the kernel of the composed map P ′ −→ P is in P by (1).

Since each object M ∈M has a finite resolution by objects in P , it follows that
for every bounded complex A with entries in M there exists a quasi-isomorphism
B −→ A for some bounded complex B with entries in P (the proof is dual to
that of [10, 4.1(b)]). Therefore, the canonical functor Db(P) −→ Db(M ) is an
equivalence. Theorem 5.2 now implies the claim. ��

5.2. Pairings

Let A , B, C be exact categories. We want to pair Quillen’s K-theory of A and
the derived K-theory of B into the derived K-theory of the latter. The appropriate
assumption to make is a pairing

f : A ×B −→ C

which is a biexact functor, that is for each A ∈ A and B ∈ B the partial functors

f (A,−) : B −→ C , f (−, B) : A −→ C

are exact. We shall think of f as a tensor product. For technical reasons we assume
that each of A , B, C is equipped with a distinguished zero object 0 and that
f (A, 0) = 0 = f (0, B) always. Such a f gives rise a pairing

f : A × Cb(B) −→ Cb(C )

which is also a biexact functor.
Let s.A denote the simplicial set {Ob SnA }n. We obtain a map

|s.A | × |i.S.B| −→ |i.S.S.C |
that takes |s.A | ∨ |i.S.B| into the basepoint of |i.S.S.C | because of the technical
assumption we made. This yields a map

|s.A | ∧ |i.S.B| −→ |i.S.S.C |
and hence a map

�|s.A | ∧�|i.S.B| −→ ��|i.S.S.C |.
This is the desired pairing in K-theory in view of the homotopy equivalence of
�|s.A | with K(A ) and ��|i.S.S.C | with DK(C ). So we get a map of spaces

K(A ) ∧DK(B) −→ DK(C )

and hence homomorphisms of abelian groups

Km(A )⊗DKn(B) −→ DKm+n(C ), m, n � 0.
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5.3. Conjectures

The central problem here is comparison of DK(A ) with Quillen’s K-theory K(A ).
There is a natural map K(ρ) : K(A ) −→ DK(A ) factoring as

K(A )
K(τ)−−→ K(wCb(A ))

K(ν)−−→ DK(A )

where wCb(A ) stands for the category of quasi-isomorphisms in Cb(A ) and
K(wCb(A )) is its Waldhausen K-theory. The map on the left is induced by the
map taking an object A ∈ A to the complex concentrated in the zeroth degree and
the map ν is induced by the quotient functor Cb(A ) −→ Db(A ).

Question (The first Maltsiniotis conjecture [14]). The map K(ρ) : K(A ) −→
DK(A ) is a homotopy equivalence.

Let A admit an exact fully faithful functor i : A −→ B with B an abelian
category such that for any map f in A with i(f ) an epimorphism in B the map
f is an epimorphism. This is the case when weak idempotent objects split in A
(see [22]). Then K(τ) is a homotopy equivalence by the Gillet-Waldhausen theo-
rem [22, 1.11.7]. In this case, the comparison conjecture is reduced to showing that
K(ν) is a homotopy equivalence.

Let us consider the composed map of spaces

K(f ) : K(A )
K(ρ)−−→ DK(A )

K(µ)−−−→ K(Db(A ))

in which the right arrow is a homotopy equivalence. It is shown in [6] that K0(f )

is an isomorphism and hence is so K0(ρ) : K0(A ) −→ DK0(A ).
I personally doubt that the comparison conjecture is true. This is caused by

a recent observation of Toën and Vezzosi [23]: the obvious generalization of this
conjecture to all Waldhausen categories can not be true for obvious functoriality
reasons. It is true for the Waldhausen K-theory of spaces, for example.

Now we want to formulate a sort of Localization Theorem for the DK-theory.
We think that the following ingredients would be the most reasonable to do that.

(1) One should first find the relevant notions of a thick exact subcategory A of an
exact category U and a quotient exact category U /A satisfying the obvious
universal property in (ExCats).

(2) If A ⊆ U is thick then so is SnA ⊆ SnU for every n.
(3) If A is thick and idempotent complete in U then the sequence of bounded

derived categories

Db(A ) −→ Db(U ) −→ Db(U /A )

is an exact sequence of triangulated categories, i.e. Db(A ) is the full
triangulated subcategory of Db(U ) on objects zero in Db(U /A ) and
Db(U )/Db(A ) = Db(U /A ).
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The desired notions are suggested by Schlichting in [19] (see also his Disserta-
tionsschrift [17]). The conditions (1)-(2) are satisfied for A ⊆ U whenever A is
a “left or right s-filtering subcategory” in U in the sense of [19] (for brevity thick)
and if, moreover, A is idempotent complete, then (3) is also valid. For example, any
filtering subcategory in the sense of Karoubi [9] or Pedersen-Weibel [16] is thick.
Notice that if all categories considered are abelian, then any thick subcategory is
Serre.

Question (Localization). If A is a thick and idempotent complete subcategory of
an exact category U then the sequence of exact categories A −→ U −→ U /A
induces a homotopy fibration of spaces

DK(A ) −→ DK(U ) −→ DK(U /A ).

Localization would follow if we showed that the quotient functor U −→ U /A
induces a homotopy equivalence

i.S.S.(A ⊂ U ) −→ i.S.S.(0 ⊂ U /A ).

Indeed, we would have then the following commutative diagram

i.S.A �� i.S.U ��

��

i.S.S.(A ⊂ U )

��
i.S.U /A �� i.S.S.(0 ⊂ U /A )

in which the first horizontal line is a homotopy fibration by Corollary 3.8. The
right arrow is a homotopy equivalence and i.S.U /A −→ i.S.S.(0 ⊂ U /A ) is a
homotopy equivalence, too (for example by appealing again to Corollary 3.8).

6. Addendum

In this section we give the definition of a left pointed dérivateur and its K-theory.
The theory of dérivateurs was developed by Grothendieck in [7]. Very close to
dérivateurs objects (the so-called “homotopy theories” and “systems of diagrams
categories”) have been studied by Heller [8] and Franke [5]. Since this paper mostly
deals with the dérivateur given by the hyperfunctor

I �−→ Db(A I )

where A is an exact category we will only discuss dérivateurs and its K-theory
space although the analogous K-theory can also be defined for systems of diagram
categories (see [6] for details).
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6.1. The axioms

For the notions of the 2-category and 2-functor we refer the reader to [13]. In what
follows we use the term “poset” as an abbreviation of “finite partially ordered set”.
The 2-category of the posets (respectively the finite categories without cycles) we
shall denote by Ord (respectively by Dirf ).

Let Dia be a full 2-subcategory of the 2-category Cat of small categories that
contains the 2-category Ord .We assume that Dia satisfies the following conditions:

(1) Dia is closed under finite sums and finite products;
(2) for any functor f : I −→ J in Dia and for any object y of J , the categories

f/y and f \ y are in Dia.

We shall also refer to Dia as a category of diagrams.
A predérivateur of the domain Dia or just a predérivateur is a functor

D : Diaop −→ CAT (10)

from Dia to the category CAT of categories (not necessarily small) satisfying the
Functoriality Axiom below. So to each category I in Dia there is associated a cate-
gory DI , and to each map f : I −→ J in Dia a functor f ∗ = D(f ) : DJ −→ DI .

Functoriality Axiom. The following conditions hold:

� to each natural transformation ϕ : f −→ g a natural transformation ϕ∗ : f ∗ −→
g∗ is associated and the maps f −→ f ∗ and ϕ −→ ϕ∗ define a functor from
Hom(I, J ) to the category of functors from DJ to DI ;
� if

K
f �� I

g
��

g′
�� J

h �� L

are morphisms and ϕ : g −→ g′ is a bimorphism, then f ∗ ◦ ϕ∗ = (ϕ ◦ f )∗ and
ϕ∗ ◦ h∗ = (h ◦ ϕ)∗.
A morphism F : D −→ D′ between two predérivateurs D and D′ consists of

the following data:

1. for any I ∈ Dia, a functor F : DI −→ D′I ;
2. for any map f : I −→ J in Dia, f ∗F = Ff ∗;
3. for any bimorphism ϕ : f −→ g in Dia, ϕ∗F = Fϕ∗.

A morphism F : D −→ D′ is an equivalence if for any I ∈ Dia the functor
F : DI −→ D′I is an equivalence of categories.

Given I ∈ Dia and x ∈ I , let ix,I : 0 −→ I be the functor sending 0 to x. For
A ∈ DI let Ax = i∗x,IA. Let us consider the following axioms listed below.

Isomorphism Axiom. A morphism f : A −→ B in DI is an isomorphism if and
only if fx : Ax −→ Bx is so for all x ∈ I .

Disjoint Union Axiom. (a) If I = I1
∐

I2 is a disjoint union of its full subcate-
gories I1 and I2, then the inclusions i1;2 : I1;2 −→ I define an equivalence of
categories

(i∗1 , i∗2 ) : DI
∼−→ DI1 × DI2 .

(b) D∅ is a trivial category (having one morphism between any pair of objects).
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Homotopy Kan Extension Axiom. The left homotopy Kan extension axiom says
that for any functor f : I −→ J , the functor f ∗ : DJ −→ DI has a left adjoint
f! : DI −→ DJ .

Base Change Axiom. Let f : I −→ J be a morphism in Dia and x ∈ J . Consider
the diagram in Dia

f/x

↙αxp

��

jx �� I

f

��
0

ix,J

�� J

with jx a natural map and αx the natural bimorphism. The αx induces a bimor-
phism βx : p!j

∗
x −→ i∗x,I f!. The left base change axiom requires βx to be an

isomorphism.

Definition. A predérivateur is called a left dérivateur if the Functoriality Axiom,
the IsomorphismAxiom, the Disjoint UnionAxiom, the Left Homotopy Kan Exten-
sion Axiom, and the Left Base Change Axiom are satisfied.

Let F : D −→ D′ be a morphism between two left dérivateurs, and let f :
I −→ J be a map in Dia. Consider the adjunction maps α : 1 −→ f ∗f! and
β : f!f

∗ −→ 1. Denote by γF,f the composed map

f!F
f!Fα−−−→ f!Ff ∗f! = f!f

∗Ff!
βFf!−−→ Ff!.

F is right exact if γF,f is an isomorphism and the following compatibility relations
hold:

FαD = f ∗(γF,f ) ◦ αD′F and FβD = βD′F ◦ γ−1
F,f f ∗.

The dérivateurs we work with are also to meet some extra conditions. A map
f : I −→ J in Dia is a closed (open) immersion if it is a fully faithful inclusion
such that for any x ∈ J the relation Hom(I, x) �= ∅ (Hom(x, I ) �= ∅) implies
x ∈ I .

Definition. A left dérivateur is pointed if the following conditions hold:

(1) for any closed immersion f : I −→ J in Dia, the structure functor f! pos-
sesses a left adjoint f ?;

(2) for any open immersion f : I −→ J in Dia, the structure functor f ∗ possesses
a right adjoint f∗;

(3) for any open immersion f : I −→ J in Dia and any object x ∈ J , the base
change morphism of the diagram

f \ x

↗γxq

��

lx �� I

f

��
0

ix,J

�� J

yields an isomorphism δx : i∗x,I f∗ −→ q∗l∗x .

If D is a left pointed dérivateur, then DI has a zero object for any I ∈ Dia.
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6.2. The S.-construction and K-theory space

Throughout this section D is assumed to be a left pointed dérivateur (of the domain
Dia).

Let � ∈ Dia be the poset �1 ×�1 and let � ⊂ � be the subposet � \ (1, 1).
Let i� : � −→ � be the inclusion. An object A of D� is called cocartesian if the
canonical morphism i�! i

∗
�A −→ A is an isomorphism.

Given 0 � i < j < k � n let

ai,j,k : � −→ Ar �n (11)

denote the functor defined as:

(0, 0) �−→ (i, j), (0, 1) �−→ (i, k), (1, 0) �−→ (j, j), (1, 1) �−→ (j, k).

For any integer n � 0, denote by SnD the full subcategory of DAr �n that consists
of the objects X satisfying the following two conditions:

� for any i � n, X(i,i) is isomorphic to zero in D0;
� for any 0 � i < j < k � n, a∗i,j,kX is a cocartesian square if n > 1.

The definition of SnD is similar to that of SnC , where C is a Waldhausen cate-
gory [25]. S0D is the full subcategory of zero objects in D0. The category S1D
consists of the objects X ∈ D�2 with X0 and X2 isomorphic to zero.

For any object I of Dia, we denote by D(I ) the left pointed dérivateur defined
as D(I )J = DI×J . Let SnDI = SnD(I ). Then SnD is a left pointed dérivateur
(see [6]). There results a simplicial left pointed dérivateur

S.D : �n �−→ SnD.

Consider the following simplicial category:

S.D : �n �−→ SnD.

For any n � 0, let iSnD denote the subcategory of SnD whose objects are those of
SnD and whose morphisms are isomorphisms in SnD, and let i.SnD be the nerve
of iSnD. We obtain then the following bisimplicial object:

i.S. : �m ×�n �−→ imSnD.

Definition. The Algebraic K-theory for a small left pointed dérivateur D of the
domain Dia is given by the pointed space (a fixed zero object 0 of D0 is taken as
a basepoint)

K(D) = �|i.S.D|.
The K-groups of D are the homotopy groups of K(D)

K∗(D) = π∗(�|i.S.D|) = π∗+1(|i.S.D|).



Systems of diagram categories and K-theory. II 681

Denote by (Left pointed dérivateurs) the category of left pointed dérivateurs
and right exact functors. Then the map

(Left pointed dérivateurs)
K−→ (Spaces)

is functorial.
Let D be a left pointed dérivateur. Denote by E0 the full subcategory in D�

consisting of the cocartesian squares E ∈ D� with E(1,0) isomorphic to zero. If
we replace D by D(I ), we define the category EI similar to E0. One obtains a left
pointed dérivateur E. It is equivalent (by a right exact map) to the dérivateur S2D
[6, 6.2].
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