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Abstract. Various authors classified the thick triangulated ⊗-subcategories of the
category of compact objects for appropriate compactly generated tensor triangulated
categories by using supports of objects. In this paper we introduce R-supports for ring
objects, showing that these completely determine the thick triangulated ⊗-subcatego-
ries. R-supports give a general framework for the celebrated classification theorems by
Benson-Carlson-Rickard-Friedlander-Pevtsova, Hopkins-Smith and Hopkins-Neeman-
Thomason.

Inspired by the celebrated classification theorems of Benson-Carlson-Rickard-Friedlan-
der-Pevtsova, Hopkins-Smith and Hopkins-Neeman-Thomason various authors studied
abstract properties of supports in (compactly generated) tensor triangulated categories.
Hovey, Palmieri and Strickland [19] used these in abstract stable homotopy theory,
Balmer [2, 3] studies supports in essentially small symmetric monoidal triangulated
categories. As an application, he reconstructs a noetherian scheme X from its de-
rived category of perfect complexes Dper(X). Buan-Krause-Solberg [8] introduced and
studied supports in ideal lattices to extend applications to tensor abelian categories as
well. Another classification theorem related to the category KKG has been obtained by
Dell’Ambrogio in [9].

It is very common that various authors a priori consider support data in a spectral
topological space for all objects of a compactly generated tensor triangulated category.
But both cases are too restrictive for classification theorems in general. Indeed, if we
consider the category of p-local spectra S, then there are many spectra with no K(n)-
homology for any n, where K(n) stands for the Morava K-theory (e.g. the most impor-
tant one is the Brown-Comenetz dual of the sphere). However, a well-known theorem
by Hopkins-Smith [18] says that there is no ring spectrum with trivial K(n)-homology
for any n. On the other hand, classification results for some tensor abelian categories
by Garkusha-Prest [13, 14, 15] (though not directly related to triangulated categories)
a priori use properties of non-spectral spaces – however very close to the latter – such
as injective spectra of Grothendieck categories equipped with Gabriel-Ziegler topology.
In this paper we use such spaces as well to give some examples.

The main goal of this paper is to introduce and study the notion of an R-support
datum (X, σ) for ring objects in compactly generated tensor triangulated categories. It
is essential that all, not necessarily compact, ring objects are used. The stable module
category Stmod(G) over a finite group scheme G, the category of p-local spectra S, the
category DQcoh(X) of the complexes in the derived category of OX -modules over a quasi-
compact and quasi-separated scheme X having quasi-coherent homology are examples
of compactly generated tensor triangulated categories. The fact that Stmod(G) and S
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have R-supports follows from properties of support varieties of modules and Morava
K-theories respectively. One shows in section 2 that DQcoh(X) has R-supports as well.

The main result of the paper (Theorem 2.5) says that if a compactly generated tensor
triangulated category S has a R-support datum (X, σ) then there is a bijection between
the set of all open subsets O ⊆ Xσ and the set of all thick triangulated ⊗-subcategories
of the triangulated category of compact objects Sc, where Xσ is a topological space
associated to (X, σ). As an application, we obtain a general framework for classifi-
cation theorems by Benson-Carlson-Rickard-Friedlander-Pevtsova, Hopkins-Smith and
Hopkins-Neeman-Thomason.

Using results from [13, 14, 15], we also show in section 2 that the topological space
Xσ need not be a spectral space in general. We also show that if S is the category of
spectra then the associated topological space Xσ is homeomorphic to (Spec V )∗, where
V is a valuation domain.

The results of the paper were first presented in December 2008 at the Workshop on
Triangulated Categories (Swansea, UK).

Acknowledgements. I would like to thank the referee for helpful remarks and letting
me know about the paper of Dell’Ambrogio [9].

1. Introduction

Let S be a triangulated category with arbitrary coproducts. An object x of S is said
to be compact if for every family {yi}i∈I of objects from S the canonical map

⊕i∈IS(x, yi) −→ S(x,
∐

i∈I

yi)

is an isomorphism. The category S is compactly generated if there exists a set C of
compact objects of S such that S(C, y) = 0 (i.e. S(c, y) = 0 for all c ∈ C) implies
y = 0 for every object y in S. The triangulated subcategory of S consisting of compact
objects will be denoted by Sc. We observe that S coincides with the smallest triangulated
subcategory closed with respect to coproducts and triangles and containing Sc (see [25,
2.1]). Also S is closed under taking direct products.

Definition 1.1. A compactly generated tensor triangulated category is a symmetric
monoidal compactly generated triangulated category (S,⊗, e) such that

• The tensor product is exact in each variable and it preserves coproducts. The
Brown representability theorem yields function objects Hom(x, y) satisfying

Hom(x⊗ y, z) = Hom(x,Hom(y, z)) for all x, y, z ∈ S.

• The unit e is in Sc and all compact objects are strongly dualizable, that is, the
canonical morphism

c∨ ⊗ x → Hom(c, x), c∨ := Hom(c, e),

is an isomorphism for all c ∈ Sc, x ∈ S.

Let c, d be compact objects in S. The following properties are easily verified.
(1) e∨ ∼= e and c∨∨ ∼= c;
(2) Hom(x⊗ c∨, y) ∼= Hom(x, c⊗ y), for all x, y in S;
(3) c∨ and c⊗ d are compact.

These properties are used in the sequel without further comment.
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Examples. (1) Let G be a finite group scheme defined over a field k. Thus, G has a
commutative coordinate algebra k[G] which is finite dimensional over k and which has a
coproduct induced by the group multiplication on G, providing k[G] with the structure
of a Hopf algebra over k. We denote by kG the k-linear dual of k[G] and refer to kG as
the group algebra of G. Thus, kG is a finite dimensional, co-commutative Hopf algebra
over k. By definition, a G-module is a comodule for k[G] (with its coproduct structure)
or equivalently a module for kG.

Recall that the stable module category Stmod(G) is the category whose objects are
kG-modules, and whose group of homomorphisms between two kG-modules M,N is
given by the following quotient:

HomG(M,N)/{f : M → N factoring through some projective}.
So defined, (Stmod(G),⊗k, k) is a compactly generated tensor triangulated category,
where stmod(G) := Stmod(G)c consists of the finite dimensional kG-modules (see [4,
11, 19]).

(2) The category (S,∧, S0) of p-local spectra with p a prime and S0 the p-local sphere
spectrum is a compactly generated tensor triangulated category (see [19]). The objects
of S are spectra whose homotopy groups are p-local, i.e., π∗(X) = π∗(X) ⊗ Z(p). The
category F := Sc consists of the finite p-local spectra.

(3) Recall from [26] that the derived category D(X) with X a scheme of OX -modules
is a closed symmetric monoidal category with the tensor product ⊗L

X : D(X)×D(X) →
D(X), the unit OX and the function object RHom(−,−). It is clear that D(X) admits
arbitrary coproducts. The tensor product is exact in each variable and it preserves
coproducts.

Let Qcoh(X) denote the category of quasi-coherent sheaves. It is a Grothendieck
category by [10]. We denote by DQcoh(X) the full triangulated subcategory of D(X) of
complexes with quasi-coherent cohomology. Clearly, DQcoh(X) is closed under coprod-
ucts. It follows from [20, 2.5.8] and [22, p. 36] that DQcoh(X) is closed under tensor
products.

A complex of OX -modules is perfect if it is locally quasi-isomorphic to a bounded
complex of vector bundles and we denote by Dper(X) the corresponding full subcategory
of D(X). In particular, a perfect complex is in DQcoh(X) and if X is quasi-compact
then it is in Db

Qcoh(X).
Let X be a quasi-compact and quasi-separated scheme. Recall that being quasi-

separated simply means that the intersection of two quasi-compact open subsets re-
mains quasi-compact. Then DQcoh(X) is a compactly generated triangulated category
with (DQcoh(X))c = Dper(X) [7, 3.1.1]. Moreover, DQcoh(X) is generated by a sin-
gle perfect complex [7, 3.1.1]. We also note that RHom(E,F ) ∈ DQcoh(X) for any
E, F ∈ DQcoh(X).

Indeed, RHom(E, F ) ∈ DQcoh(X) for any E ∈ Dper(X), F ∈ DQcoh(X) [28, 2.4.1(c)].
The subcategory

{G ∈ DQcoh(X) | RHom(G,F ) ∈ DQcoh(X)}
is triangulated, closed under coproducts and contains all compact objects of DQcoh(X).
Therefore it is equal to DQcoh(X) itself. We conclude that DQcoh(X) is a closed sym-
metric monoidal compactly generated triangulated category.
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If X is a quasi-compact semi-separated scheme (being semi-separated means that the
intersection of two affine open subsets remains affine) and D(Qcoh(X)) is the derived
category of quasi-coherent sheaves then the Bökstedt-Neeman theorem (see [6], [22,
p. 34]) says that the canonical triangulated functor

(1.1) D(Qcoh(X)) → DQcoh(X)

is an equivalence. By [1] D(Qcoh(X)) is a compactly generated tensor triangulated cate-
gory, and hence so is DQcoh(X). The next result says that DQcoh(X) is a compactly gen-
erated tensor triangulated category for any quasi-compact and quasi-separated scheme.

Theorem 1.2 (Bökstedt-Neeman). Let X be a quasi-compact and quasi-separated sche-
me. Then (DQcoh(X),⊗L

X , OX) is a compactly generated tensor triangulated category.

Proof. As we have already shown, DQcoh(X) is a closed symmetric monoidal compactly
generated triangulated category. We need to check that the natural map

(1.2) E∨ ⊗L
X F → RHom(E, F )

is an isomorphism for any perfect complex E. This can be checked locally.
The map (1.2) is an isomorphism for any affine scheme (we also use the fact that (1.1)

is an equivalence). We now use canonical isomorphisms (see [23, p. 12, p. 25])

RHom(E, F )|U ∼= RHom(E|U , F |U )

and
(E∨ ⊗L

X F )|U ∼= E∨|U ⊗L
U F |U ∼= (E|U )∨ ⊗L

U F |U
to prove that restriction of (1.2) to any affine open subset U ⊂ X is an isomorphism.
Therefore it is locally an isomorphism, and hence an isomorphism in DQcoh(X). ¤

2. R-supports

Definition 2.1. A weak R-support datum (“R” for ring) on a compactly generated
tensor triangulated category S is a pair (X, σ), where X is a set and σ is a map which
assigns to each ring object a ∈ S a subset σ(a) ⊆ X, such that

(1) σ(e) = X and σ(0) = ∅.
(2) (“Tensor product theorem”) σ(a⊗ b) = σ(a)∩σ(b) for any ring objects a, b with

a compact.
(3) If a ∈ S is a ring object with σ(a) = ∅, then a = 0; that is σ “detects ring

objects”.
A weak R-support datum (X, σ) is a R-support datum if σ(a) is defined for any compact
a ∈ Sc and the following axioms are true:

(4) σ(a⊕ b) = σ(a) ∪ σ(b) for any a, b ∈ Sc.
(5) σ(Σa) = σ(a), for Σ : S → S the translation (shift, suspension) and a ∈ Sc.
(6) σ(a) ⊂ σ(b) ∪ σ(c) for any exact triangle a → b → c → Σa in Sc.
(7) σ(a⊗ b) = σ(a) ∩ σ(b) for any a, b ∈ Sc with b a ring object.

Finally, an R-support datum is a strict R-support datum if the following axiom is satis-
fied:

(7′) σ(a⊗ b) = σ(a) ∩ σ(b) for any a, b ∈ Sc.

Remark 2.2. Our notion for an R-support datum is different from that of a support
datum used in [3, 8], because we define the sets σ(a) for some non-compact objects.
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If (X, σ) is a weak R-support datum on S, it follows from the axioms that the sets
σ(a) with a ∈ Sc a ring object form a basis of open sets for a topology on X. This
topological space will be denoted by Xσ.

Recall from [16] that a topological space is spectral if it is T0, quasi-compact, if the
quasi-compact open subsets are closed under finite intersections and form an open basis,
and if every non-empty irreducible closed subset has a generic point. Given a spectral
topological space, X, Hochster [16] endows the underlying set with a new, “dual”,
topology, denoted X∗, by taking as open sets those of the form Y =

⋃
i∈Ω Yi where

Yi has quasi-compact open complement X \ Yi for all i ∈ Ω. Then X∗ is spectral and
(X∗)∗ = X (see [16, Prop. 8]). For instance, if X = Spec(R) with R a commutative ring
then the open subsets of (Spec(R))∗ are of the form

⋃
a∈Ω V (Ia) with each Ia a finitely

generated ideal and V (Ia) = {P ∈ Spec(R) | P ⊃ Ia}.
If (X, σ) is a strict R-support datum on S, then the topological space Xσ often happens

to be spectral. But it is not the case in general. Below we shall construct a strict R-
support datum for which Xσ is is not a T0-space.

A thick triangulated subcategory T of Sc is a ⊗-subcategory if for every a ∈ Sc and
every object t ∈ T, the tensor product a⊗ t also is in T. Note that if e is a generator of
S then every thick triangulated subcategory of Sc is a ⊗-subcategory. Given an object
a ∈ Sc, we denote by 〈a〉 the thick triangulated ⊗-subcategory generated by {a⊗ b}b∈Sc .
If A is a family of compact objects, then

⋃
a∈A〈a〉 will stand for the thick triangulated

⊗-subcategory generated by {a⊗ b | a ∈ A, b ∈ Sc}.
Proposition 2.3. (1) Let S be a compactly generated tensor triangulated category and
let a ∈ Sc. Then 〈a〉 = 〈Hom(a, a)〉 = 〈a∨〉.

(2) An R-support datum (X, σ) on S is a strict R-support datum if and only if σ(a) =
σ(Hom(a, a)) = σ(a∨) for any a ∈ Sc.

Proof. (1) By [19, A.2.6] a is a direct summand of a⊗a⊗a∨ ∼= a⊗Hom(a, a). Therefore
〈a〉 ⊆ 〈a⊗ a∨〉. Obviously, 〈a⊗ a∨〉 ⊆ 〈a〉. Consequently, 〈a⊗ a∨〉 = 〈a∨〉.

(2) Suppose (X, σ) is a strict R-support datum. Since a is a direct summand of
a ⊗Hom(a, a) then σ(a) ⊂ σ(a ⊗Hom(a, a)) = σ(a) ∩ σ(Hom(a, a)) ⊂ σ(Hom(a, a)).
On the other hand, σ(Hom(a, a)) = σ(a⊗a∨) = σ(a)∩σ(a∨) ⊂ σ(a), and hence σ(a) =
σ(Hom(a, a)). We also have σ(a∨) = σ(Hom(a∨, a∨)) = σ(a∨ ⊗ a) = σ(Hom(a, a)) =
σ(a).

Assume now that σ(a) = σ(Hom(a, a)) = σ(a∨) for any a ∈ Sc. Let b ∈ Sc then
σ(a) ∩ σ(b) = σ(Hom(a, a)) ∩ σ(Hom(b, b)) = σ(Hom(a, a)⊗Hom(b, b)) = σ(a⊗ a∨ ⊗
b⊗ b∨). Since

Hom(a, Hom(b, c)) ∼= Hom(a⊗ b, c)
in Sc [19, A.2.3] then

(a⊗ b)∨ ∼= Hom(a, b∨) ∼= a∨ ⊗ b∨.

Therefore σ(a⊗a∨⊗b⊗b∨) = σ((a⊗b)⊗(a⊗b)∨) = σ(Hom(a⊗b, a⊗b)) = σ(a⊗b). ¤
Corollary 2.4. Let (X, σ) be a strict R-support datum on a compactly generated tensor
triangulated category S. Then the subsets σ(a), a ∈ Sc, form a basis of open sets for the
topological space Xσ.

Examples. (1) Let G be a finite group scheme over a field k. If M is a kG-module, then
the cohomology of G with coefficients in M is

H∗(G,M) = Ext∗G(k,M).
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If p = 2, then H∗(G, k) is itself a commutative k-algebra. If p > 2, then the even
dimensional cohomology H•(G, k) is a commutative k-algebra. We denote by

H•(G, k) =
{

H∗(G, k), if p = 2
Hev(G, k), if p > 2

Extending results of Benson, Carlson, and Rickard [4] to finite group schemes, Friedlan-
der and Pevtsova [11] define a strict R-support datum (X, σ) on Stmod(G). One sets
X = (Proj(H•(G, k)))∗, the dual space to the projective support variety of the finite
group scheme G over the field k. For M ∈ stmod(G), σ(M) corresponds naturally to
the cohomological support variety VG(M) := annH•(G,k)(Ext∗G(M, M)) of M . It is easy
to show that every basic open subset in (Proj(H•(G, k)))∗ is of the form σ(M) with
M ∈ stmod(G). However, σ(M) does not have an evident cohomological interpreta-
tion for infinite dimensional kG-modules. One has σ(M ⊗k N) = σ(M) ∩ σ(N) for any
M, N ∈ Stmod(G) [11, 5.2]. Moreover, σ(M) = 0 implies M = 0 in Stmod(G) [11, 5.5].

(2) Let S be the category of p-local spectra. For each n > 1 there is a spectrum
K(n) called the n-th Morava K-theory whose coefficient ring K(n)∗ is isomorphic to
Fp[vn, v−1

n ] with |vn| = 2(pn − 1). We also set K(0) to be the rational Eilenberg-Mac
Lane spectrum HQ and K(∞) the mod-p Eilenberg-Mac Lane spectrum HFp. These
theories have the following properties (see [18]).

• For every spectrum X, K(n)∧X has the homotopy type of a wedge of suspensions
of K(n).

• Künneth isomorphism: K(n)∗(X ∧ Y ) ∼= K(n)∗X ⊗K(n)∗ K(n)∗Y . In particular
K(n)∗(X ∧ Y ) = 0 if and only if either K(n)∗X = 0 or K(n)∗Y = 0.

• If X 6= 0 and finite, then for all n À 0, K(n)∗X 6= 0.
• For each n, K(n + 1)∗X = 0 implies K(n)∗X = 0.
• (Nilpotence theorem) Morava K-theories detect ring spectra: if R is a non-trivial

ring spectrum, then there exists a n (0 6 n 6 ∞) such that K(n)∗R 6= 0.

Let X be the set Z+ ∪ {∞}. To any spectrum X ∈ S one associates a subset

σ(X) = {n ∈ X | K(n)∗X 6= 0}.
The properties above imply that (X, σ) is a support datum on S. Given a finite spectrum
F ∈ F one has σ(F ) = On := {n, n + 1, . . .} ∪ {∞}, where n = min{s | K(s)∗F 6= 0}.
It follows from Mitchell’s theorem [21] that for any n > 0 there exists a finite spectrum
Fn ∈ F such that σ(F ) = On. It is easy to see that the lattice of open sets for the
topological space Xσ is a totally ordered set and looks as follows:

σ(0) = ∅ = O∞ ( · · · ( On+1 ( On ( On−1 ( · · · ( O1 ( O0 = X.

Clearly, the space Xσ is spectral. Below we shall show that Xσ is homeomorphic to
(Spec(V ))∗ for some valuation domain V .

(3) Let X be a quasi-compact and quasi-separated scheme. For any F ∈ DQcoh(X)
we denote by

σ(F ) := {x ∈ X | F ⊗L
X k(x) 6= 0},

where k(x) is the residue field at x. If F ∈ Dper(X) then σ(F ) = supphX(F ) :=⋃
n∈Z Supp(Hn(F )) is the union of the supports in the classic sense of the cohomology

sheaves of F [27, 3.3].
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Let x ∈ X and let U be an affine neighborhood of x. It follows from [6, 2.17]
that (F ⊗L

X k(x))|U ∼= F |U ⊗L
U k(x) is a direct sum of suspensions of k(x) for any

F ∈ DQcoh(X). Therefore σ(F ⊗L
X G) = σ(F ) ∩ σ(G) for any F, G ∈ DQcoh(X).

Suppose σ(F ) = 0 with F ∈ DQcoh(X) a ring object. Let ι : OX → F be the unit
map. Then by the Nilpotence Theorem [27, 3.6] there is n > 1 such that ⊗nι = 0
in DQcoh(X). It follows that 1F = 0, hence F = 0. We conclude that σ detects ring
objects.

Let Y ⊆ X be a closed subspace such that X \ Y is quasi-compact. Then there
exists a perfect complex F such that σ(F ) = Y [27, 3.4]. On the other hand, σ(E),
E ∈ Dper(X), is closed in X and X \σ(E) is quasi-compact [27, 3.3]. Let X := X∗; then
(X, σ) is plainly a strict R-support datum on DQcoh(X).

Theorem 2.5 (Classification). Let (X, σ) be a weak R-support datum on a compactly
generated tensor triangulated category S. Consider the maps

O
ϕ7−→ TO =

⋃
{〈a〉 | a ∈ Sc is a ring object with σ(a) ⊆ O}

and
T

ψ7−→ OT =
⋃
{σ(a) | a ∈ T is a ring object}.

Then ϕψ = id or, equivalently, T =
⋃{〈a〉 | a ∈ Sc is a ring object with σ(a) ⊆ OT},

that is (X, σ) determines thick triangulated ⊗-subcategories.
If (X, σ) is an R-support datum then the topological space Xσ is quasi-compact, the

quasi-compact open subsets are closed under finite intersections and form an open basis,
and the maps ϕ,ψ induce bijections between

(1) the set of all open subsets O ⊆ Xσ,
(2) the set of all thick triangulated ⊗-subcategories of Sc.

Proof. Let T be a thick triangulated ⊗-subcategory of Sc. By Proposition 2.3 and the
fact that Hom(a, a) is canonically a ring object we have

T =
⋃

a∈T

〈a〉 =
⋃

a∈T

〈Hom(a, a)〉 =
⋃
{〈a〉 | a ∈ T is a ring object}.

It immediately follows that T ⊂ TOT
.

Let b ∈ TOT
be a ring object with ∅ 6= σ(b) ⊂ OT. Let LT be the localization

functor on S associated with the finite localizing subcategory generated by T. Then
b ⊗ LT(e) ∼= LT(b) [19, 3.3.1] and LT(e) is a commutative ring object in S [19, 3.1.8].
Therefore b⊗LT(e) is a ring object. We have that LT(b) 6= 0 if and only if σ(b⊗LT(e)) =
σ(b) ∩ σ(LT(e)) 6= ∅. If it is the case then there is a ring object a ∈ T such that
σ(a) ∩ σ(b⊗ LT(e)) 6= ∅, because

∅ 6= σ(b⊗ LT(e)) ⊂ σ(b) ⊂ OT =
⋃
{σ(a) | a ∈ T is a ring object}.

It follows that σ(a)∩ σ(b⊗LT(e)) = σ(a⊗ b⊗LT(e)) 6= ∅, and hence a⊗ b⊗LT(e) 6= 0.
On the other hand, a⊗b⊗LT(e) ∼= b⊗a⊗LT(e) = 0 since a⊗LT(e) = 0, a contradiction.
Thus T = TOT

or, equivalently, ϕψ = id.
Now suppose (X, σ) is an R-support datum. We want to show that ψϕ = id. Given a

ring object a ∈ Sc, it follows from the axioms that b ∈ 〈a〉 implies σ(b) ⊂ σ(a). Therefore
O〈a〉 = σ(a). Since ϕψ = id then

〈a〉 = TO〈a〉 = Tσ(a) =
⋃
{〈b〉 | b ∈ Sc is a ring object with σ(b) ⊆ σ(a)},
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and hence ψϕ(σ(a)) = ψ(〈a〉) = σ(a).
Every open subset O of Xσ is, by definition, a union

⋃
σ(a) with each a ∈ Sc a ring

object. Clearly,

O =
⋃
{σ(a) | a ∈ Sc is a ring object with σ(a) ⊆ O}.

Suppose b ∈ TO =
⋃{〈a〉 | a ∈ Sc is a ring object with σ(a) ⊆ O} is a ring object. Then

there are finitely many ring objects a1, a2, . . . , an ∈ TO such that
⋃n

i=1 σ(ai) ⊂ O and
b ∈ ⋃n

i=1〈ai〉. It follows that σ(b) ⊂ ⋃n
i=1 σ(ai) ⊂ O. We see that ψϕ = id.

Let us show now that each basic open set σ(a) with a ∈ Sc a ring object is quasi-
compact. Suppose σ(a) ⊂ ⋃

i∈I σ(bi). Then

〈a〉 = ϕ(σ(a)) ⊂
⋃

i∈I

〈bi〉 = ϕ(
⋃

i∈I

σ(bi)).

Then there are i1, i2, . . . , in ∈ I such that 〈a〉 ⊂ ⋃n
s=1〈bis〉. It follows that σ(a) =

ψ(〈a〉) ⊂ ⋃n
s=1 ψ(〈bis〉) =

⋃n
s=1 σ(bis), hence σ(a) is quasi-compact. Then X = σ(e) is

quasi-compact as well. Since σ(a)∩σ(b) = σ(a⊗b) for any two compact ring objects a and
b, we conclude that the quasi-compact open subsets are closed under finite intersections.

¤
Corollary 2.6. Let (X, σ) be a strict R-support datum on a compactly generated tensor
triangulated category S. Then the maps

O
ϕ7−→ TO =

⋃
{a ∈ Sc | σ(a) ⊆ O}, T

ψ7−→ OT =
⋃
{σ(a) | a ∈ T}

induce bijections between
(1) the set of all open subsets O ⊆ Xσ,
(2) the set of all thick triangulated ⊗-subcategories of Sc.

Proof. This is a consequence of Proposition 2.3, Theorem 2.5 and Corollary 2.4. ¤
We derive from the preceding corollary and the corresponding examples considered

above the celebrated classification theorems by Benson-Carlson-Rickard-Friedlander-
Pevtsova, Hopkins-Smith and Hopkins-Neeman-Thomason.

Corollary 2.7 ([5, 11, 18, 17, 24, 27]). (1) Let G be a finite group scheme over a field
k. Then the assignments

T 7−→ Y (T) =
⋃

M∈T

VG(M), Y 7−→ T(Y ) = {M ∈ stmod(G) | VG(M) ⊆ Y }

induce a bijection between the open subsets of (Proj(H•(G, k)))∗ and the thick triangu-
lated ⊗-subcategories of stmod(G).

(2) Let C0 := F be the category of finite p-local spectra, and for n > 1, let Cn :=
{X ∈ F | K(n − 1)∗X = 0}, and finally let C∞ denote the subcategory of contractible
spectra. Then a subcategory C of F is thick triangulated if and only if C = Cn for some
n. Further these subcategories form a decreasing filtration of F:

C∞ ( · · · ( Cn+1 ( Cn ( Cn−1 ( · · · ( C1 ( C0.

(3) Let X be a quasi-compact and quasi-separated scheme. Then the assignments

T 7−→ Y (T) =
⋃

E∈T

supphX(E), Y 7−→ T(Y ) = {E ∈ Dper(X) | supphX(E) ⊆ Y }
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induce a bijection between the open subsets of X∗ and the thick triangulated ⊗-subcategories
of Dper(X).

A strict R-support datum on a compactly generated tensor triangulated category is
not a spectral space in general. As an example, let us consider the category DQcoh(X),
where X is quasi-compact and quasi-separated. We denote by Sp(X) the set of iso-
morphism classes of indecomposable injective objects in the Grothendieck category of
quasi-coherent sheaves Qcoh(X). Given E ∈ Qcoh(X) let P (E) be the point correspond-
ing to E (see [13, 15]). If X = Spec(R) is affine then P (E) is the sum of annihilator
ideals in R of non-zero elements of E. Given G ∈ DQcoh(X) one sets

σ(G) = {E ∈ Inj(X) | G⊗L
X k(P (E)) 6= 0}.

It follows from [13, 15] and arguments above that (Inj(X), σ) is a strict R-support datum
for DQcoh(X). However the space Inj(X) is not T0 in general [14].

To conclude, consider the category of p-local spectra S. Let us show, as promised, that
Xσ is homeomorphic to (Spec(V ))∗ for some valuation domain V , where X = Z+∪{∞},
σ(F ) = On := {n, n + 1, . . .} ∪ {∞} for any F ∈ F, n = min{s | K(s)∗F 6= 0}.

Looking at the lattice of open sets in Xσ, a ring theorist immediately recognizes the
lattice of prime ideals of a valuation domain in it. G. Puninski has pointed out to me
how to construct such a ring.

Let α be the ordinal ℵ0 and let V be any commutative valuation domain with value
group isomorphic to Γ = ⊕n∈αZ, an α-indexed direct sum of copies of Z. The order on
Γ is defined as follows: (an)n∈α > (bn)n∈α if ai > bi for some i and ak = bk for every
k < i.

Let ∞ be a symbol regarded as larger than any element of Γ. We set ∞+ n = ∞ for
all n ∈ α. Let k denote the field of quotients of V . Then there is a valuation

v : k → Γ ∪ {∞}
such that V = {x ∈ k | v(x) > 0} [12, p. 11].

By a filter F in Γ+ := {x ∈ Γ | x > 0} is meant a non-empty proper subset F of Γ+

such that
x ∈ F and x 6 y ∈ Γ+ imply y ∈ F.

F is a prime filter if x, y ∈ Γ+ \ F implies x + y ∈ Γ+ \ F, and a principal filter if, for
some x ∈ Γ+, F = {y ∈ Γ+ | y > x}.

It follows from [12, I.3.2] that the correspondences

I 7→ v(I) and F 7→ I(F) = {x ∈ V | v(x) ∈ F}
define a bijection between the set of non-zero ideals of V and the set of filters in Γ+. In
particular, prime (principle) ideals correspond to prime (principal) filters.

Theorem 2.8. The topological space Xσ is naturally homeomorphic to (Spec(V ))∗.

Proof. We denote by

Fm = {x ∈ Γ+ | min(Supp(x)) 6 m},
where Supp(x = (xn)n∈α) = {n ∈ α | xn 6= 0}. It follows that xmin(Supp(x)) > 0 for any
x ∈ Fm. Obviously, Fm ( Fm+1 for any m ∈ α. Let F∞ :=

⋃
m Fm = {x ∈ Γ+ | v(x) >

0}; then the prime ideal P∞ corresponding to this filter is maximal. We claim that a
filter F 6= F∞ is prime if and only if it is equal to Fm for some m.
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There exists m > 1 such that Fm ∩ F 6= ∅. Let us show that F ⊃ Fm. We first
assume that m = 1. Therefore there is x ∈ F ∩ F1. Suppose (1, 0, 0, . . .) /∈ F. If
x1 = 1 then the first non-zero component xk, k > 1, must be positive, because oth-
erwise x < (1, 0, 0, . . .) ∈ F. Hence x = (1, 0, 0, . . .) + (0, . . . , xk, xk+1, . . .) ∈ F implies
(0, . . . , xk, xk+1, . . .) ∈ F. But (0, . . . , xk, xk+1, . . .) < (1, 0, 0, . . .) ∈ F, a contradiction. If
x1 > 1 then x = (1, 0, 0, . . .)+(x1−1, x2, x3, . . .) ∈ F implies (x1−1, x2, x3, . . .) ∈ F. Con-
tinuing this procedure x1− 1 times we get (1, x2, x3, . . .) ∈ F, and hence (1, 0, 0, . . .) ∈ F
by above, again a contradiction. We conclude that (1, 0, 0, . . .) belongs to F.

Now let x ∈ F1; then x1 > 0. Let xk be the first positive component of x such that k >
2. Then (1, 0, 0, . . .) < (2x1, . . . , 2xk−1, 0, . . .) ∈ F. Therefore (2x1, . . . , 2xk−1, 0, . . .) <
2x and 2x = x + x imply x ∈ F since F is prime, and hence F ⊃ F1. If m > 1 and
F ∩ Fm 6= ∅ then the fact that F ⊃ Fm is proved similar to the case m = 1.

By assumption, F 6= F∞, and therefore F ∩ (Fm+1 \ Fm) = ∅ for some m. Suppose m
is minimal such. We see that an element x ∈ F if and only if its first positive component
xk must be such that k 6 m. Thus F ⊂ Fm, and hence F = Fm.

Therefore the chain of the filters in Γ+

F∞ ) · · · ) Fn+1 ) Fn ) · · · ) F1

gives rise to a chain of the proper non-zero prime ideals in V

P∞ ) · · · ) Pn+1 ) Pn ) · · · ) P1.

The trivial ideal is prime as well and therefore one obtains that the set of all proper
prime ideals in V is well-ordered and looks as follows:

P∞ ) · · · ) Pn+1 ) Pn ) · · · ) P1 ) P0 = 0.

We observe that for any 0 6 n < ∞, Pn =
√

an with a0 := 0 and an>1 the element
whose n-th component is 1 and all other components are zero.

Suppose V (P∞) = {P∞} is open in (Spec V )∗; then V (P∞) =
⋃

λ V (Iλ) with each
Iλ finitely generated. Since P∞ is the largest proper ideal each V (Iλ), if non-empty,
equals {P∞}. Therefore P∞ =

√
Iλ for some λ. But the prime radical of every finitely

generated ideal in V is prime (since V is a valuation ring) and different from P∞. To
see the latter, we have, since Iλ is finitely generated, that all elements of Iλ have value
> (a′n)n for some (a′n)n ∈ Γ+ with a′n = 0 for all n 6 N for some fixed N . (Recall that
every finitely generated ideal in a valuation ring must be principal [12, I.1.6].) It follows
that there is a prime ideal properly between Iλ and P∞. This gives a contradiction.
Therefore V (P∞) = {P∞} can not be open in (Spec V )∗.

It follows that V (an) = {Pn, Pn+1, . . .} ∪ {P∞} for any n > 0 and the lattice of open
subsets of (Spec V )∗ looks as follows:

∅ = V (1) ( · · · ( V (an+1) ( V (an) ( V (an−1) ( · · · ( V (a1) ( V (a0) = (Spec V )∗.

Now the desired homeomorphism is plainly given by the maps n ∈ Xσ ¿ Pn ∈ (SpecV )∗.
¤
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