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What to do when it rains:

The Umbrella Method for Compiling Sudoku

Control # 2850

February 19, 2008

Abstract

In this paper we detail the Umbrella Method for Compiling Sudoku.
We begin with an exposition of various algorithms for solving Sudoku, before dis-

cussing how this and other factors can affect the difficulty of a puzzle. This leads us
to conclude that a metric for defining difficulty levels should be based on the methods
required for solution.

Following this, we briefly consider the symmetries of the Sudoku Square and Ran-
dom Number Generation, in order to better understand the mechanics of compiling
Sudoku. After an exploration of current common compilation techniques, we formulate
the Umbrella Method.

This is a easily implemented method using a computer, which uses random number
generation until a unique grid is found, then increases and reduces the grid until the
required difficulty is reached.

This results in a wide variety of uniquely solvable Sudoku of every required level.
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1 Introduction

“It sounds crazy, but I’ve been lying here wishing I had a crossword puzzle
to work on.”[1]

Bill, in D. E. Knuth’s mathematical novel from 1974, when bored, wishes for a cross-
word puzzle to complete. Now, in 2008, he would be just as likely to wish for a Sudoku!
Sudoku were originally invented by Howard Garns in 1979, initially becoming popular in
Japan in 1986, and reaching Europe and the America’s in 2005[2]. Since then it has been
a mainstay of the puzzle pages of most newspapers, with several variations, from ‘killer’
Sudoku to ‘Hypersudoku’, or even a Sudocube; a Rubik’s Cube with the numbers 1 to 9
on each side[2]. As such, a lot of effort has gone into solving Sudoku, both by hand and
by computer, with Thomas Snyder recently winning $10,000 in the Philadelphia Inquirer
Sudoku National Championship[3]. However, much less work has gone into compiling them,
with many methods relying on guesswork, especially for classifying the difficulty, with many
different levels of classification being used. Thus an algorithm to compile puzzles of set
difficulties, with a unique solution without a lot of time is sought.

This paper seeks to create a reliable algorithm to compile Sudoku puzzles of varying
difficulty. It will do this by:

1. Analyzing the various methods used to solve Sudoku.

2. Analyzing how difficult Sudoku are, and creating a rating system.

3. Discussing and comparing the main methods for compiling grids.

4. Detailing and analyzing our own algorithm.

2 Terminology

Unfortunately, there is no standard terminology yet for describing parts of a Sudoku, and
so it is necessary to introduce the terminology which we will use.

• A cell is a single square into which a number is entered.

• A row is a horizontal collection of 9 cells.

• A column is a vertical collection of 9 cells.

• A box is a 3×3 collection of cells.

• A bridge is a horizontal collection of 3 boxes.

• A tower is a vertical collection of 3 boxes.

• The neighborhood of a cell is the row, column and box which contain the cell, minus
the cell itself.

• A grid is the entire Sudoku puzzle.

For a pictorial representation, please see figure 1.

• A working object is the object that any algorithm is currently working on, be it a
cell, row, column or box.

• A possibility of a cell is a value which has not yet been determined to be inadmissible
for that cell.

• A solved cell is a cell for which the value has already been set.

• A Unique Missing Candidate is a single empty cell in a single row, column or box.
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• A Naked Single is a cell with only 1 possibility.

• A solved Sudoku grid is a 9 × 9 grid with the numbers 1 to 9 appearing in every
row, column and box, with one value in every cell.

Figure 1: Pictorial representation of the terminology used

3 Algorithms for solving Sudoku

To learn how best to generate a Sudoku of a particular difficulty, it is best to start by looking
at various methods of solving them, and how hard they are to solve by hand1.

3.1 Neighborhood Clearance Algorithm

This is the simplest method for clearing possibilities. Simply put, it involves checking every
cell in the grid for naked singles and, having found one, removing the possibility of the naked
single from the possibilities of its neighborhood. This solves any Unique Missing Candidates.

3.2 Hidden Singles Algorithm

This method is usually the second or third for any beginner to start to use. It involves
working with a row, column, or box. For each value from 1 to 9 that does not already
appear in the working object, you check to see how many cells in the object have that value
as an allowable value. If there is only one cell that can have that value, then this value is the
only possibility. For an example, please see figure 2(a). In this example, we are performing
the algorithm on the working column in green. Checking for the value 2, we can see that
the top 2 empty cells (arrows in red) can not permit 2 as a value. This means that the only

1Methods 1 - 5 have been developed from our experience. Method 6 comes from www.geometer.org/

mathcircles/sudoku.pdf, as do the names for our methods (Except for Neighborhood Clearance).
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cell that can have 2 as a possibility is the bottom cell in the column, and so 2 is the only
possibility for that cell. This effectively takes hidden singles, and turns them into naked
singles.

A flowchart of this method, suitable for programming, is in Appendix A.

3.3 Naked or Hidden Groups Algorithm

This is the first method requiring more than very basic logic. It involves finding a set
of n numbers in a row, column or box, such that all appearances of these n numbers as
possibilities for a cell occur in only n cells. This then means that these n numbers must
occupy these n cells, and so all other possibilities can be removed.

At no point does this method actually enter the value of a cell, and so it takes a while to
see why this actually helps. All it actually does is reduce the list of possibilities for some cells
and for the row, column or box in which it is done. For an example, please see figure 2(b).
The large numbers are fixed values, and the small numbers are the possibilities for each cell
in the box. From this, it is obvious that 5 and 9 (in red) can only appear in the top two
boxes. Therefore, 4, 6 and 7 can be removed as possibilities from these boxes.

A mathematical formulation of this method is in Appendix A.

(a) Example of the Hidden Single
Method

(b) Example of
the Hidden Groups
Method

Figure 2: Examples of Methods 1 and 2

3.4 Locked Candidates Algorithm

This is another method that relies on possibilities, and deals with a bridge or tower. We
will deal with a tower, but it can be rotated to work for bridges.

Assume that in one of the boxes of the tower, a particular value, a, only appears as a
possibility in up to 3 cells, with all of these cells being vertically aligned with each other.
This means that, in this box, a must appear in one of these 3 cells, and thus, in the column
to which the cells belong, a must belong to that box. Therefore, a can be removed as a
possibility elsewhere in the column. For an example, please see figure 3. In this tower, 6
is only a possibility in the top box in the right hand column (In green). Therefore, in this
box, 6 must be in the right hand column, meaning that 6 can be removed as a possibility
from the right hand column of the bottom box (In red).

A mathematical formulation of this algorithm is in Appendix A.

3.5 Forced Chains Algorithm

This method is the first of the ‘trial and error’ methods we will mention. To use this
method, you pick a cell with as few possibilities available as possible. Then, you simply
try each possibility in turn, keeping track of which possibilities are removed from each cell
in each run. Then, compare the possibilities that are removed. If any cell always has the
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Figure 3: Example of the Locked Candidates Algorithm

same possibilities removed for any possibility of the first cell, then these possibilities must
be incorrect. For an example, please see figure 4. Here, we are only dealing with a single
box, and are taking our cell to be the top right hand, which has the possibilities 3 and
9 (Figure 4(a)). Trying 9 first, we see that this precludes 9 from the top left hand cell
(Figure 4(b)). Trying 3 next, this forces the cell beneath to be 9, also precluding 9 from the
top left hand cell (Figure 4(c)). In either case, 9 is not a possibility for the top left cell, and
so it can removed, leaving 4 as the only possibility.

The main disadvantage of this method is that it relies upon having a unique solution.
However, as a Sudoku is not a Sudoku if it has a non-unique solution, this is not a problem!

(a) The initial
box

(b) The first
option

(c) The second
option

Figure 4: An example of the Forced Chains Algorithm

3.6 X-wing Algorithm

The X-wing Algorithm[4] is quite complicated. There is a formulation here, and a more
mathematical formulation in Appendix A, but for more infomation, see the bibliography
reference already citied. We will explain it for rows, but it can trivially be adjusted for
columns, and can be generalized to n rows or columns.

Firstly, label the cells of a row x1 to x9. For a value of a from 1 to 9, we require 2 rows
(rk and rl) where the cells with a as a possibility are only xi and xj for some i, j. If cell
xi in row rk is value a, then cell xi in row rl is not value a. Therefore, cell xj in row rl is
value a. In this case, all the cells xi and xj except in rows rk and rl can not have a as a
possibility.

However, if cell xi in row rk is not value a, then cell xj in row rk must be value a.
Therefore, cell xj in row rl is not value a, forcing cell xi in row rl to be value a. As before,
all the cells xi and xj except in rows rk and rl can not have a as a possibility.

Therefore, all the cells xi and xj except in rows rk and rl can not have a as a possibility.
There is a mathematical formulation of this at Appendix A.
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3.7 Dancing Link Algorithm

Donald E. Knuth’s Dancing Links Algorithm[5][6] is currently the most powerful method
available to solve Sudoku. It will find every single possible solution for a starting grid,
and using this can thus ensure uniqueness of solution. However, understanding how the
algorithm works, and in particular how it applies to solving Sudoku, is very tricky!

First, I will describe how the algorithm applies to Sudoku. The Dancing Links Algorithm
is an algorithm to find exact covers. The problem we now have is to define a set and subsets
such that they define our problem! The elements of our initial set are split into 4 distinct
parts. The first part is whether or not a particular cell has a number in it. This corresponds
to having a single number in each cell, and thus has 81 elements. The next 3 parts are
very similar, and correspond to whether or not each row, column or box has the numbers 1
through 9 in it. This thus has 9 × 9 × 3 = 243 different elements, giving us a total of 324
elements of our set S. The next thing to define is the general subsets with which to cover
our solution. These correspond to putting a single digit in each cell. For example, putting
a 1 in the top left hand cell corresponds to the subset of S with a number in cell 1, a 1 in
row 1, a 1 in column 1, and a 1 in box 1. This thus has 81× 9 = 729 different subsets. The
final thing to define is the problem subset. This correspond to checking each cell to see if
it has a value already, and then checking each row, column and box to see which values it
already has.

As you can see, our problem is now to find an exact cover of a set with 324 elements, out
of 730 different subsets! This would take quite a long time (and would actually give us every
possible Sudoku grid at this point!). The final thing we need to do is to cut out some of our
subsets (and some of our elements) by using the additional constraint that the solution cover
must contain the problem subset. This means checking the problem subset for an element
s of S and, having found one, removing the element s from our set, and also removing any
subset (except the problem subset!) which includes s from our allowable subsets. Eventually
the problem subset will contain no elements of S, and at this point it, too, can be discarded.
Finally, we apply the Dancing Links Algorithm to obtain our solution.

The Dancing Links Algorithm is a brute force method, and works by taking a subset,
removing all the now non-allowable subsets, and picking another subset. This obviously
means that this method should only be attempted by hand when the grid is already nearly
completed, or with a computer. The reason that the Dancing Links Algorithm is so powerful
is that it is based on D. E. Knuth’s Algorithm X[7], which makes backtracking very fast
when computerized.

4 Difficulty Levels

There are many approaches to the problem of defining a difficulty level for a particular
Sudoku puzzle. One way to define relative difficulty is by looking at the length of time it
would take someone to solve the Sudoku. This definition causes problems as different Sudoku
may take different people different lengths of time depending on the methods required to
solve it. In order to resolve this, a method could be devised to take the average length of
time that a sample population takes to solve various problems and to use this to find an
algorithm to find the relative difficulty. However, this requires a lot of research and finding
good algorithms could prove too difficult to find in limited time.

Another way of defining the relative difficulty is to look at the number of times that an
algorithm would have to run in order to solve a particular problem. For example, if one
puzzle has only 25 squares filled in but another has 30, then if the same methods are used
on each, it is likely (though not guaranteed) that the second one will require more loops to
complete. This will also be closely linked in with the above method of finding how long it
would take a human to solve a problem. Also, a computer could employ different algorithms
or apply them in different orders and so two ways of solving a problem may lead to different
ideas as to which problem is to be deemed harder.

A further way of trying to find relative difficulty is by looking at the methods required
to solve it. If a particular problem requires ‘more complex’ methods to solve the problem,
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then it can be deemed a harder problem. However, the order of the various methods must
also be looked at. Methods that are ‘easier to get your head around’ can be one way of
classifying the methods, or you can look at the number of steps required to use the method
algorithmically (i.e. how abstract or how many logical steps).

In order to try and classify the methods mentioned in the previous section, first note
that the definition of a solved grid is that every row, column and box contains one of each
of the digits 1,..,9, with every cell having only 1 value. So for the neighborhood clearance
algorithm, this is clearly directly checking that these conditions are satisfied and is also very
easy to implement, so can be justified to be the easiest algorithm. The ‘hidden groups’
algorithm is directly a generalization of the hidden singles algorithm and it also contains
the neighborhood clearance algorithm2, and so can be seen to be harder than both of these
methods. Similarly, the locking candidates’ algorithm also generalizes the neighborhood
clearance algorithm and is both conceptually harder and requires more logical steps than
the hidden singles algorithm, so can be classified as being more difficult. The forced chains
algorithm is very easy to conceptualize, however it dramatically increases the number of
steps needed, as some steps have to be taken multiple times, especially if looking at a
working cell with more than 2 possibilities. It also requires being able to store the state of
a grid, as two have to be compared. Using this method, allowing for as many possibilities
in a working cell as needed will always find a solution if there is one, as, given enough time,
this method will go through all the possible values of the current grid. Hence this method
ends up being quite complex. Which cells are better choices for using this algorithm are also
unknown, and hence this method could require a lot of time. Finally, the X-wing algorithm
is conceptually the hardest as it requires having the broadest idea as to what is going on.
Most methods only require you to look at the corresponding neighborhood or object, whereas
the X-wing method requires you consider the entire grid. It also requires a large number
of steps in the algorithm, especially for cases larger than 2, since there are a large number
of different possibilities to look at to find a candidate for the X-wing algorithm. Whilst
using a program3 to solve existing Sudoku, we have not found a grid which requires both
the X-wing and forced chain algorithms4. For these reasons, we suggest that the X-Wing
method and the Forced Chains Algorithm should be in the same difficulty level.

Further to these general methods of classifying the different algorithms, there is also the
problem of how much harder does using certain special cases of an algorithm make it. For
example, for the X-wing algorithm, n = 2 or n = 3 could be looked at, with the latter
requiring many more computational steps. Is the hidden groups algorithm only looking at
the case when n = 2 easier than the locked candidates, whereas using n = 3 is harder? Also,
rather than basing the difficulty of a problem on how hard an algorithm is being used, there
is also the issue of whether using one algorithm multiple times makes a problem harder than
using a harder algorithm only once.

One requirement for the classifications of difficulty levels is that there is a significant
enough jump between them all. That is, if you took the set of all Sudoku problems that can
be considered as one level of difficulty and you compare them to the set of all Sudoku that
can be solved by a higher level, then the difference needs to be ‘significant’. In fact, in order
to define good levels of difficulty, the difference between the different sets should be similar,
and they should also cover the range from a genuine (but non-trivial) easy through to a hard
puzzle, that can still be solved realistically with the various methods, with consideration for
the target audience.

To test if our current difficulty levels conform to this restriction we could take a filled
grid and enumerate the cells. Then take the first enumerated cell and remove its value.
Then use a computer to use the methods used at each level to try and solve the grid, taking
note of which ones can and which ones can’t. If one of them can, then remove the value from

2If a working cell is filled in, then using the hidden groups algorithm on the other 8 cells in an object (of
which the working cell is a part) and the 8 values not equal to the value that the working cell has, leads to
removing the working cell’s value as a possibility from the other cells

3Use of a computer program to solve Sudoku problems occurs frequently throughout this project. The
authors would like to note that these programs were modified from code developed by themselves over the
last year, in particular over Easter 2007

4These methods were tried on 10 of the hardest Sudoku published for solving by the general public

9



Page 10 of 26 Control # 2850

another cell and continue. If no methods work, this cell value can’t be removed, and we must
backtrack before moving onto the next cell. Continue like this until all cell removals have
been tried with each of the difficulty methods. Then, compare the number of different grids
that each method can solve in order to decide whether or not the levels chosen were ‘good’
ones. Obviously, this requires a base difficulty level and a maximum difficulty level already
set in place for which to compare intermediate levels. Since the numbers of solvable grids
will be large and other solved grids are similar (all share a certain number of properties), it
could be conjectured that knowing the values for this one grid will be enough to determine
whether the difficulty levels set are good ones, rather than trying out every grid that exists.

Obviously, this is computationally unfeasible, since the number of possibilities for taking
out any combination of numbers in any one grid is 281, although once you got down to the
point where no methods could solve a grid, you wouldn’t need to remove any other numbers
to test. For each grid, you would have to attempt to solve it up to 4 times, in order to test
each difficulty level (more if you were trying many different algorithms to try and come up
with a good difficulty level). This gives about 281 × 4

217 = 266 attempted solutions as an
upper bound, where 17 is the conjectured minimum amount of filled cells needed to define
a unique grid[8]. However, again, in the same way that you could approximate the total
number of grids by only starting off with a base case of one grid, you could approximate this
one grid by starting with a grid in which some of the numbers have already been removed. As
long as your first level (easiest) is still able to solve this grid, then this will give a reasonably
good idea as to the jumps between the difficulty levels. This also gives a computationally
feasible way of trying to find whether the methods that you’ve chosen for being in different
difficulty levels are good methods to choose. We call this process ‘shredding’.

We decided at first to try splitting the levels like this, pending further analysis:

• Level 1: Using only the neighborhood clearance algorithm

• Level 2: Using the above and the hidden singles’ algorithm

• Level 3: Using the hidden groups and locked candidates algorithm

• Level 4: Using level 3 algorithms and X-wing and forced chains algorithm (for n = 2)

We tried the shredding method5 on various Sudoku, which had been previously classified
as fiendish[9] (some at level 2, most at level 3), and didn’t have too many routes to work
through. The results are shown in table 1. These point towards the jump from level 3 to
level 4 as not being that large, as there are not many level 4’s created from level 3 grids. This
shows that our current definitions for setting the difficulty levels may not be very evenly
spread. However the results from removing one number only (In Appendix B) suggest that
from a level 1 to a level 2 and from a level 2 to a level 3 or level 2 to 4 is not too difficult
to do, and hence is a good definition for difficulty levels. However, from level 3 to level 4 is
similarly not so good a ratio and so implies that this might not be such a good distinction.
However, looking at computational difficulty of the level 4 methods as well as the leap in
the difficulty of the concept leads to this being a valid choice. In order to properly decide
whether or not these are good difficulty levels it would be necessary to use the process of
shredding on a starting grid with more solved cells, which would give a better idea as to
exactly how many grids of each different difficulty level there are.

Grids Tried Level 1 Level 2 Level 3 Level 4
825 0 3 19 2

Table 1: Results from shredding fiendish puzzles

One issue is that many of our starting grids were pre-defined when we analyzed them.
This means that in fact, whilst the different levels look reasonably spread with the data we

5Our programs did not include the X-Wing method, but as mentioned before this is roughly equivalent
to the forced chains algorithm, which was included
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have, the data is skewed. There are fewer readings of level 2 difficulty levels compared to
level 3 than there are in reality. This means that there should probably be an extra difficulty
level inserted between levels 2 and 3.

In order to add in a new difficulty level between 2 and 3, we could see how many instances
of the hidden singles algorithm is required, based on the simplest first method, by which you
use the neighborhood clearance algorithm as many times as possible, then use the hidden
singles algorithm, before repeating. In this way, you can find out how many times the
hidden singles algorithm is needed (although this result may change depending on which
working objects were chosen). Otherwise, you could look at the number of algorithms that
are required to solve a problem. However, more analysis would need to be done to accurately
determine where the difficulty level should be set. Also, depending on the target audience,
another difficulty level may not need to be added, if the people who were solving the Sudoku
were more used to solving harder problems.

Overall, we have decided that the difficulty levels that have been described above are rea-
sonable definitions, and to get a better one would require more analysis than time currently
allows.

5 Sudoku Squares: A Special case of a Latin Square

If we are to be able to construct Sudoku grids, we need to have some idea of what makes one
completed grid different to any other completed grid, and how difficult it is to find them.

A Latin Square is a n × n grid, with the numbers 1 to n in every row and column.
From this, it is obvious that a Sudoku square is a special case of a Latin Square, with the
additional constraint that the boxes must also contain the numbers 1 to n[10]. So, how
likely is it that a 9 × 9 Latin Square is a Sudoku square?

The answer is not very likely at all. There are 5.5× 1027 distinct Latin Squares[10], but
only 6.7 × 1021 distinct Sudoku squares[11]. This is a difference of a factor of 8.3 × 105.
This tells us that the likelihood of finding a Sudoku square, even with a Latin Square, is
incredibly small! And, if we increase the starting grids to any grid with 9 appearances of
the digits 1 to 9, the likelihood of it being a Sudoku grid plummets to 1 in 6.6× 1087!

So, if finding grids is so unlikely, is there any easy way to algorithmically do it? Unfortu-
nately, without using Knuth’s Dancing Links Algorithm and back tracking, the answer is no.
It is just too likely that something will create a grid that is impossible to solve. However, if
you have any grid, it is possible to find lots more due to the group symmetries of a Sudoku!

5.1 The symmetries of a Sudoku square

So, what group operations can we perform on a Sudoku grid[12]? There are 5 main types,
in two distinct groups - Permutations, and rotations.

5.1.1 Permutations

The first permutation that has to mentioned is a permutation by S9 of the digits of the grid.
Obviously, if we do this, we will still have a Sudoku.

All the other permutations are of S3, as they all involve permuting 3 objects. The first
2 we will mention involve permuting within the towers and bridges. We will only explicitly
explain why permuting within the towers is an allowable operation. The first thing to note,
is that all the columns still have all the numbers from 1 to 9 in them, as nothing has
disturbed that. Also, no numbers have moved up or down within the columns, therefore
they are still within the same box. Finally, as the numbers have only moved horizontally,
all of the rows still have all the numbers from 1 to 9 in them, so the grid is still allowable.
The final two permutations involve permuting the towers and bridges themselves. A very
similar treatment will show that this is also an allowable operation.

It is possible to flip the grid in the vertical axis by permuting the outside towers, and
then permuting the outside columns in each tower. For example, starting from figure 5(a), if
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we permute the outside towers, we get figure 5(b). If we then permute the outside columns
of each tower we get figure 5(c), which is just a flip in the vertical axis.

(a) Our starting grid (b) Permute the first and last
towers

(c) Permute the first and last
columns

Figure 5: The equivalence of permutations and reflection

5.1.2 Rotations

There are two rotations possible. The first is a rotation by 90◦, and the second is a reflection.
However, a reflection is also the result of certain permutations, as shown above. Therefore
we can ignore a reflection, as it is part of the permutations of the square.

So how many Sudoku squares does this mean are non-equivalent? One might be tempted
to take the total number of Sudoku squares (6.7 × 1021), and divide by the total number
of permutations (9! × 3!8 × 2). However, this gives a non-integer answer, roughly equal
to 5.472 × 109, due to some operations being equivalent to the identity operation only for
particular grids. The exact answer, by an application of Burnside’s Lemma, is actually
5.473 × 109. However, this does have a very strong correlation with our rough calculation,
down to the 4th significant figure.

6 Random Number Generation

Some of the most well known ways of generating random numbers[13] are by the use of dice,
coins, cards, roulette wheels, or other physical objects. These objects are widely available
for the general public to use in everyday situations, but their use is, in general, quite limited
and time-consuming. One of the first tables of random numbers produced, for experimental
uses and other applications requiring large lists of numbers, was by L.H.C Tippett in 1927
from ‘digits taken at random from census data’. One of the significant problems with
random number tables however, is the amount of memory needed if they are to be stored
on a computer. If they are not stored, then they will have to be input whenever they are
required, which would be extremely time-consuming and inefficient.

For this reason, computer scientists and numerical analysts have tried to produce algo-
rithms that output random (or pseudo-random) numbers. One of the most well known and
most widely used in computers was developed by D.H Lehmer in 1951[14];

Choose 4 Integers;
m - modulus
a - multiplier
c - increment
x0 - starting value
Where m > 0, 0 < a < m, 0 ≤ c < m, 0 ≤ x0 < m

Then

12
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xn+1 = (a× xn + c)mod(m)

This is a linear congruential sequence. The sequence is only pseudo-random as each
entry is determined by the entry before. As the algorithm is completely dependent on the
values of m,a, c and x0, it will produce different sequences for different values of these.
For certain values, it can produce sequences with short periods (in which the sequence
enters a cycle, during which numbers recur sooner than they should). For example, with
m = 10, a = c = 6, x0 = 1, the produced sequence is 2, 8, 6, 2, 8, 6, .... It has been shown
by number analysis that this can be avoided if m is large and b is of order m

10 , and is an
arbitrary constant ending with the digits ..x21, where x is even[15]. An effective way of
generating a starting seed is to use the current time in millisecond, mod a reasonable value.

By using the formula In =
⌈

xn

m

⌉
× r we will be given random numbers in the interval

[1, r]. There are several statistical tests that have been carried out to verify that these choices
produce suitably random sequences, i.e. Kolmogolov- Smirnov test, Poker Test, Permutation
test, and χ2 test. An even ‘more random’ selection of numbers can be gained if a random
selection of entries is chosen from the created random sequence. As most computers, and
computer software will use this, or similar, algorithms to create random numbers, anytime an
object is required to be selected at random for the process of creating a Sudoku, a computer
command will be used to generate the numbers.

7 Compiling Sudoku puzzles

There are many different factors that can be taken into account when compiling Sudoku.
Obviously, the most important are that they obey the rules, are unique and are solvable
by logic. However, less important considerations are its aesthetic appeal i.e. rotational
symmetry, evenly spread numbers, and how ‘fun’ it is to solve. These considerations will be
discussed with reference to each of our methods.

As previously mentioned, there are two major types of method commonly used to compile
Sudoku puzzles. The first method involves starting with a finishing pattern of givens in place,
and filling the pattern in, whereas the second starts with a full grid, and slowly removing
numbers until you reach the pattern you want. These methods are sufficiently different to
require separate handling. We will also mention a completely random way of choosing grids,
before comparing the methods. However, we will first discuss how the pattern itself can
affect the possible grids.

7.1 Patterns

The pattern of cells which are completed, and which are left, is important in making sure
that a Sudoku has a unique solution. For instance, clues given only in boxes 2, 4, 5, 6 and
8 cannot give enough information about the rest of the boxes, to ensure uniqueness (See
figure 6).

Figure 6: An example of non-uniqueness
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As the towers and bridges can be permuted within their rows/columns, without losing
validity as a solution, this applies also to several other combinations in which four boxes
are left entirely blank. It has been conjectured that the minimum number of entries that
could ensure a unique solution is 17; however, grids with as few as four blank cells can also
have no unique solution[8]. This indicates that the number of cells left in a grid bears little
relation to whether or not it is solvable. In fact, within most grids there are certain cells,
or groups of cells for which it is essential that at least 1 appears visible in order to ensure
uniqueness. Due to these problems with uniqueness, setting which cells are to be revealed
before completing the grid can lead to unsolvable, or invalid, problems, even when a valid
grid is found. Figures 7(a) and 7(b) show two puzzles starting with the same pattern of
revealed cells. While the first is uniquely solvable at difficulty level 3, the second can lead to
two different solutions (See figure 7(c)). Removing any more than 3 cells from a completed
grid can also lead to non-uniqueness, whether the pattern is set initially, or afterwards. For
this reason, it is important to check that the puzzle is a true Sudoku after it is constructed.
This can be done by computer Sudoku solvers, such as the Dancing link Algorithm.

(a) First Grid: Solvable at
level 3

(b) Second Grid: Non-unique (c) Both of the possibilities of
the second grid

Figure 7: An example of the importance of the starting pattern

In addition to the considerations for uniqueness, another issue for consideration is whether
symmetry (rotational or reflectional), is desired in the puzzle. This is, in general, an aes-
thetic concern. Also, pictures or patterns such as lattices may be desired[16]. If none of
these aesthetics are required, a pattern can be produced by randomly choosing squares. If
symmetry is required, then a random number generator can again be used, with the chosen
cells corresponding opposite also being chosen/removed.

7.2 Additive Compilation

When generating a Sudoku from a blank grid with a preset pattern, there are several methods
that can be used. One method is to start by filling in the entire set of one’s, then the two’s,
and so on, checking with each entry that the rules for a Sudoku grid still apply. This can
either be done completely randomly, using a number generator to assign cells, or by initially
assigning numbers randomly, and then working out their logical consequences. With this
method, if a point is reached such that a number cannot be placed without breaching the
rules, it is necessary to back track, and delete previously placed entries. This will then allow
other combinations of placements to be attempted. Using random permutations of the nine
numbers to fill in the grid row by row, (or columns/boxes) is another similar technique.

A more logical way to complete a grid is to place one number on a cell that is to remain
blank, and then place numbers on the surrounding ‘visible’ cells that will allow this cell to
be solved with this number. These newly entered numbers will then lead to the possible
positions of other numbers. Again, this method relies on some elements of random choosing,
and may require some backtracking. With this method, it is also possible to miss logical
steps that determine the numbers to be set in certain places. This could lead to problems
with solvability and non-uniqueness[17].
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7.3 Reductive Compilation

For this method, the compiler starts with a completed Sudoku solution grid. The aim is to
produce a puzzle by removing elements from the grid. This reduction can be done either
randomly, by removing cells/pairs of cells chosen at random, or deliberately in order to
reach a desired pattern. At any stage in this method, the removal of a certain cell may
cause the puzzle to become non-unique, and hence, no longer a Sudoku. Consequently, with
each removal it is necessary to use an algorithm to verify the continuing uniqueness of the
puzzle. If the puzzle loses uniqueness at any point, then the last element to be removed
must be replaced. At this point the compiler may decide to leave the puzzle as it is, or may
attempt to take away a different element.

Trying to produce a Sudoku that fits a specific pattern with this method is very difficult.
If any one element needs to be removed from a cell that is required to be filled to ensure
uniqueness for that specific grid, then the puzzle will no longer work. In this instance, the
pattern must be modified, in order to enable a valid puzzle to be created. Choosing the
pattern at random is in many ways the best method for creating puzzles when starting with
a completed solution grid[18][19].

7.4 Random Compilation

This method relies very heavily on a computerization of the Dancing Links Algorithm.
However it does guarantee a Sudoku and uniqueness. It involves randomly entering digits
into cells, and then checking, via the Dancing Links Algorithm to see if it has at least 1
solution. If it has no solutions, it back tracks 1 step, and then continues. If it has more
than 1 solution it also continues entering digits. If, however, it only has 1 unique solution,
it stops.

7.5 Comparison

All of these methods have their different strengths and weaknesses that complicate the
production of Sudoku. With the reduction method, a valid Sudoku can always be found by
replacing the last cell that was removed (provided it is being checked for uniqueness with
every removal). With the random method, a valid Sudoku will also be produced with every
attempt. The additive compilation method however can lead to a non-unique problem, even
after completing a full solution grid. This would mean that either the grid would have
to be effectively scrapped, and a new one started, or a significant number of steps would
need to be back-tracked. This could obviously take a long time, especially as there can be
no guarantee that it will not occur more than once. For a computer this is clearly not a
problem, given their memory capacities and processing power. If it is to be attempted by
hand, there will be the obvious problems of remembering, and keeping track of, the order
in which cells are filled, how far back the backtracking went, and what solutions have been
previously attempted.

The significant reduction in the number of times that the compiler needs to backtrack
in the reduction method before a valid Sudoku is found could be seen as an advantage over
the additive method. The drawback however is the need to check for uniqueness at every
step. With access to a computer this can be done quite easily with Dancing Links, but if
working by hand, this may become a challenge once the solution grid has been significantly
reduced. The number of times that the compiler would be required to backtrack would also
be increased in this method if, after one removal proves invalid, the compiler then attempts
to remove a different cell. This may be done in order change the difficulty level. At this
stage, the compiler can encounter some of the same problems as when using the additive
method if they are attempting to create the Sudoku by hand.

The difficulty when working without a computer applies also to the random method,
due to the use of the dancing links algorithm to check for uniqueness. Backtracking in this
method occurs when the random number generator produces a combination of number and
cell which do not fit the Sudoku rules. As in the reduction method, this involves only going
back by one entry each time.
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One problem with the reductive method is in how to produce the initial grid. Those
methods used to create a solution grid in the additive method can be used here, but the same
problems will occur as in the additive method. Grids can also be created by permutations
of any one grid, but this will lead to only a limited number of grids, and very little variety
in the Sudoku and their solutions. The random generation used in the random and additive
methods will produce a lot of variety between puzzles. With a computer, it is possible to use
the Dancing Links Algorithm to produce an assortment of grids. This would increase the
amount of variety within the different Sudoku, but these would probably be very similar,
due to the way they are produced in a logical order.

With the additive method where the entries after the initial placement are added fol-
lowing logic rather than at random, if someone tries to solve the finished puzzle, they will
generally have to do it in the opposite direction to which it was first created. Normally,
this would not pose too many problems, unless the creator wished to solve it themselves,
although in some instances it could lead to the solution requiring some extremely complex
methods initially and only easier methods as it nears completion. This does not occur in
any of the other methods. The level of enjoyment gained by completing the Sudoku could
suffer because of this.

The ease with which a chosen difficulty level can be reached varies greatly among the
methods. While the difficulty levels are defined by the algorithms needed to solve the
Sudoku, reaching a preset level can present quite a problem. With the additive method,
there is no way to actually choose what level you wish to have. The level of a produced
Sudoku can be discovered, but the production of the Sudoku could create a puzzle of any
difficulty. For both of the other methods, it is easier to choose what difficulty level you
wish for a created Sudoku to be. The random method starts with more difficult problems,
and generally works up towards the easier levels. A level three problem can be converted
into a level two puzzle by the addition of more values into the randomly chosen cells. The
values that are taken will be specified once the Sudoku has achieved uniqueness. In the
same way, a level two problem can become a level one. In theory, this method seems to be
quite adaptable to finding each of the different levels; however in practice, it will often miss
out the higher levels, and first produce a Sudoku of level two or lower. This is mainly due
to a combination known as a Unique Rectangle[4], in which you have 4 cells arranged in a
rectangle, each of which can take one of two values. In order for this to be solvable, at least
one of these numbers is required.

The reductive method works in the opposite direction. From the original completed grid,
cells are emptied to produce a level one puzzle. As cells are removed, either the puzzle will
stay at the same difficulty level, the difficulty will increase to a higher level, or the puzzle
will become unsolvable. The method of shredding used in trying to define difficulty levels
is actually an extremely powerful reduction technique, which can remove several cells at
once, and analyze the levels of the produced Sudoku. From this analysis, it can be seen
that it is possible to reduce lower level grids to create higher difficulty puzzles. This does
however require a computer, as the number of times which unsolvable puzzles are created by
a removal and the move needs to be reversed can become quite large. Occasionally, however,
a point may be reaching in which any removal from the grid will result in non-uniqueness.
If this occurs before a desired difficulty is reached, then the compiler may need to backtrack
several stages.

In conclusion:

• The additive method does not produce a Sudoku with every trial.

• There is more variety of puzzles provided by the additive, and random methods, than
if the reduction method is used from a set subset of Sudoku grids.

• The additive method requires significantly more backtracking and repeating of steps
to create a Sudoku. Random and reductive methods require only backtracking one
step at a time to reach the same point.

• All methods ideally require the use of a computer.
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• The additive method can only be classified for difficulty level; it cannot be produced
to a certain level. The random method will sometimes miss out harder difficulty levels,
while the reductive method will occassionally reach a point where no more removals
may occur before the required level is reached.

8 The Umbrella Method

So far we have discussed how we are going to rate Sudoku, and various methods already
used to compile Sudoku. The main problems encountered are getting non-unique grids, and
predicting the level of the Sudoku. The method we suggest using is as follows:

• Stage 1: Start with a blank Sudoku grid. Randomly place the numbers 1 to 8. At this
point it is impossible to have an unsolvable grid.

• Stage 2: Generate a random digit, x, between 1 and 81. Find out if cell x is empty.
If the cell is not empty, begin Stage 2 again. If the cell is empty, place a random digit
between 1 and 9 in the cell. Finally, use the Dancing Links Algorithm to check for at
least 2 solutions. If there are 2 or more solutions, begin Stage 2 again. If there are
less than 2 solutions, go to Stage 3.

• Stage 3: See how many solutions there are. If there are no solutions, remove the last
value, and go back to Stage 2. If there is only 1 solution, note down the solution, and
continue to Stage 4.

• Stage 4: Check the grid to see what level it is currently at. If it is currently unsolvable
using any level method, generate a random digit x between 1 and 81, and fill cell x in
with its unique value, and go back to Stage 4. If it is at level n, you now have a level
n grid, and continue to Stage 5.

• Stage 5: Attempt to solve your level n grid using level n−1 methods only. If a partial
solution is obtained, it should then be inspected, and just enough digits entered to
enable a level n− 1 method to proceed. If a full solution is obtained, you now have a
level n− 1 grid. Let n = n− 1, and return to Stage 5.

There are several advantages of this method.

1. You are guaranteed to get a Sudoku grid with a unique solution as, if at any point you
have a non-unique solution, you back track a single step to get multiple solutions.

2. It is possible by this method to generate any of the 5.5× 109 complete Sudoku grids,
thus giving you a wide variety of problems, hopefully making our grids ‘fun’ for a
human solver.

There are unfortunately also several disadvantages of this method.

1. This method is not really feasible for a human compiler, especially in the early stages,
due to the use of the Dancing Links Algorithm. To give an idea of the scale of this
problem, with 8 digits entered into the grid, you are trying to find an exact cover of a
set with 284 elements from between 497 and 553 subsets of your set.

2. It is also possible for the first unique Sudoku grid to not be of the highest difficulty.
This is mainly due to Unique Rectangles.

We ran this method 5 times in order to initially evaluate its effectiveness. Unfortunately,
after Stage 3, we checked the grids for their difficulty, and they were all at Level 2. This
suggests that some modification is necessary.

However, from the results in Appendix B, you can see that Level 2 Sudoku were reason-
ably effective at ‘containing’ both Level 3 and Level 4 Sudoku. From the 22 Level 2 Sudoku
that we tested, by removing only one value at a time we found 6 Level 3 Sudoku, and 6 Level
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4 Sudoku. This is a reduction of approximately a quarter. Our first method is very fast at
producing Sudoku, and so finding enough Sudoku to test for contained Sudoku should not
be a problem.

This suggests that we should modify our method as follows:

1. Stage 1(b): Follow our previous method until the end of Stage 3.

2. Stage 2(b)Check the grid for its level. If it is the right level, end. If it is below the
level required, use the ‘shredding’ method to increase the level. If this does not work,
add a single number into the grid, and repeat from Stage 2(b). If it is above the level
required, add a single number into the grid, and repeat from Stage 2(b).

Examples of the Sudoku created by this method are below in figures 8 and 9. All changes
are marked in red. Figure 8(a) is the grid initially produced by our random production
method, at level 2. Figure 8(b) is our initial grid with 3 numbers added, making it a level 1.
Figures 9(a) and 9(b) are Levels 3 and 4 respectively, each involving the removal of 1 digit
from our starting grid.

(a) Our initial Level 2 Grid (b) Our Level 1 Grid

Figure 8: Our Level 1 and 2 grids

(a) Our Level 3 Grid (b) Our Level 4 Grid

Figure 9: Our Level 3 and 4 grids

The umbrella method which we have produced is not feasibly implemented by hand,
however using a computer, and the correct software, it becomes relatively quick and easy to
execute. In essence, the random compilation method is used to build a Sudoku, while the
reductive compilation method is used in the refining of the difficulty level of the product.
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As such, many of the strengths of the methods are exploited, while their weaknesses are
minimised. For instance, the random beginnings of the method will ensure there is a lot
of variety between the different puzzles which are created, and will also guarantee that a
Sudoku will always be found. The provision that, if a grid cannot be reduced any further
or the level is too low then a new cell will be added at random reduces the problem of
being unable to reach certain difficulty levels. Problems caused by unique rectangles in the
random method, will generally not be as severe in the umbrella method, due to the addition
of the reduction method techniques.

There are still problems though. Like in the reduction method, it may still be possible
to find a grid with a relatively high number of cells filled in that cannot be reduced using
the shredder. This example (Figure 10) is a level 1 problem, but using the shredder reveals
that there only 4 level 2 possibilities and no level 3 Sudoku problems. Using our shredder
on this example required testing 3880 different Sudoku grids. As, in general, adding an
extra number doubles the number of Sudoku problems that the shredder would have to
solve (although this can be improved upon, since the number that has just been entered is
fixed), by only adding a few numbers, the amount of processing required soon becomes too
large to be feasible.

Figure 10: A problem grid for our Shredder method

Another problem with this method is what happens when you get unique rectangles.
Since many grids contain them, building up a random grid by using the dancing links
algorithm leads to a likelihood of finding a grid with a unique rectangle in. If this happens,
then the dancing links algorithm will keep giving a result of it being non-unique, until one
of those 4 squares have been managed to fill in.

In order to get around this problem, one method is by taking a record of which numbers
you filled in, in which order. If you find that you have to use a large amount of numbers to
define a unique grid (therefore making the shredder method too complicated), take the final
number that you had to use. This is likely to be a number for one of the unique rectangles.
Remove all the numbers, and go through the process again, but this time filling in this cell
first, before following in the same order as before. Again repeat the process. Eventually, you
should get a unique solution for which the number of cells is not so large that the shredding
method doesn’t work. This number depends on the efficiency of the shredding algorithm,
as well as time constraints and processing constraints, however, an absolute maximum of 36
cells filled in would be a good start, since any more than this probable makes the problem
too easy6.

If you ignore the above method for getting around the problem of unique rectangles, the
method itself is not particularly complex, although it does require the use of a computer to
do the dancing links algorithm and shredding. Any other method would also need to use
many of the algorithms in the shredding algorithm, since you need to be able to find out

6while there is not a direct correlation between the number of cells filled in and the difficulty level,
nevertheless, there is a correlation, and any grids with more than this number can be deemed too simple
(looking at pre-existing Sudoku problems, and counting their totals)
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what difficulty level a certain problem is.
One advantage of this method is that it is easily extensible to include finding grids with

certain properties, for example symmetry. For this method, when picking a random place
to put the next number, require that the number placed after this is placed in the correct
symmetric place, filling it in with a random number and checking that this still defines a
possible grid. This method would be more complex and is harder to find a grid of the correct
difficulty level, but could be done.

A flow chart of this method is shown in Appendix C, and this shows that the method
is relatively simple to implement. The method has been termed ‘the umbrella method’
because of the property that as you start looking for a grid, first of all, you fill in numbers
one at a time. Once a number is in the grid, having been checked that it does not define an
impossible-to-solve grid, it is not removed during this stage. Hence the grid can be thought
of as being a line, slowly becoming more difficult. Once the point is reached where the
shredding method is needed, it checks all strands of the grid, removing each number in turn.
With each number removed, the grid can be thought of as getting harder. Hence if the
difficulty level is plotted against the one dimensional representation of the grid that is being
filled in, then it looks like figure 10, which we liken to an umbrella.

Figure 11: A Pictorial representation of the Umbrella Method

9 Conclusion

Throughout this project, we have considered many different techniques, methods and factors
that can affect the production or classification of Sudoku. Some of these have been discarded,
while others have become integral parts of our final method; the Umbrella Method.

When considering difficulty levels, we decided that the most logical way to classify the
different levels was by the logical methods needed to complete the puzzle, with each increas-
ing difficulty level requiring more complex methods. While we believe our grading system
to be reasonable, with more analysis the system could be extended. A direct extension
would be to find and classify further methods of solution. Another method could be to take
account of the number of repetitions of each method needed to complete a Sudoku, or the
total number of algorithms a computer must use.

Our algorithm for creating Sudoku was produced from the amalgamation of two separate
methods used to create Sudoku. In brief, a Sudoku is created by the addition of random
numbers to a blank grid, until a grid is produced which has a unique solution. At this point,
the current difficulty level is established. If a harder Sudoku is required, then the shredding
technique is applied, to find a suitably difficult puzzle. If the requirement is for an easier
puzzle, the compiler has to fill in more random cells, to try to obtain a puzzle of the required
level.

The method in itself is not complex; it is only the necessity to utilize and program
a computer in order to complete the otherwise extremely time consuming actions of the
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dancing links algorithm and shredding that causes this algorithm to be considered anything
other than simple.

Without a computer we suggest using a reductive method, but be prepared for a lot of
backtracking.
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A Algorithms

A.1 Hidden Singles Algorithm

Figure 12: A Flow Chart of the Hidden Singles Algorithm

A.2 Hidden Groups Algorithm

Take a working object, with cells x1 to xr. Then, for z = 1 to 9, set S = {xi : z is a
possibility in xi}. If |S| = |{y ∈ {1 . . . 9} : y is a possibility in xi ⇒ xi ∈ S}| then ∀z /∈
|{y ∈ {1 . . . 9} : y is a possibility in xi ⇒ xi ∈ S}| the z is not a possibility for each xi ∈ S.
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A.3 Locked Candidates Algorithm

If ∃ 3 cells, x1 . . . x3, xi belonging to the same box and the same column or row, such that
∃y ∈ {1 . . . 9} such that y is not a possibility in the box\{x1 . . . x3}, then y is not a possibility
in the column or row\{x1 . . . x3}.

A.4 General X-Wing Algorithm

For each value of a ∈ {1 . . . 9}, if ∃r cells x1 . . . xr, r < 9 for which |{y a row : ∃i with
a a possibility in cell xi in row y}| = r. Let these rows be yj , j ∈ {1 . . . 9. Then, for
x /∈ {x1 . . . xr}, a is not a possibility for cell x in row yj , j ∈ {1 . . . 9}.

B Statistics

Starting Level Starting Number Grids Created
of Grids Level 2 Level 3 Level 4

1 17 17 0 0
2 22 6 6
3 8 1

Table 2: Grids created by removing 1 number
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C The Umbrella Method

Figure 13: The first flow chart describing our method
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Figure 14: The second flow chart describing our method
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