Marie Françoise BIDAUT-VERON
 Université de Tours,France
 veronmf@univ-tours.fr

Quasilinear elliptic equations with source terms involving the function or its gradient

in collaboration with Haydar ABDELHAMID

Abstract

Here we consider a quasilinear equation of the form

$$
\left\{\begin{array}{c}
-\Delta_{p} v=\lambda f(x)(1+g(v))^{p-1} \quad \text { in } \Omega, \tag{1}\\
v=0 \quad \text { on } \partial \Omega,
\end{array}\right.
$$

where $p>1, f>0, \lambda>0$, and g is nondecreasing, $g(0)=0$. We show a precise link with a second problem presenting a source gradient term with a natural growth:

$$
\left\{\begin{array}{c}
-\Delta_{p} u=\beta(u)|\nabla u|^{p}+\lambda f(x) \quad \text { in } \Omega, \tag{2}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $\beta(u) \geqq 0$, defined on an interval of \mathbb{R}. We deduce new results of existence and multiplicity concerning the two problems, and the existence of extremal solutions, in particular when g is convex and $\lim _{t \longrightarrow \infty} g(t) / t=\infty$.

