Parabolic problems with dynamical boundary conditions joint work with Joachim v. Bellow (Calais) & Wolfgang Reichel (Karlsruhe)

Catherine Bandle

University of Basle, Switzerland

Summer School 2008 Swansea (Great Britain) July 7-11

イロト イ押ト イヨト イヨトー

1

Abstract

An existence theory for local solutions of a parabolic problem under a dynamical boundary condition $\sigma u_t + u_n = 0$ is developed and a spectral representation formula is derived. It relies on the spectral theory of an associated elliptic problem with the eigenvalue parameter both in the equation and the boundary condition. The well-posedness of the parabolic problem holds in some natural space only if the number of negative eigenvalues is finite. This depends on the parameter σ in the boundary condition. If $\sigma \ge 0$ the parabolic problem is always well-posed. For $\sigma < 0$ it is well-posed only if the space dimension is 1 and ill-posed in space dimension ≥ 2 . By means of the theory of compact operators the spectrum is analyzed and some qualitative properties of the eigenfunctions are derived. An interesting phenomenon is the "parameter-resonance", where for a specific parameter-value σ_0 two eigenvalues of the elliptic problem cross. Depending on the time some qualitative properties will be discussed.

References

C. Bandle and W. Reichel, A linear parabolic problem with non-dissipative dynamical boundary conditions, Recent Advances on Elliptic and Parabolic Issues, Proceedings of the 2004 Swiss-Japanese Seminar, M. Chipot and H. Ninomiya eds., World Scientific (2006), 46-79.

C. Bandle, J. v. Below and W. Reichel, *Parabolic problems with dynamical boundary conditions: eigenvalue expansion and blow up*, Rendi. Lincei Mat. Appl. 17 (2006), 35-67.

C. Bandle, J. v. Below and W. Reichel, Positivity and anti-maximum principles for elliptic operators with mixed

boundary conditions, J. Eur. Math. Soc. 10 (2007), 73-104.

イロト 不得 とくほ とくほ とう

э

What is the problem?

 $D \subset \mathbb{R}^N$ is a bounded Lipschitz domain with outer normal *n*, $q(x) \in L^{\infty}$ non-negative function, $\sigma(x) \in C^0(\partial D)$

$$u_t - \Delta u + qu = f(x, t) \quad \text{in} \quad D \times (0, T) \tag{1}$$

$$\sigma u_t + u_n = 0$$
 on $\partial D \times (0, T)$, (2)

$$u(x,0) = u_0(x).$$
 (3)

Separation of variable f(x, t) = 0

We seek for a solution of the form

$$u(x,t)=\phi(x)\alpha(t).$$

Then

$$\frac{\dot{\alpha}}{\alpha} - \frac{\Delta \phi}{\phi} + q = 0 \text{ in } D \times \mathbb{R}^+.$$

 $\alpha(t) = e^{-\lambda t}$ and ϕ solves

$$\triangle \phi - q\phi + \lambda \phi = 0 \text{ in } D, \quad \phi_n = \lambda \sigma \phi \text{ on } \partial D.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへの

Eigenvalue problem

$$\Delta \phi - q\phi + \lambda \phi = 0 \text{ in } D, \quad \phi_n = \lambda \sigma \phi \text{ on } \partial D.$$

An eigenfunction is a critical point of the Rayleigh quotient

$$R[v] := \frac{\int_D |\nabla v|^2 dx + \int_D qv^2 dx}{\int_D v^2 dx + \oint_{\partial D} \sigma v^2 ds} := \frac{\langle v, v \rangle}{a(v, v)}.$$

₹ 990

イロト イポト イヨト イヨト

Min-max principle

Assume $q \neq 0$ and $\sigma = \sigma^+ - \sigma^-$ whith $\sigma^- \neq 0$.

$$\lambda_{1} = \inf_{W^{1,2}(D)} \langle v, v \rangle, \quad a(v, v) = 1,$$

$$\lambda_{-1} = \sup_{W^{1,2}(D)} - \langle v, v \rangle, \quad a(v, v) = -1.$$

$$\lambda_{j} = \inf_{W^{1,2}(D)} \langle v, v \rangle, \quad a(v, v) = 1, \ a(\phi_{i}, v) = 0, \ i = 1, \dots, j - \lambda_{-j} = \sup_{W^{1,2}(D)} -\langle v, v \rangle, \quad a(v, v) = -1, \ a(\phi_{-i}, v) = 0, \ i = -1, \dots, -j + \lambda_{-j} = 0$$

Spectral theory

Theorem

(i) There exists a countable number of positive and negative eigenvalues.

$$\ldots \lambda_{-n} \leq \cdots \leq \lambda_{-2} < \lambda_{-1} < 0 < \lambda_1 < \lambda_2 \leq \ldots \lambda_n \leq \ldots$$

(ii) $\lambda_{\pm 1}$ is simple, $\phi_{\pm 1}$ is of constant sign. (iii) $\lambda_n \to \infty$ if $n \to \infty$. (iv)₁ If N > 1, there exist infinitely many negative eigenvalues such that $\lim_{n\to\infty} \lambda_{-n} = -\infty$. (iv)₂ If N = 1 and D = (0, L) there exist exactly two negative eigenvalues provided $\sigma(0)\sigma(L) > 0$, otherwise there is exactly one negative eigenvalue.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへの

Proof

- 1. Apply the spectral theory for compact self-adjoint operators to $K : W^{1,2}(D) \to W^{1,2}$ where K is the solution operator of $\triangle v qv + h = 0$ in D, $v_n = \sigma h$ on ∂D .
- 2. Show by means of the variational principle and a Harnack inequality that $\phi_{\pm 1} > 0$. Use the "Lagrange identity". Let $\phi > 0$ and ψ be two eigenfunctions corresponding to the same eigenvalue. Then

$$\int_D |rac{\psi}{\phi}
abla \phi -
abla \psi|^2 \ dx = 0.$$

3. Construct suitable trial function.

.

4. Sturm's comparison theorem.

ヘロン 人間 とくほ とくほ とう

Representation formula

Theorem

 $\{\phi_i\}_{i \in \mathbb{Z}}$ is a complete orthonormal system such that $\langle \phi_i, \phi_j \rangle = \lambda_i a(\phi_i, \phi_j) = \delta_{ij}$, in $W^{1,2}(D)$.

 \implies formal solution of the inhomogeneous parabolic problem

$$u(x,t) = \sum_{i \in \mathbb{Z}} \langle u_0, \phi_i \rangle \phi_i(x) e^{-\lambda_i t}$$

solution of homogeneous equation

ヘロン 人間 とくほ とくほ とう

э

+
$$\sum_{i\in\mathbb{Z}}\lambda_i\left\{\int_0^t e^{\lambda_i(\tau-t)}a(\phi_i,f)\,d\tau\right\}\phi_i(x)$$

solution of the inhomogeneous problem with zero initial condition

Consequences

Corollary

If $\lambda_{-n} \to -\infty$ then the parabolic problem has no weak solution $u \in C([0, T]; W^{1,2}(D))$ for arbitrary $u_0 \in W^{1,2}(D)$ and $f \in W^{1,2}((0, T); L^2(D))$.

REMARK If N > 1 the parabolic problem is well-posed only if $\sigma \ge 0$ everywhere.

Corollary

If N = 1 the problem is well-posed. It has a unique solution for all t.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへの

Blow up

Assume $\sigma \ge 0$, $u_0 \ge 0$, $u_0 \not\equiv 0$, f(s), f'(s) > 0 for s > 0 and

$$\int^{\infty} \frac{ds}{f(s)} < \infty.$$

Theorem All solutions of

$$u_t - \triangle u = f(u) \text{ in } D \times (0, T),$$

 $\sigma u_t + u_n = 0 \text{ on } \partial D \times (0, T),$
 $u(x, 0) = u_0(x)$

blow up in finite time.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Spectrum in the case $q \equiv 0$.

$$\Delta \phi + \lambda \phi = 0$$
 in *D*, $\phi_n = \lambda \sigma \phi$ on ∂D .

 $\lambda_0 = 0$ is a *simple* eigenvalue with $\phi_0 = \text{const.}$

Does it correspond to $\lim_{q\to 0} \lambda_1(q)$ or to $\lim_{q\to 0} \lambda_{-1}(q)$?

This depends on the mean value $\overline{\sigma} := \frac{1}{|\partial D|} \oint_{\partial D} \sigma \, ds.$ The critical threshold of the mean is $\sigma_0 = -\frac{|D|}{|\partial D|}$.

イロト イポト イヨト イヨト 一臣

Bifurcation

The asymptotic behavior of λ and ϕ on the branch *C* near σ_0 can be computed.

2

Theorem

Let $q \equiv 0$.

- If σ̄ < σ₀ then λ₁ is simple, φ₁ is of constant sign and φ₋₁ changes sign.
- If σ̄ > σ₀ then λ₋₁ is simple, φ₋₁ is of constant sign and φ₁ changes sign.
- If $\overline{\sigma} = \sigma_0$ then ϕ_1 and ϕ_{-1} both changes sign.

REMARK If $\overline{\sigma} = \sigma_0$ the eigenfunctions are not complete.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

Heuristic explanation

$$\lambda_{1} = \inf_{W^{1,2}(D)} \langle v, v \rangle, \quad a(v, v) = 1, a(v, 1) = 0$$
$$\lambda_{-1} = \sup_{W^{1,2}(D)} -\langle v, v \rangle, \quad a(v, v) = -1, a(v, 1) = 0.$$

Observe that if $a(1, 1) < 0 \iff \overline{\sigma} < \sigma_0$, then

$$a(v + c, v + c) = a(v, v) + 2ca(v, 1) + c^{2}a(1, 1)$$
$$\leq a(v, v) - \frac{a(v, 1)^{2}}{a(1, 1)}.$$

Equality if and only if a(v + c, 1) = 0. Hence

$$\lambda_1 = \inf_{W^{1,2}(D)} \langle v, v \rangle, \quad a(v, v) = 1.$$

<ロ> <同> <同> < 三> < 三> < 三> < 三</p>