Parabolic problems with dynamical boundary conditions

joint work with
Joachim v. Bellow (Calais) \& Wolfgang Reichel (Karlsruhe)

Catherine Bandle

University of Basle, Switzerland

Summer School 2008
Swansea (Great Britain) July 7-11

Abstract

An existence theory for local solutions of a parabolic problem under a dynamical boundary condition $\sigma u_{t}+u_{n}=0$ is developed and a spectral representation formula is derived. It relies on the spectral theory of an associated elliptic problem with the eigenvalue parameter both in the equation and the boundary condition. The well-posedness of the parabolic problem holds in some natural space only if the number of negative eigenvalues is finite. This depends on the parameter σ in the boundary condition. If $\sigma \geq 0$ the parabolic problem is always well-posed. For $\sigma<0$ it is well-posed only if the space dimension is 1 and ill-posed in space dimension ≥ 2. By means of the theory of compact operators the spectrum is analyzed and some qualitative properties of the eigenfunctions are derived. An interesting phenomenon is the "parameter-resonance", where for a specific parameter-value σ_{0} two eigenvalues of the elliptic problem cross. Depending on the time some qualitative properties will be discussed.

References

C. Bandle and W. Reichel, A linear parabolic problem with non-dissipative dynamical boundary conditions, Recent Advances on Elliptic and Parabolic Issues, Proceedings of the 2004 Swiss-Japanese Seminar, M. Chipot and H. Ninomiya eds., World Scientific (2006), 46-79.
C. Bandle, J. v. Below and W. Reichel, Parabolic problems with dynamical boundary conditions: eigenvalue expansion and blow up, Rendi. Lincei Mat. Appl. 17 (2006), 35-67.
C. Bandle, J. v. Below and W. Reichel, Positivity and anti-maximum principles for elliptic operators with mixed boundary conditions, J. Eur. Math. Soc. 10 (2007), 73-104.

What is the problem?

$D \subset \mathbb{R}^{N}$ is a bounded Lipschitz domain with outer normal n, $q(x) \in L^{\infty}$ non-negative function, $\sigma(x) \in C^{0}(\partial D)$

$$
\begin{array}{r}
u_{t}-\Delta u+q u=f(x, t) \quad \text { in } \quad D \times(0, T) \\
\sigma u_{t}+u_{n}=0 \quad \text { on } \quad \partial D \times(0, T), \\
u(x, 0)=u_{0}(x) . \tag{3}
\end{array}
$$

Separation of variable $f(x, t)=0$

We seek for a solution of the form

$$
u(x, t)=\phi(x) \alpha(t) .
$$

Then

$$
\frac{\dot{\alpha}}{\alpha}-\frac{\Delta \phi}{\phi}+q=0 \text { in } D \times \mathbb{R}^{+} .
$$

$\alpha(t)=e^{-\lambda t}$ and ϕ solves

$$
\Delta \phi-q \phi+\lambda \phi=0 \text { in } D, \quad \phi_{n}=\lambda \sigma \phi \text { on } \partial D .
$$

Eigenvalue problem

$$
\Delta \phi-q \phi+\lambda \phi=0 \text { in } D, \quad \phi_{n}=\lambda \sigma \phi \text { on } \partial D .
$$

An eigenfunction is a critical point of the Rayleigh quotient

$$
R[v]:=\frac{\int_{D}|\nabla v|^{2} d x+\int_{D} q v^{2} d x}{\int_{D} v^{2} d x+\oint_{\partial D} \sigma v^{2} d s}:=\frac{\langle v, v\rangle}{a(v, v)}
$$

Min-max principle

Assume $q \neq 0$ and $\sigma=\sigma^{+}-\sigma^{-}$whith $\sigma^{-} \neq 0$.

$$
\begin{gathered}
\lambda_{1}=\inf _{W^{1,2}(D)}<v, v>, \quad a(v, v)=1, \\
\lambda_{-1}=\sup _{W^{1,2}(D)}-\langle v, v>, \quad a(v, v)=-1 . \\
\lambda_{j}=\inf _{W^{1,2}(D)}<v, v>, \quad a(v, v)=1, a\left(\phi_{i}, v\right)=0, i=1, \ldots, j- \\
\lambda_{-j}=\sup _{W^{1,2}(D)}-<v, v>, \quad a(v, v)=-1, a\left(\phi_{-i}, v\right)=0, i=-1, \ldots,-j+
\end{gathered}
$$

Spectral theory

Theorem

(i) There exists a countable number of positive and negative eigenvalues.

$$
\ldots \lambda_{-n} \leq \cdots \leq \lambda_{-2}<\lambda_{-1}<0<\lambda_{1}<\lambda_{2} \leq \ldots \lambda_{n} \leq \ldots
$$

(ii) $\lambda_{ \pm 1}$ is simple, $\phi_{ \pm 1}$ is of constant sign.
(iii) $\lambda_{n} \rightarrow \infty$ if $n \rightarrow \infty$.
(iv) ${ }_{1}$ If $N>1$, there exist infinitely many negative eigenvalues such that $\lim _{n \rightarrow \infty} \lambda_{-n}=-\infty$.
(iv) $)_{2}$ If $N=1$ and $D=(0, L)$ there exist exactly two negative eigenvalues provided $\sigma(0) \sigma(L)>0$, otherwise there is exactly one negative eigenvalue.

Proof

1. Apply the spectral theory for compact self-adjoint operators to $K: W^{1,2}(D) \rightarrow W^{1,2}$ where K is the solution operator of $\Delta v-q v+h=0$ in $D, v_{n}=\sigma h$ on ∂D.
2. Show by means of the variational principle and a Harnack inequality that $\phi_{ \pm 1}>0$. Use the "Lagrange identity". Let $\phi>0$ and ψ be two eigenfunctions corresponding to the same eigenvalue. Then

$$
\int_{D}\left|\frac{\psi}{\phi} \nabla \phi-\nabla \psi\right|^{2} d x=0
$$

3. Construct suitable trial function.
4. Sturm's comparison theorem.

Representation formula

Theorem

$\left\{\phi_{i}\right\}_{i \in \mathbb{Z}}$ is a complete orthonormal system such that
$<\phi_{i}, \phi_{j}>=\lambda_{i} a\left(\phi_{i}, \phi_{j}\right)=\delta_{i j}$, in $W^{1,2}(D)$.
\Longrightarrow formal solution of the inhomogeneous parabolic problem

$$
\begin{array}{r}
u(x, t)=\underbrace{\sum_{i \in \mathbb{Z}}<u_{0}, \phi_{i}>\phi_{i}(x) e^{-\lambda_{i} t}}_{\text {solution of homogeneous equation }} \\
+\underbrace{\sum_{i \in \mathbb{Z}} \lambda_{i}\left\{\int_{0}^{t} e^{\lambda_{i}(\tau-t)} a\left(\phi_{i}, f\right) d \tau\right\} \phi_{i}(x)}_{\text {solution of the inhomogeneous problem with zero intial condition }} .
\end{array}
$$

Consequences

Corollary
If $\lambda_{-n} \rightarrow-\infty$ then the parabolic problem has no weak solution $u \in C\left([0, T] ; W^{1,2}(D)\right)$ for arbitrary $u_{0} \in W^{1,2}(D)$ and $f \in W^{1,2}\left((0, T) ; L^{2}(D)\right)$.
REMARK If $N>1$ the parabolic problem is well-posed only if $\sigma \geq 0$ everywhere.
Corollary
If $N=1$ the problem is well-posed. It has a unique solution for all t.

Blow up

Assume $\sigma \geq 0, u_{0} \geq 0, u_{0} \not \equiv 0, f(s), f^{\prime}(s)>0$ for $s>0$ and

$$
\int^{\infty} \frac{d s}{f(s)}<\infty
$$

Theorem
All solutions of

$$
\begin{array}{r}
u_{t}-\Delta u=f(u) \text { in } D \times(0, T), \\
\sigma u_{t}+u_{n}=0 \text { on } \partial D \times(0, T), \\
u(x, 0)=u_{0}(x)
\end{array}
$$

blow up in finite time.

Spectrum in the case $q \equiv 0$.

$\Delta \phi+\lambda \phi=0$ in $D, \quad \phi_{n}=\lambda \sigma \phi$ on ∂D.
$\lambda_{0}=0$ is a simple eigenvalue with $\phi_{0}=$ const.
Does it correspond to $\lim _{q \rightarrow 0} \lambda_{1}(q)$ or to $\lim _{q \rightarrow 0} \lambda_{-1}(q)$?
This depends on the mean value $\bar{\sigma}:=\frac{1}{|\partial D|} \oint_{\partial D} \sigma d s$.
The critical threshold of the mean is $\sigma_{0}=-\frac{|D|}{|\partial D|}$.

Bifurcation

The asymptotic behavior of λ and ϕ on the branch C near σ_{0} can be computed.

Theorem
Let $q \equiv 0$.

- If $\bar{\sigma}<\sigma_{0}$ then λ_{1} is simple, ϕ_{1} is of constant sign and ϕ_{-1} changes sign.
- If $\bar{\sigma}>\sigma_{0}$ then λ_{-1} is simple, ϕ_{-1} is of constant sign and ϕ_{1} changes sign.
- If $\bar{\sigma}=\sigma_{0}$ then ϕ_{1} and ϕ_{-1} both changes sign.

REMARK If $\bar{\sigma}=\sigma_{0}$ the eigenfunctions are not complete.

Heuristic explanation

$$
\begin{array}{r}
\left.\lambda_{1}=\inf _{W^{1,2}(D)}<v, v\right\rangle, \quad a(v, v)=1, a(v, 1)=0 \\
\lambda_{-1}=\sup _{W^{1,2}(D)}-\langle v, v\rangle, \quad a(v, v)=-1, a(v, 1)=0 .
\end{array}
$$

Observe that if $a(1,1)<0 \Longleftrightarrow \bar{\sigma}<\sigma_{0}$, then

$$
\begin{aligned}
a(v+c, v+c)=a(v, v)+ & 2 c a(v, 1)+c^{2} a(1,1) \\
& \leq a(v, v)-\frac{a(v, 1)^{2}}{a(1,1)} .
\end{aligned}
$$

Equality if and only if $a(v+c, 1)=0$. Hence

$$
\lambda_{1}=\inf _{W^{1,2}(D)}<v, v>, \quad a(v, v)=1
$$

