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Abstract

An existence theory for local solutions of a parabolic problem under a dynamical boundary condition o-u; + up = 0 is developed and
a spectral representation formula is derived. It relies on the spectral theory of an associated elliptic problem with the eigenvalue
parameter both in the equation and the boundary condition. The well-posedness of the parabolic problem holds in some natural
space only if the number of negative eigenvalues is finite. This depends on the parameter o in the boundary condition. If o > 0 the
parabolic problem is always well-posed. For o- < 0 it is well-posed only if the space dimension is 1 and ill-posed in space dimension
> 2. By means of the theory of compact operators the spectrum is analyzed and some qualitative properties of the eigenfunctions
are derived. An interesting phenomenon is the “parameter-resonance”, where for a specific parameter-value o two eigenvalues of

the elliptic problem cross. Depending on the time some qualitative properties will be discussed.
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What is the problem?

D c RN is a bounded Lipschitz domain with outer normal n,
q(x) € L non-negative function, o(x) € C°(4D)

ur—Au+qu=f(x,t) in Dx(0,T) (1)
out+up=0 on aDx(0,T), (2)
u(x,0) = up(x). (3)
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Separation of variable f(x,t) =0

We seek for a solution of the form

u(x, t) = ¢(x)e(t).
Then

QIR

—%;ijq:OianRJr.

a(t) = et and ¢ solves

(06— Qg+ 19 =0inD, ¢, = Ao ondD.
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Eigenvalue problem

Ap—Qp+Ap=0in D, ¢n= Ao¢ on JD.
An eigenfunction is a critical point of the Rayleigh quotient

B fD|VV|2 dX+fqu2 ax <V, V>

Rv] : = .
¥ pvedx+ g ov2ds  a(v.v)
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Min-max principle

Assume g # 0 and o = o™ — o~ whith o~ # 0.

A= inf <v,v>  a(v,v)=1,
W1,2(D)
Aq4= sup —<v,v> a(v,v)=-1
w12(D)
A= inf <v,v> alv,v)=1, al¢;,v)=0,i=1,...,j-
j W12 (D) ( ) (¢ v) J
Aj= sup —<v,v> a(v,v)=-1,a(¢_;,v)=0,i=-1,...,-j +

W'2(D)
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Spectral theory

Theorem
(i) There exists a countable number of positive and negative
eigenvalues.

AL S A o< A 4<0<Aq4 <AL A0

(i) .1 is simple, ¢ is of constant sign.

(iii) 2n — o0 if N — oo.

(iv)1 If N > 1, there exist infinitely many negative eigenvalues
such thatlimp_e A_p = —oo.

(iv)2 If N =1 and D = (0, L) there exist exactly two negative
eigenvalues provided o-(0)o(L) > 0, otherwise there is exactly
one negative eigenvalue.
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Proof

1. Apply the spectral theory for compact self-adjoint operators
to K : W'2(D) — W2 where K is the solution operator of
Av—qv+h=0inD, vy=0chondD.

2. Show by means of the variational principle and a Harnack
inequality that ¢.1 > 0. Use the "Lagrange identity". Let
¢ > 0 and ¢ be two eigenfunctions corresponding to the same
eigenvalue. Then

f |£V¢ - Vy? dx = 0.
D¢

3. Construct suitable trial function.
4. Sturm’s comparison theorem.
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Representation formula

Theorem

{#i}icz Is @ complete orthonormal system such that

< ¢, (]5/' >= /l,-a(¢,-,¢j) = 5,‘/, in W1’2(D).

= formal solution of the inhomogeneous parabolic problem

u(x, t) = Z < Up. ¢; > pi(x)e !

i€Z

solution of homogeneous equation

+ Sl [ e taw.n arfacn)

i€Z

solution of the inhomogeneous problem with zero initial condition
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Consequences

Corollary

If A_, — —oo then the parabolic problem has no weak solution
u e C([0, T]; W'2(D)) for arbitrary uy € W'2(D) and

fe W'2((0, T); L3(D)).

REMARK If N > 1 the parabolic problem is well-posed only if o > 0
everywhere.

Corollary

If N = 1 the problem is well-posed. It has a unique solution for
all't.
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Blow up

Assume o >0, up > 0, up % 0, f(s),f(s) >0 for s > 0 and

o
f(s)

Theorem
All solutions of

ur—au=f(u)inDx(0,T),
oUut+up=00ndDx(0,T)
u(x,0) = up(x)

’

blow up in finite time.
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Swansea 2008

Spectrum in the case g = 0.

Ap+Ap=0inD, ¢,= A0c¢ onadD.

Ao = 0 is a simple eigenvalue with ¢g =const.

Does it correspond to limg_,o 21(q) or to limg_o 1_1(q)?

1
This depends on the mean value |7 := —56 o ds.
10D| Jop

D]

The critical threshold of the mean is| oo = @Dy

Catherine Bandle Dynamical b.c.



Swansea 2008

Bifurcation

The asymptotic behavior of 1 and ¢ on the branch C near o
can be computed.
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Theorem
Letq=0.
» If o < o then A1 is simple, ¢¢ is of constant sign and ¢_4
changes sign.

» Ifo > o then A_4 is simple, ¢_4 is of constant sign and ¢4
changes sign.

» Ifo = o then ¢4 and ¢_1 both changes sign.

REMARK If & = o the eigenfunctions are not complete.
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Heuristic explanation

A= inf <v,v> a(v,v)=1,a(v,1)=0
W1~2(D)
Aq4= sup -<v,v> a(v,v)=-1,a(v,1)=0.
W1,2(D)

Observe thatif a(1,1) < 0 & 7 < 0y, then

a(v+c,v+c)=a(v,v)+2ca(v,1) + c?a(1,1)

a(v,1)?
<a(v,v) - a1y
Equality if and only if a(v + ¢,1) = 0. Hence
A= inf <v,v> a(v,v)=1.

W12(D)
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