THE CAUCHY PROBLEM FOR THIN FILM AND OTHER NONLINEAR PARABOLIC PDEs

Summer School on Nonlinear Parabolic Equations and Applications Math. Dept., Swansea Univ., 7-11 July 2008

Victor Galaktionov

Department of Mathematical Sciences, University of Bath

July, 2008

Lecture 2: PLAN

The Bi-Harmonic Equation, the fourth-order parabolic equation:

 $u_t = -u_{xxxx}$ in $\mathbb{R} \times \mathbb{R}_+$,

again, the Cauchy Problem.

Twenty-First Century Theory (2004).

SHARP Asymptotic Theory:

(i) as $t \to +\infty$, large-time behaviour, and

(ii) blow-up behaviour, as $t \to T^- < \infty$.

Hermitian Spectral Theory of **Non** Self-Adjoint Operators (2004).

Lecture 2: The Classic BI-HARMONIC EQUATION

The Cauchy problem for the bi-harmonic equation

In order to move ahead to higher-order diffusion-like equation, using the lines of our previous analysis, we consider the Cauchy Problem for the *bi-harmonic equation*. Then we will underline the main principal differences between second- and fourth-order linear parabolic PDEs:

$$u_t = -u_{xxxx}$$
 in $\mathbb{R} \times \mathbb{R}_+$,

with given bounded integrable initial data $u_0(x)$.

Lecture 2: The Classic BI-HARMONIC EQUATION

The Cauchy problem for the bi-harmonic equation

In order to move ahead to higher-order diffusion-like equation, using the lines of our previous analysis, we consider the Cauchy Problem for the *bi-harmonic equation*. Then we will underline the main principal differences between second- and fourth-order linear parabolic PDEs:

$$u_t = -u_{xxxx}$$
 in $\mathbb{R} \times \mathbb{R}_+$,

with given bounded integrable initial data $u_0(x)$.

Models various higher-order diffusion phenomena, a well-known canonical PDE.

An Application in Hydrodynamics: Burnett Equations are Fourth-Order (a Non-Standard Fact)

Two Main Models of Hydrodynamics

As customary, higher-order viscosity terms occur via Grad's method in Chapman–Enskog expansions for hydrodynamics, where the viscosity part occurs as follows via "singular" expansion of the kernels of collision-like operators by using kernels with pointwise supports:

$$\begin{aligned} \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} &\equiv \mathbf{u}_t + (\mathbf{u} \cdot \nabla \mathbf{u})\mathbf{u} = -\nabla p + \sum_{n=0}^{\infty} \epsilon^{2n+1} \Delta^n (\mu_n \Delta \mathbf{u}) \\ &= \epsilon (\mu_0 \Delta \mathbf{u} + \epsilon^2 \mu_1 \Delta^2 \mathbf{u} + ...), \end{aligned}$$

where $\epsilon > 0$ is essentially the Knudsen number; **u** is the solenoidal (div-free) velocity field and *p* the pressure.

An Application in Hydrodynamics: Burnett Equations are Fourth-Order

Navier–Stokes Equations: n = 0

In a full model, truncating such series at n = 0 leads to the Navier-Stokes equations:

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla \mathbf{u})\mathbf{u} = -\nabla p + \epsilon \mu_0 \Delta \mathbf{u}, \quad \text{div } \mathbf{u} = 0.$$

Global existence and Uniqueness of classical bounded solutions are unknown:

The Millennium Problem of the Clay Institute!

One of the most important for hydrodynamics and PDE theory of the XXI century....

An Application in Hydrodynamics: Burnett Equations are Fourth-Order

Burnett Equations: n = 1

In a full model, truncating such series at n = 1 leads to the *Burnett equations*:

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla \mathbf{u})\mathbf{u} = -\nabla p - \hat{\mu}_2 \Delta^2 \mathbf{u}, \quad \text{div } \mathbf{u} = 0.$$

Global Existence and Uniqueness of classical bounded solutions are also unknown....

(Not any Millennium Problem but seems to be much more difficult mathematically; a problem for the XXII century!? Or next Millennium?)

The Fundamental (Similarity) Solution

The Bi-Harmonic Equation

 $u_t = -u_{xxxx}$ in $\mathbb{R} \times \mathbb{R}_+$,

The Fundamental (Similarity) Solution

The Bi-Harmonic Equation

$$u_t = -u_{xxxx}$$
 in $\mathbb{R} \times \mathbb{R}_+$,

The Fundamental Solution

$$b(x,t) = t^{-\frac{1}{4}} F(y), \quad y = \frac{x}{t^{1/4}}.$$

$$\mathbf{B}F \equiv -F^{(4)} + \frac{1}{4}(yF)' = 0, \quad \int_{\mathbb{R}} F = 1$$

$$\implies -F''' + \frac{1}{4}yF = 0.$$

Applying the Fourier transform yields

 $\mathcal{F}(b(\cdot,t))(\xi) = e^{-\xi^4 t}$, and $\hat{F}(\omega) = \mathcal{F}(F(\cdot))(\omega) = e^{-\omega^4}$. (1)

The Fundamental Rescaled Kernel

Hence, *F* is given by:

$$F(y) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-s^{4}} (s|y|)^{\frac{1}{2}} J_{-\frac{1}{2}}(s|y|) \, \mathrm{d}s.$$

where $J_{-\frac{1}{2}}$ is Bessel's function:

$$J_{-\frac{1}{2}}(z) = \sqrt{\frac{2}{\pi z}} \cos z.$$

Oscillatory Behaviour of Changing Sign!

The Oscillatory Kernel for the Bi-Harmonic Equation

The Oscillatory Kernel for the Bi-Harmonic Equation

Rescaled Kernel for $u_t = -u_{xxxx}$: tail enlarged

The Oscillatory Kernel for the Bi-Harmonic Equation

Rescaled Kernel for $u_t = -u_{xxxx}$: tail in log-scale

Oscillatory Rescaled Kernel of Changing Sign

Consequences:

(i) No order-preserving properties of the bi-harmonic flow,

(ii) No comparison,

(iii) No Maximum Principle,

(iv) No Sturm zero set properties (No Sturm Theorems),...

• • •

Oscillatory Rescaled Kernel of Changing Sign

Consequences:

(i) No order-preserving properties of the bi-harmonic flow,

(ii) No comparison,

(iii) No Maximum Principle,

(iv) No Sturm zero set properties (No Sturm Theorems),...

•••

No Symmetry at All

(k) B IS NOT SELF-ADJOINT, no symmetry of the operator !

Sharp Asymptotics of the Oscillatory Rescaled Kernel

WKBJ Expansion (1920s)

The ODE is

$$\mathbf{B}F \equiv -F^{(4)} + \frac{1}{4} (yF)' = 0 \Longrightarrow F''' + \frac{1}{4} yF = 0.$$

Using standard classic WKBJ-type asymptotics (1920s!), substitute the function

$$F(y) \sim y^{-\delta_0} e^{ay^{4/3}}, \quad y \to +\infty.$$

This gives the algebraic equation for a,

$$\left(\frac{4}{3}a\right)^3 = \frac{1}{4}$$
, and $\delta_0 = \frac{1}{3} > 0$.

Sharp Asymptotics of the Oscillatory Rescaled Kernel

WKBJ Oscillatory Asymptotics

Thus:

$$a = \frac{3}{4^{4/3}} \left[\cos\left(\frac{2\pi}{3}\right) + \mathrm{i} \, \sin\left(\frac{2\pi}{3}\right) \right] \equiv -d_0 + \mathrm{i} \, b_0.$$

This gives the following double-scale asymptotics as $y \rightarrow +\infty$:

$$F(y) = y^{-\delta_0} e^{-d_0 y^{4/3}} [C_1 \sin(b_0 y^{4/3}) + C_2 \cos(b_0 y^{4/3})] + \dots$$

where $C_{1,2}$ are real constants, $|C_1| + |C_2| \neq 0$. Here

$$d_0 = 3 \cdot 2^{-\frac{11}{3}}, \quad b_0 = 3^{\frac{3}{2}} \cdot 2^{-\frac{11}{3}}, \ \delta_0 = \frac{1}{3}.$$

By Convolution Theorem for Fourier Transforms

For bounded L^1 data, \exists ! solution

$$u(x,t) = b(t) * u_0 \equiv t^{-\frac{1}{4}} \int_{\mathbb{R}} F(\frac{x-z}{t^{1/4}}) u_0(z) dz,$$

in the corresponding Tikhonov-like class of not more than exponentially growing initial data:

$$|u(x,t)| \leq C \mathrm{e}^{c|x|^{4/3}}$$

Precise Asymptotic Behaviour as $t \to +\infty$

Rescaled Variables

Equation:

$$u_t = -u_{xxxx}, \quad y \in \mathbb{R}, \quad t > 0.$$

 $u(x,t) = t^{-\frac{1}{4}} v(y,\tau), \quad y = \frac{x}{t^{1/4}}, \quad \tau = \ln t \gg 1.$

Precise Asymptotic Behaviour as $t \to +\infty$

Rescaled Variables

Equation:

$$u_t = -u_{xxxx}, \quad y \in \mathbb{R}, \quad t > 0.$$

 $u(x,t) = t^{-\frac{1}{4}} v(y,\tau), \quad y = \frac{x}{t^{1/4}}, \quad \tau = \ln t \gg 1$

The Rescaled Equation

$$v_{\tau} = \mathbf{B}v \equiv -v_{yyyy} + \frac{1}{4}yv_{y} + \frac{1}{4}v, \quad y \in \mathbb{R}, \ \tau > 0.$$

B IS NOT Self-Adjoint Operator

From 1836 to the XXI century

One can see that **B** does not admit any symmetric form in any L^2_{ρ} -space for any $\rho > 0$ (easy negative calculus: too many conditions imposed to be symmetric for 4th-order operator)! We did not find any trace of such a **B**-spectral theory in existing literature.

B IS NOT Self-Adjoint Operator

From 1836 to the XXI century

One can see that **B** does not admit any symmetric form in any L^2_{ρ} -space for any $\rho > 0$ (easy negative calculus: too many conditions imposed to be symmetric for 4th-order operator)! We did not find any trace of such a **B**-spectral theory in existing literature.

Non-Self Adjoint Theory Developed in 2004

Egorov, Galaktionov, Kondratiev, and Pohozaev, Adv. Differ. Equat., **9** (2004), 1009–1038.

Expansion of the Semigroup

Using Convolution

$$u(x,t) = t^{-\frac{1}{4}} \int_{\mathbb{R}} F(\frac{x-z}{t^{1/4}}) u_0(z) dz.$$

Hence, for the rescaled solution $v(y, \tau) = t^{1/4}u(x, t)$,

$$v(y,\tau) = \int_{\mathbb{R}} F(y - z \mathrm{e}^{-\tau/4}) u_0(z) \,\mathrm{d}z.$$

Expansion of the Semigroup

Using Convolution

$$u(x,t) = t^{-\frac{1}{4}} \int_{\mathbb{R}} F(\frac{x-z}{t^{1/4}}) u_0(z) dz.$$

Hence, for the rescaled solution $v(y, \tau) = t^{1/4}u(x, t)$,

$$v(y,\tau) = \int_{\mathbb{R}} F(y - z \mathrm{e}^{-\tau/4}) u_0(z) \,\mathrm{d}z.$$

Analytic Kernel Expansion

By Taylor's expansion

$$F(y - ze^{-\tau/4}) = \sum_{(k)} \frac{1}{k!} F^{(k)}(y) (-1)^k z^k e^{-k\tau/4},$$

which converges uniformly on compact subsets (rather easy). We next substitute this into the semigroup expression:

Eigenfunction Expansion in L^2_{ρ}

Expansion

We have for the semigroup $\{e^{{\bm B}\tau}\}_{\tau\geq 0}$

$$v(y,\tau) = \sum_{(k)} e^{-k\tau/4} \frac{(-1)^k}{\sqrt{k!}} F^{(k)}(y) \frac{1}{\sqrt{k!}} \int_{\mathbb{R}} z^k u_0(z) \, \mathrm{d}z.$$

Here we see: REAL spectrum and both sets of eigenfunctions!

Eigenfunction Expansion in L^2_{ρ}

Expansion

We have for the semigroup $\{e^{{\bf B}\tau}\}_{\tau\geq 0}$

$$v(y,\tau) = \sum_{(k)} e^{-k\tau/4} \frac{(-1)^k}{\sqrt{k!}} F^{(k)}(y) \frac{1}{\sqrt{k!}} \int_{\mathbb{R}} z^k u_0(z) \, \mathrm{d}z.$$

Here we see: REAL spectrum and both sets of eigenfunctions!

Bi-Orthonormal Sets of Eigenfunctions

For $u_0 \in L^2_{\rho}$, this defines the eigenfunction expansion

$$v(y,\tau) = \sum_{(k)} e^{-k\tau/4} \psi_k(y) \langle \psi_k^*, u_0 \rangle, \ \psi_k(y) = \frac{(-1)^k}{\sqrt{k!}} F^{(k)}(y),$$

and $\psi_k(y)$ MUST be polynomials, called the *generalized Hermite polynomials* (have nothing to do with any self-adjoint theory)

Domain of B

Exponential Weight and Domain

B if defined in the weighted space $L^2_{\rho}(\mathbf{R})$ with the exponential weight

$$\rho(\mathbf{y}) = e^{a|\mathbf{y}|^{4/3}} > 0, \quad a \in (0, 2d_0).$$
(2)

The domain is a Hilbert space of functions H^4_ρ with the inner product and the norm

$$egin{aligned} &\langle v,w
angle_
ho &= \int\limits_{\mathbb{R}}
ho(y) \sum\limits_{k=0}^4 D^k v(y) \,\overline{D^k w(y)} \,\mathrm{d}y, \ &\|v\|_
ho^2 &= \int\limits_{\mathbb{R}}
ho(y) \sum\limits_{k=0}^4 |D^k v(y)|^2 \,\mathrm{d}y. \end{aligned}$$

Then $H^4_{\rho} \subset L^2_{\rho} \subset L^2$, and **B** is a bounded linear operator from H^4_{ρ} to L^2_{ρ} .

Discrete Real Spectrum of B

Spectral Properties of B (Non-Self Adjoint)

Lemma

(i) The spectrum of B comprises real simple eigenvalues only,

$$\sigma(\mathbf{B}) = \{\lambda_k = -\frac{k}{4}, \ k = 0, 1, 2, \dots\}.$$
 (3)

(ii) The eigenfunctions $\psi_k(y)$ are given by

$$\psi_k(y) = \frac{(-1)^k}{\sqrt{k!}} D^k F(y)$$
 (4)

and form a complete subset in L^2 and in L^2_{ρ} . (iii) The resolvent $(\mathbf{B} - \lambda I)^{-1} : L^2_{\rho^*} \to L^2_{\rho}$ for $\lambda \notin \sigma(\mathbf{B})$ is a compact integral operator ($\rho^* = 1/\rho$, see below).

Domain of the Adjoint Operator B*

Definition of B* by Blow-up Scaling

$$u_t = -u_{xxxx}, \quad y \in \mathbb{R}, \quad -1 < t < 0; \quad u(0,0) = 1$$

The adjoint operator \mathbf{B}^* occurs after the blow-up (multiple-zero-like) scaling

$$u(x,t) = v(y,\tau), \quad y = \frac{x}{(-t)^{1/4}}, \quad \tau = -\ln(-t),$$

so that $v(y, \tau)$ solves the rescaled equation

$$v_{\tau} = \mathbf{B}^* v \equiv -v_{yyyy} - \frac{1}{4} y v_y.$$

Here \mathbf{B}^* is formally adjoint to \mathbf{B} in the standard (dual) L^2 -metric.

Domain of the Adjoint Operator B*

Domain of \mathbf{B}^*

The weight is:

$$\rho^*(y) \equiv \frac{1}{\rho(y)} = e^{-a|y|^{4/3}} > 0,$$
(5)

and we ascribe to **B**^{*} the domain $H_{\rho^*}^4$, which is dense in $L_{\rho^*}^2$.

Generalized Hermite Polynomials for B*

Discrete Spectrum

First, there holds

$$\langle \mathbf{B}v, w \rangle = \langle v, \mathbf{B}^* w \rangle$$
 for any $v \in H^4_{\rho}, \ w \in H^4_{\rho^*}.$ (6)

Lemma

(i) σ(**B**) = σ(**B***).
(ii) The eigenfunctions ψ^{*}_k(y) of **B*** are polynomials:

$$\psi_k^*(\mathbf{y}) = \frac{1}{\sqrt{k!}} \sum_{j=0}^{\lfloor k/4 \rfloor} \frac{1}{j!} D^{4j} \mathbf{y}^k, \quad k = 0, 1, 2, \dots,$$
(7)

and form a complete subset in $L^2_{\rho^*}$. (iii) **B**^{*} has compact resolvent (**B**^{*} - λI)⁻¹ in $L^2_{\rho^*}$ for $\lambda \notin \sigma$ (**B**^{*}).

Bi-Orthonormality of Φ and Φ^*

Corollary

With the given definitions of eigenfunctions, the orthonormality condition holds

$$\langle \psi_k, \psi_l^* \rangle = \delta_{kl} \quad \forall \ k, l \ge 0,$$
 (8)

where δ_{kl} is the Kronecker delta.

Proof. Integrating by parts....

Some Applications of Hermite Polynomials for B*

Unique Continuation Theorem

The fundamental uniqueness concepts of general PDE theory:

Holmgren (1901)–Carleman–Calderon–Pliss–Nirenberg–....

Since, by blow-up scaling the generalized Hermite polynomials describe ALL types of multiple-zero formation, we state the following unique continuation results:

Consider a solution u(x, t) of the bi-harmonic equations defined in $\mathbb{R} \times (-1, 1)$ such that, say,

u(0,0)=0.

Some Applications of Hermite Polynomials for B*

Theorem 1: no infinite-order zeros

A traditional theorem (Carleman-type):

Theorem

If (0,0) is infinite-order zero of u(x,t) (in any integral sense), then $u(x,t) \equiv 0$.

Proof. A Hermite polynomial for $k = \infty$ does not exist....

Some Applications of Hermite Polynomials for B*

Theorem 2: Hermitian Structure Involved

Theorem

If formation of the multiple zero at x = 0 as $t \to 0^-$ **DOES NOT** asymptotically follow zero curves any of generalized Hermite polynomials $\psi_k^*(y)$, then $u(x,t) \equiv 0$.

Proof. Ψ^* is complete....

A new theorem: uses deep new results of Hermitian Spectral Theory developed: a complete knowledge of "micro-structure" of the PDE is available....

Hermitian Spectral Theory Were Absent for 170 Years!

Classic Theory: C. Sturm, 1836...

(i) The Heat Equation:

$$u_t = u_{xx};$$

(ii) the rescaled (blow-up) operator:

$$\mathbf{B}^* v = v'' - \frac{1}{2} y v',$$

(iii) $\sigma(\mathbf{B}^*) = \{-\frac{k}{2}\}, \Phi^*$ consists of Hermite classic polynomials....

Hermitian Spectral Theory Were Absent for 170 Years!

Third-order Linear Dispersion Equation: Absent

(i) The LDE

 $u_t = u_{xxx};$

(ii) the rescaled (blow-up) operator:

$$\mathbf{B}^* v = v''' - \frac{1}{3} y v',$$

(iii) $\sigma(\mathbf{B}^*) = \{-\frac{k}{3}\}, \Phi^*$ consists of generalized Hermite polynomials....

Fernandes, Galaktionov (2009 ?).

Hermitian Spectral Theory for the 1D LSE!

1D Linear Schrödinger Equation: Absent

(i) The LSE, scattering theory, Quantum Mechanics...

i $u_t = u_{xx}$; Hamiltonian: $\int |u(x,t)|^2 dx = \text{const.};$

E. Schrödinger (1926), the most citable PDE EVER!(ii) the rescaled (blow-up) operator:

$$\mathbf{B}^* v = v'' - \frac{\mathrm{i}}{2} y v';$$

(iii) $\sigma(\mathbf{B}^*) = \{-\frac{k}{2}\}, \Phi^*$ consists of generalized Hermite polynomials....

Galaktionov, Kamotski (2008?).

Etc.