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Lecture 2: PLAN
The Bi-Harmonic Equation, the fourth-order parabolic equation:

ut = −uxxxx in R × R+,

again, the Cauchy Problem.
Twenty-First Century Theory (2004).

SHARP Asymptotic Theory:

(i) as t → +∞, large-time behaviour, and

(ii) blow-up behaviour, as t → T− <∞.

Hermitian Spectral Theory of Non Self-Adjoint Operators
(2004).



Lecture 2: The Classic BI-HARMONIC EQUATION

The Cauchy problem for the bi-harmonic equation

In order to move ahead to higher-order diffusion-like equation,
using the lines of our previous analysis, we consider the
Cauchy Problem for the bi-harmonic equation. Then we will
underline the main principal differences between second- and
fourth-order linear parabolic PDEs:

ut = −uxxxx in R × R+,

with given bounded integrable initial data u0(x).



Lecture 2: The Classic BI-HARMONIC EQUATION

The Cauchy problem for the bi-harmonic equation

In order to move ahead to higher-order diffusion-like equation,
using the lines of our previous analysis, we consider the
Cauchy Problem for the bi-harmonic equation. Then we will
underline the main principal differences between second- and
fourth-order linear parabolic PDEs:

ut = −uxxxx in R × R+,

with given bounded integrable initial data u0(x).

Models various higher-order diffusion phenomena, a
well-known canonical PDE.



An Application in Hydrodynamics: Burnett
Equations are Fourth-Order (a Non-Standard Fact)

Two Main Models of Hydrodynamics

As customary, higher-order viscosity terms occur via Grad’s
method in Chapman–Enskog expansions for hydrodynamics,
where the viscosity part occurs as follows via “singular”
expansion of the kernels of collision-like operators by using
kernels with pointwise supports:

du
dt ≡ ut + (u · ∇u)u = −∇p +

∞
∑

n=0
ε2n+1∆n(µn∆u)

= ε
(

µ0∆u + ε2µ1∆
2u + ...

)

,

where ε > 0 is essentially the Knudsen number; u is the
solenoidal (div-free) velocity field and p the pressure.



An Application in Hydrodynamics: Burnett
Equations are Fourth-Order

Navier–Stokes Equations: n = 0

In a full model, truncating such series at n = 0 leads to the
Navier-Stokes equations:

ut + (u · ∇u)u = −∇p + εµ0∆u, div u = 0.

Global existence and Uniqueness of classical bounded
solutions are unknown:
The Millennium Problem of the Clay Institute!
One of the most important for hydrodynamics and PDE theory
of the XXI century... .



An Application in Hydrodynamics: Burnett
Equations are Fourth-Order

Burnett Equations: n = 1

In a full model, truncating such series at n = 1 leads to the
Burnett equations:

ut + (u · ∇u)u = −∇p − µ̂2∆
2u, div u = 0.

Global Existence and Uniqueness of classical bounded
solutions are also unknown... .
(Not any Millennium Problem but seems to be much more
difficult mathematically; a problem for the XXII century!? Or
next Millennium?)



The Fundamental (Similarity) Solution

The Bi-Harmonic Equation

ut = −uxxxx in R × R+,



The Fundamental (Similarity) Solution

The Bi-Harmonic Equation

ut = −uxxxx in R × R+,

The Fundamental Solution

b(x, t) = t−
1
4 F(y), y = x

t1/4 .

BF ≡ −F(4) + 1
4 (yF)′ = 0,

∫

R

F = 1

=⇒ −F′′′ + 1
4 yF = 0.

Applying the Fourier transform yields

F(b(·, t))(ξ) = e−ξ4t, and F̂(ω) = F(F(·))(ω) = e−ω4
. (1)



The Fundamental Rescaled Kernel

Hence, F is given by:

F(y) = 1√
2π

∞
∫

0
e−s4

(s|y|)
1
2 J− 1

2
(s|y|) ds.

where J− 1
2

is Bessel’s function:

J− 1
2
(z) =

√

2
π z cos z.

Oscillatory Behaviour of Changing Sign!



The Oscillatory Kernel for the Bi-Harmonic
Equation

Rescaled Kernel of the Fundamental Solution to ut = −uxxxx
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The Oscillatory Kernel for the Bi-Harmonic
Equation

Rescaled Kernel for ut = −uxxxx: tail enlarged
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The Oscillatory Kernel for the Bi-Harmonic
Equation

Rescaled Kernel for ut = −uxxxx: tail in log-scale
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Oscillatory Rescaled Kernel of Changing Sign

Consequences:

(i) No order-preserving properties of the bi-harmonic flow,
(ii) No comparison,
(iii) No Maximum Principle,
(iv) No Sturm zero set properties (No Sturm Theorems),...
...



Oscillatory Rescaled Kernel of Changing Sign

Consequences:

(i) No order-preserving properties of the bi-harmonic flow,
(ii) No comparison,
(iii) No Maximum Principle,
(iv) No Sturm zero set properties (No Sturm Theorems),...
...

No Symmetry at All

(k) B IS NOT SELF-ADJOINT, no symmetry of the operator !



Sharp Asymptotics of the Oscillatory Rescaled
Kernel

WKBJ Expansion (1920s)

The ODE is

BF ≡ −F(4) + 1
4 (yF)′ = 0 =⇒ F′′′ + 1

4 yF = 0.

Using standard classic WKBJ-type asymptotics (1920s!),
substitute the function

F(y) ∼ y−δ0 eay4/3
, y → +∞.

This gives the algebraic equation for a,

(

4
3 a

)3
= 1

4 , and δ0 = 1
3 > 0 .



Sharp Asymptotics of the Oscillatory Rescaled
Kernel

WKBJ Oscillatory Asymptotics

Thus:
a = 3

44/3

[

cos
(

2π
3

)

+ i sin
(

2π
3

)]

≡ −d0 + i b0.

This gives the following double-scale asymptotics as y → +∞:

F(y) = y−δ0 e−d0y4/3[

C1 sin(b0y4/3) + C2 cos(b0y4/3)
]

+ ... ,

where C1,2 are real constants, |C1| + |C2| 6= 0. Here

d0 = 3 · 2−
11
3 , b0 = 3

3
2 · 2−

11
3 , δ0 = 1

3 .



By Convolution Theorem for Fourier Transforms

For bounded L1 data, ∃ ! solution

u(x, t) = b(t) ∗ u0 ≡ t−
1
4

∫

R

F
(

x−z
t1/4

)

u0(z) dz,

in the corresponding Tikhonov-like class of not more than
exponentially growing initial data:

|u(x, t)| ≤ Cec|x|4/3
.



Precise Asymptotic Behaviour as t → +∞

Rescaled Variables
Equation:

ut = −uxxxx, y ∈ R, t > 0.

u(x, t) = t−
1
4 v(y, τ), y = x

t1/4 , τ = ln t � 1.



Precise Asymptotic Behaviour as t → +∞

Rescaled Variables
Equation:

ut = −uxxxx, y ∈ R, t > 0.

u(x, t) = t−
1
4 v(y, τ), y = x

t1/4 , τ = ln t � 1.

The Rescaled Equation

vτ = Bv ≡ −vyyyy + 1
4 yvy + 1

4 v, y ∈ R, τ > 0.



B IS NOT Self-Adjoint Operator

From 1836 to the XXI century

One can see that B does not admit any symmetric form in any
L2

ρ-space for any ρ > 0 (easy negative calculus: too many
conditions imposed to be symmetric for 4th-order operator)!
We did not find any trace of such a B-spectral theory in existing
literature.



B IS NOT Self-Adjoint Operator

From 1836 to the XXI century

One can see that B does not admit any symmetric form in any
L2

ρ-space for any ρ > 0 (easy negative calculus: too many
conditions imposed to be symmetric for 4th-order operator)!
We did not find any trace of such a B-spectral theory in existing
literature.

Non-Self Adjoint Theory Developed in 2004

Egorov, Galaktionov, Kondratiev, and Pohozaev, Adv. Differ.
Equat., 9 (2004), 1009–1038.



Expansion of the Semigroup

Using Convolution

u(x, t) = t−
1
4

∫

R

F
(

x−z
t1/4

)

u0(z) dz.

Hence, for the rescaled solution v(y, τ) = t1/4u(x, t),

v(y, τ) =
∫

R

F(y − ze−τ/4) u0(z) dz.



Expansion of the Semigroup

Using Convolution

u(x, t) = t−
1
4

∫

R

F
(

x−z
t1/4

)

u0(z) dz.

Hence, for the rescaled solution v(y, τ) = t1/4u(x, t),

v(y, τ) =
∫

R

F(y − ze−τ/4) u0(z) dz.

Analytic Kernel Expansion

By Taylor’s expansion

F(y − ze−τ/4) =
∑

(k)
1
k! F(k)(y)(−1)kzke−kτ/4,

which converges uniformly on compact subsets (rather easy).
We next substitute this into the semigroup expression:



Eigenfunction Expansion in L2
ρ

Expansion

We have for the semigroup {eBτ }τ≥0

v(y, τ) =
∑

(k) e−kτ/4 (−1)k
√

k!
F(k)(y) 1√

k!

∫

R

zku0(z) dz.

Here we see: REAL spectrum and both sets of eigenfunctions!



Eigenfunction Expansion in L2
ρ

Expansion

We have for the semigroup {eBτ }τ≥0

v(y, τ) =
∑

(k) e−kτ/4 (−1)k
√

k!
F(k)(y) 1√

k!

∫

R

zku0(z) dz.

Here we see: REAL spectrum and both sets of eigenfunctions!

Bi-Orthonormal Sets of Eigenfunctions

For u0 ∈ L2
ρ, this defines the eigenfunction expansion

v(y, τ) =
∑

(k) e−kτ/4ψk(y)〈ψ∗
k , u0〉, ψk(y) = (−1)k

√
k!

F(k)(y),

and ψk(y) MUST be polynomials, called the generalized
Hermite polynomials (have nothing to do with any self-adjoint
theory).



Domain of B

Exponential Weight and Domain

B if defined in the weighted space L2
ρ(R) with the exponential

weight
ρ(y) = ea|y|4/3

> 0, a ∈ (0, 2d0). (2)

The domain is a Hilbert space of functions H4
ρ with the inner

product and the norm

〈v,w〉ρ =
∫

R

ρ(y)
4

∑

k=0
Dkv(y) Dkw(y) dy,

‖v‖2
ρ =

∫

R

ρ(y)
4

∑

k=0
|Dkv(y)|2 dy.

Then H4
ρ ⊂ L2

ρ ⊂ L2, and B is a bounded linear operator from H4
ρ

to L2
ρ.



Discrete Real Spectrum of B

Spectral Properties of B (Non-Self Adjoint)

Lemma

(i) The spectrum of B comprises real simple eigenvalues only,

σ(B) =
{

λk = − k
4 , k = 0, 1, 2, ...

}

. (3)

(ii) The eigenfunctions ψk(y) are given by

ψk(y) = (−1)k
√

k!
DkF(y) (4)

and form a complete subset in L2 and in L2
ρ.

(iii) The resolvent (B − λI)−1 : L2
ρ∗ → L2

ρ for λ 6∈ σ(B) is a
compact integral operator (ρ∗ = 1/ρ, see below).



Domain of the Adjoint Operator B∗

Definition of B∗ by Blow-up Scaling

ut = −uxxxx, y ∈ R, −1 < t < 0; u(0, 0) = 1 .

The adjoint operator B∗ occurs after the blow-up
(multiple-zero-like) scaling

u(x, t) = v(y, τ), y = x
(−t)1/4 , τ = − ln(−t),

so that v(y, τ) solves the rescaled equation

vτ = B∗v ≡ −vyyyy −
1
4 yvy.

Here B∗ is formally adjoint to B in the standard (dual) L2-metric.



Domain of the Adjoint Operator B∗

Domain of B∗

The weight is:
ρ∗(y) ≡ 1

ρ(y) = e−a|y|4/3
> 0, (5)

and we ascribe to B∗ the domain H4
ρ∗ , which is dense in L2

ρ∗.



Generalized Hermite Polynomials for B∗

Discrete Spectrum

First, there holds

〈Bv,w〉 = 〈v,B∗w〉 for any v ∈ H4
ρ, w ∈ H4

ρ∗ . (6)

Lemma

(i) σ(B) = σ(B∗).
(ii) The eigenfunctions ψ∗

k (y) of B∗ are polynomials:

ψ∗
k (y) = 1√

k!

∑[k/4]
j=0

1
j!D

4jyk, k = 0, 1, 2, ... , (7)

and form a complete subset in L2
ρ∗ .

(iii) B∗ has compact resolvent (B∗ − λI)−1 in L2
ρ∗ for λ 6∈ σ(B∗).



Bi-Orthonormality of Φ and Φ∗

Corollary

With the given definitions of eigenfunctions, the orthonormality
condition holds

〈ψk, ψ
∗
l 〉 = δkl ∀ k, l ≥ 0, (8)

where δkl is the Kronecker delta.

Proof. Integrating by parts... .



Some Applications of Hermite Polynomials for B∗

Unique Continuation Theorem

The fundamental uniqueness concepts of general PDE theory:

Holmgren (1901)–Carleman–Calderon–Pliss–Nirenberg–... .

Since, by blow-up scaling the generalized Hermite polynomials
describe ALL types of multiple-zero formation, we state the
following unique continuation results:

Consider a solution u(x, t) of the bi-harmonic equations defined
in R × (−1, 1) such that, say,

u(0, 0) = 0.



Some Applications of Hermite Polynomials for B∗

Theorem 1: no infinite-order zeros
A traditional theorem (Carleman-type):

Theorem
If (0, 0) is infinite-order zero of u(x, t) (in any integral sense),
then u(x, t) ≡ 0.

Proof. A Hermite polynomial for k = ∞ does not exist... .



Some Applications of Hermite Polynomials for B∗

Theorem 2: Hermitian Structure Involved

Theorem

If formation of the multiple zero at x = 0 as t → 0− DOES NOT
asymptotically follow zero curves any of generalized Hermite
polynomials ψ∗

k (y), then u(x, t) ≡ 0.

Proof. Ψ∗ is complete... .

A new theorem: uses deep new results of Hermitian Spectral
Theory developed: a complete knowledge of “micro-structure”
of the PDE is available... .



Hermitian Spectral Theory Were Absent for 170
Years!

Classic Theory: C. Sturm, 1836...

(i) The Heat Equation:
ut = uxx;

(ii) the rescaled (blow-up) operator:

B∗v = v′′ − 1
2 yv′,

(iii) σ(B∗) = {− k
2}, Φ∗ consists of Hermite classic

polynomials... .



Hermitian Spectral Theory Were Absent for 170
Years!

Third-order Linear Dispersion Equation: Absent

(i) The LDE
ut = uxxx;

(ii) the rescaled (blow-up) operator:

B∗v = v′′′ − 1
3 yv′,

(iii) σ(B∗) = {− k
3}, Φ∗ consists of generalized Hermite

polynomials... .

Fernandes, Galaktionov (2009 ?).



Hermitian Spectral Theory for the 1D LSE!

1D Linear Schrödinger Equation: Absent

(i) The LSE, scattering theory, Quantum Mechanics...

i ut = uxx; Hamiltonian:
∫

|u(x, t)|2dx = const.;

E. Schrödinger (1926), the most citable PDE EVER!

(ii) the rescaled (blow-up) operator:

B∗v = v′′ − i
2 yv′;

(iii) σ(B∗) = {− k
2}, Φ∗ consists of generalized Hermite

polynomials... .

Galaktionov, Kamotski (2008?).

Etc.


