THE CAUCHY PROBLEM FOR THIN FILM AND OTHER NONLINEAR PARABOLIC PDEs

Summer School on Nonlinear Parabolic Equations and Applications
Math. Dept., Swansea Univ., 7-11 July 2008

Victor Galaktionov

Department of Mathematical Sciences, University of Bath
July, 2008

Lecture 2: PLAN

The Bi-Harmonic Equation, the fourth-order parabolic equation:

$$
u_{t}=-u_{x x x x} \quad \text { in } \quad \mathbb{R} \times \mathbb{R}_{+}
$$

again, the Cauchy Problem.
Twenty-First Century Theory (2004).
Sharp Asymptotic Theory:
(i) as $t \rightarrow+\infty$, large-time behaviour, and
(ii) blow-up behaviour, as $t \rightarrow T^{-}<\infty$.

Hermitian Spectral Theory of Non Self-Adjoint Operators (2004).

Lecture 2: The Classic BI-Harmonic Equation

The Cauchy problem for the bi-harmonic equation

In order to move ahead to higher-order diffusion-like equation, using the lines of our previous analysis, we consider the Cauchy Problem for the bi-harmonic equation. Then we will underline the main principal differences between second- and fourth-order linear parabolic PDEs:

$$
u_{t}=-u_{x x x x} \quad \text { in } \quad \mathbb{R} \times \mathbb{R}_{+}
$$

with given bounded integrable initial data $u_{0}(x)$.

Lecture 2: The Classic BI-Harmonic Equation

The Cauchy problem for the bi-harmonic equation

In order to move ahead to higher-order diffusion-like equation, using the lines of our previous analysis, we consider the Cauchy Problem for the bi-harmonic equation. Then we will underline the main principal differences between second- and fourth-order linear parabolic PDEs:

$$
u_{t}=-u_{x x x x} \quad \text { in } \quad \mathbb{R} \times \mathbb{R}_{+},
$$

with given bounded integrable initial data $u_{0}(x)$.
Models various higher-order diffusion phenomena, a well-known canonical PDE.

An Application in Hydrodynamics: Burnett Equations are Fourth-Order (a Non-Standard Fact)

Two Main Models of Hydrodynamics

As customary, higher-order viscosity terms occur via Grad's method in Chapman-Enskog expansions for hydrodynamics, where the viscosity part occurs as follows via "singular" expansion of the kernels of collision-like operators by using kernels with pointwise supports:

$$
\begin{gathered}
\frac{\mathrm{d} \mathbf{u}}{\mathrm{~d} t} \equiv \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla \mathbf{u}) \mathbf{u}=-\nabla p+\sum_{n=0}^{\infty} \epsilon^{2 n+1} \Delta^{n}\left(\mu_{n} \Delta \mathbf{u}\right) \\
=\epsilon\left(\mu_{0} \Delta \mathbf{u}+\epsilon^{2} \mu_{1} \Delta^{2} \mathbf{u}+\ldots\right)
\end{gathered}
$$

where $\epsilon>0$ is essentially the Knudsen number; \mathbf{u} is the solenoidal (div-free) velocity field and p the pressure.

An Application in Hydrodynamics: Burnett Equations are Fourth-Order

Navier-Stokes Equations: $n=0$

In a full model, truncating such series at $n=0$ leads to the Navier-Stokes equations:

$$
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla \mathbf{u}) \mathbf{u}=-\nabla p+\epsilon \mu_{0} \Delta \mathbf{u}, \quad \operatorname{div} \mathbf{u}=0
$$

Global existence and Uniqueness of classical bounded solutions are unknown:
The Millennium Problem of the Clay Institute!
One of the most important for hydrodynamics and PDE theory of the XXI century....

An Application in Hydrodynamics: Burnett Equations are Fourth-Order

Burnett Equations: $n=1$

In a full model, truncating such series at $n=1$ leads to the Burnett equations:

$$
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla \mathbf{u}) \mathbf{u}=-\nabla p-\hat{\mu}_{2} \Delta^{2} \mathbf{u}, \quad \operatorname{div} \mathbf{u}=0
$$

Global Existence and Uniqueness of classical bounded solutions are also unknown....
(Not any Millennium Problem but seems to be much more difficult mathematically; a problem for the XXII century!? Or next Millennium?)

The Fundamental (Similarity) Solution

The Bi-Harmonic Equation

$$
u_{t}=-u_{x x x x} \quad \text { in } \quad \mathbb{R} \times \mathbb{R}_{+}
$$

The Fundamental (Similarity) Solution

The Bi-Harmonic Equation

$$
u_{t}=-u_{x x x x} \quad \text { in } \quad \mathbb{R} \times \mathbb{R}_{+}
$$

The Fundamental Solution

$$
\begin{gathered}
b(x, t)=t^{-\frac{1}{4}} F(y), \quad y=\frac{x}{t^{1 / 4}} . \\
\mathbf{B} F \equiv-F^{(4)}+\frac{1}{4}(y F)^{\prime}=0, \quad \int_{\mathbb{R}} F=1 \\
\Longrightarrow \quad-F^{\prime \prime \prime}+\frac{1}{4} y F=0 .
\end{gathered}
$$

Applying the Fourier transform yields

$$
\begin{equation*}
\mathcal{F}(b(\cdot, t))(\xi)=\mathrm{e}^{-\xi^{4} t}, \quad \text { and } \quad \hat{F}(\omega)=\mathcal{F}(F(\cdot))(\omega)=\mathrm{e}^{-\omega^{4}} \tag{1}
\end{equation*}
$$

The Fundamental Rescaled Kernel

Hence, F is given by:

$$
F(y)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} \mathrm{e}^{-s^{4}}(s|y|)^{\frac{1}{2}} J_{-\frac{1}{2}}(s|y|) \mathrm{d} s .
$$

where $J_{-\frac{1}{2}}$ is Bessel's function:

$$
J_{-\frac{1}{2}}(z)=\sqrt{\frac{2}{\pi z}} \cos z .
$$

Oscillatory Behaviour of Changing Sign!

The Oscillatory Kernel for the Bi-Harmonic Equation

Rescaled Kernel of the Fundamental Solution to $u_{t}=-u_{x x x x}$

The Fundamental Rescaled Kernel: $u_{t}=-u_{x x x x}$

The Oscillatory Kernel for the Bi-Harmonic Equation

Rescaled Kernel for $u_{t}=-u_{x x x x}$: tail enlarged

The Oscillatory Kernel for the Bi-Harmonic Equation

Rescaled Kernel for $u_{t}=-u_{x x x x}$: tail in log-scale

Oscillatory Rescaled Kernel of Changing Sign

Consequences:

(i) No order-preserving properties of the bi-harmonic flow,
(ii) No comparison,
(iii) No Maximum Principle,
(iv) No Sturm zero set properties (No Sturm Theorems),...

Oscillatory Rescaled Kernel of Changing Sign

Consequences:

(i) No order-preserving properties of the bi-harmonic flow,
(ii) No comparison,
(iii) No Maximum Principle,
(iv) No Sturm zero set properties (No Sturm Theorems),...

No Symmetry at All

(k) B IS NOT SELF-ADJOINT, no symmetry of the operator !

Sharp Asymptotics of the Oscillatory Rescaled Kernel

WKBJ Expansion (1920s)

The ODE is

$$
\mathbf{B} F \equiv-F^{(4)}+\frac{1}{4}(y F)^{\prime}=0 \Longrightarrow F^{\prime \prime \prime}+\frac{1}{4} y F=0
$$

Using standard classic WKBJ-type asymptotics (1920s!), substitute the function

$$
F(y) \sim y^{-\delta_{0}} \mathrm{e}^{a y^{4 / 3}}, \quad y \rightarrow+\infty
$$

This gives the algebraic equation for a,

$$
\left(\frac{4}{3} a\right)^{3}=\frac{1}{4}, \quad \text { and } \quad \delta_{0}=\frac{1}{3}>0 .
$$

Sharp Asymptotics of the Oscillatory Rescaled Kernel

WKBJ Oscillatory Asymptotics

Thus:

$$
a=\frac{3}{4^{4 / 3}}\left[\cos \left(\frac{2 \pi}{3}\right)+\mathrm{i} \sin \left(\frac{2 \pi}{3}\right)\right] \equiv-d_{0}+\mathrm{i} b_{0} .
$$

This gives the following double-scale asymptotics as $y \rightarrow+\infty$:

$$
F(y)=y^{-\delta_{0}} \mathrm{e}^{-d_{0} y^{4 / 3}}\left[C_{1} \sin \left(b_{0} y^{4 / 3}\right)+C_{2} \cos \left(b_{0} y^{4 / 3}\right)\right]+\ldots
$$

where $C_{1,2}$ are real constants, $\left|C_{1}\right|+\left|C_{2}\right| \neq 0$. Here

$$
d_{0}=3 \cdot 2^{-\frac{11}{3}}, \quad b_{0}=3^{\frac{3}{2}} \cdot 2^{-\frac{11}{3}}, \quad \delta_{0}=\frac{1}{3} .
$$

By Convolution Theorem for Fourier Transforms

For bounded L^{1} data, \exists ! solution

$$
u(x, t)=b(t) * u_{0} \equiv t^{-\frac{1}{4}} \int_{\mathbb{R}} F\left(\frac{x-z}{t^{1 / 4}}\right) u_{0}(z) \mathrm{d} z
$$

in the corresponding Tikhonov-like class of not more than exponentially growing initial data:

$$
|u(x, t)| \leq C \mathrm{e}^{c|x|^{4 / 3}} .
$$

Precise Asymptotic Behaviour as $t \rightarrow+\infty$

Rescaled Variables

Equation:

$$
\begin{gathered}
u_{t}=-u_{x x x x}, \quad y \in \mathbb{R}, \quad t>0 \\
u(x, t)=t^{-\frac{1}{4}} v(y, \tau), \quad y=\frac{x}{t^{1 / 4}}, \quad \tau=\ln t \gg 1
\end{gathered}
$$

Precise Asymptotic Behaviour as $t \rightarrow+\infty$

Rescaled Variables

Equation:

$$
\begin{gathered}
u_{t}=-u_{x x x x}, \quad y \in \mathbb{R}, \quad t>0 . \\
u(x, t)=t^{-\frac{1}{4}} v(y, \tau), \quad y=\frac{x}{t^{1 / 4}}, \quad \tau=\ln t \gg 1 .
\end{gathered}
$$

The Rescaled Equation

$$
v_{\tau}=\mathbf{B} v \equiv-v_{y y y y}+\frac{1}{4} y v_{y}+\frac{1}{4} v, \quad y \in \mathbb{R}, \tau>0 .
$$

B IS NOT Self-Adjoint Operator

From 1836 to the XXI century

One can see that \mathbf{B} does not admit any symmetric form in any L_{ρ}^{2}-space for any $\rho>0$ (easy negative calculus: too many conditions imposed to be symmetric for 4th-order operator)! We did not find any trace of such a B-spectral theory in existing literature.

B IS NOT Self-Adjoint Operator

From 1836 to the XXI century

One can see that \mathbf{B} does not admit any symmetric form in any L_{ρ}^{2}-space for any $\rho>0$ (easy negative calculus: too many conditions imposed to be symmetric for 4th-order operator)!
We did not find any trace of such a B-spectral theory in existing literature.

Non-Self Adjoint Theory Developed in 2004

Egorov, Galaktionov, Kondratiev, and Pohozaev, Adv. Differ. Equat., 9 (2004), 1009-1038.

Expansion of the Semigroup

Using Convolution

$$
u(x, t)=t^{-\frac{1}{4}} \int_{\mathbb{R}} F\left(\frac{x-z}{t^{1 / 4}}\right) u_{0}(z) \mathrm{d} z
$$

Hence, for the rescaled solution $v(y, \tau)=t^{1 / 4} u(x, t)$,

$$
v(y, \tau)=\int_{\mathbb{R}} F\left(y-z \mathrm{e}^{-\tau / 4}\right) u_{0}(z) \mathrm{d} z
$$

Expansion of the Semigroup

Using Convolution

$$
u(x, t)=t^{-\frac{1}{4}} \int_{\mathbb{R}} F\left(\frac{x-z}{t^{1 / 4}}\right) u_{0}(z) \mathrm{d} z
$$

Hence, for the rescaled solution $v(y, \tau)=t^{1 / 4} u(x, t)$,

$$
v(y, \tau)=\int_{\mathbb{R}} F\left(y-z \mathrm{e}^{-\tau / 4}\right) u_{0}(z) \mathrm{d} z
$$

Analytic Kernel Expansion

By Taylor's expansion

$$
F\left(y-z \mathrm{e}^{-\tau / 4}\right)=\sum_{(k)} \frac{1}{k!} F^{(k)}(y)(-1)^{k} z^{k} \mathrm{e}^{-k \tau / 4}
$$

which converges uniformly on compact subsets (rather easy). We next substitute this into the semigroup expression:

Eigenfunction Expansion in L_{ρ}^{2}

Expansion

We have for the semigroup $\left\{\mathrm{e}^{\mathrm{B} \tau}\right\}_{\tau \geq 0}$

$$
v(y, \tau)=\sum_{(k)} \mathrm{e}^{-k \tau / 4} \frac{(-1)^{k}}{\sqrt{k!}} F^{(k)}(y) \frac{1}{\sqrt{k!}} \int_{\mathbb{R}} z^{k} u_{0}(z) \mathrm{d} z .
$$

Here we see: REAL spectrum and both sets of eigenfunctions!

Eigenfunction Expansion in L_{ρ}^{2}

Expansion

We have for the semigroup $\left\{\mathrm{e}^{\mathbf{B} \tau}\right\}_{\tau \geq 0}$

$$
v(y, \tau)=\sum_{(k)} \mathrm{e}^{-k \tau / 4 \frac{(-1)^{k}}{\sqrt{k!}} F^{(k)}(y) \frac{1}{\sqrt{k!}} \int_{\mathbb{R}} z^{k} u_{0}(z) \mathrm{d} z}
$$

Here we see: REAL spectrum and both sets of eigenfunctions!

Bi-Orthonormal Sets of Eigenfunctions

For $u_{0} \in L_{\rho}^{2}$, this defines the eigenfunction expansion

$$
v(y, \tau)=\sum_{(k)} \mathrm{e}^{-k \tau / 4} \psi_{k}(y)\left\langle\psi_{k}^{*}, u_{0}\right\rangle, \quad \psi_{k}(y)=\frac{(-1)^{k}}{\sqrt{k!}} F^{(k)}(y),
$$

and $\psi_{k}(y)$ MUST be polynomials, called the generalized Hermite polynomials (have nothing to do with any self-adjoint

Domain of B

Exponential Weight and Domain

B if defined in the weighted space $L_{\rho}^{2}(\mathbf{R})$ with the exponential weight

$$
\begin{equation*}
\rho(y)=\mathrm{e}^{a|y|^{4 / 3}}>0, \quad a \in\left(0,2 d_{0}\right) . \tag{2}
\end{equation*}
$$

The domain is a Hilbert space of functions H_{ρ}^{4} with the inner product and the norm

$$
\begin{gathered}
\langle v, w\rangle_{\rho}=\int_{\mathbb{R}} \rho(y) \sum_{k=0}^{4} D^{k} v(y) \overline{D^{k} w(y)} \mathrm{d} y, \\
\|v\|_{\rho}^{2}=\int_{\mathbb{R}} \rho(y) \sum_{k=0}^{4}\left|D^{k} v(y)\right|^{2} \mathrm{~d} y .
\end{gathered}
$$

Then $H_{\rho}^{4} \subset L_{\rho}^{2} \subset L^{2}$, and \mathbf{B} is a bounded linear operator from H_{ρ}^{4} to L_{ρ}^{2}.

Discrete Real Spectrum of B

Spectral Properties of B (Non-Self Adjoint)

Lemma

(i) The spectrum of \mathbf{B} comprises real simple eigenvalues only,

$$
\begin{equation*}
\sigma(\mathbf{B})=\left\{\lambda_{k}=-\frac{k}{4}, k=0,1,2, \ldots\right\} . \tag{3}
\end{equation*}
$$

(ii) The eigenfunctions $\psi_{k}(y)$ are given by

$$
\begin{equation*}
\psi_{k}(y)=\frac{(-1)^{k}}{\sqrt{k!}} D^{k} F(y) \tag{4}
\end{equation*}
$$

and form a complete subset in L^{2} and in L_{ρ}^{2}.
(iii) The resolvent $(\mathbf{B}-\lambda I)^{-1}: L_{\rho^{*}}^{2} \rightarrow L_{\rho}^{2}$ for $\lambda \notin \sigma(\mathbf{B})$ is a compact integral operator ($\rho^{*}=1 / \rho$, see below).

Domain of the Adjoint Operator B*

Definition of B* by Blow-up Scaling

$$
u_{t}=-u_{x x x x}, \quad y \in \mathbb{R}, \quad-1<t<0 ; \quad u(0,0)=1
$$

The adjoint operator \mathbf{B}^{*} occurs after the blow-up (multiple-zero-like) scaling

$$
u(x, t)=v(y, \tau), \quad y=\frac{x}{(-t)^{1 / 4}}, \quad \tau=-\ln (-t),
$$

so that $v(y, \tau)$ solves the rescaled equation

$$
v_{\tau}=\mathbf{B}^{*} v \equiv-v_{y y y y}-\frac{1}{4} y v_{y}
$$

Here \mathbf{B}^{*} is formally adjoint to \mathbf{B} in the standard (dual) L^{2}-metric.

Domain of the Adjoint Operator B*

Domain of B*

The weight is:

$$
\begin{equation*}
\rho^{*}(y) \equiv \frac{1}{\rho(y)}=\mathrm{e}^{-a|y|^{4 / 3}}>0 \tag{5}
\end{equation*}
$$

and we ascribe to \mathbf{B}^{*} the domain $H_{\rho^{*}}^{4}$, which is dense in $L_{\rho^{*}}^{2}$.

Generalized Hermite Polynomials for B*

Discrete Spectrum

First, there holds

$$
\begin{equation*}
\langle\mathbf{B} v, w\rangle=\left\langle v, \mathbf{B}^{*} w\right\rangle \text { for any } v \in H_{\rho}^{4}, w \in H_{\rho^{*}}^{4} \tag{6}
\end{equation*}
$$

Lemma

(i) $\sigma(\mathbf{B})=\sigma\left(\mathbf{B}^{*}\right)$.
(ii) The eigenfunctions $\psi_{k}^{*}(y)$ of \mathbf{B}^{*} are polynomials:

$$
\begin{equation*}
\psi_{k}^{*}(y)=\frac{1}{\sqrt{k!}} \sum_{j=0}^{[k / 4]} \frac{1}{j!} D^{4 j} y^{k}, \quad k=0,1,2, \ldots \tag{7}
\end{equation*}
$$

and form a complete subset in $L_{\rho^{*}}^{2}$.
(iii) \mathbf{B}^{*} has compact resolvent $\left(\mathbf{B}^{*}-\lambda I\right)^{-1}$ in $L_{\rho^{*}}^{2}$ for $\lambda \notin \sigma\left(\mathbf{B}^{*}\right)$.

Bi-Orthonormality of Φ and Φ^{*}

Corollary

With the given definitions of eigenfunctions, the orthonormality condition holds

$$
\begin{equation*}
\left\langle\psi_{k}, \psi_{l}^{*}\right\rangle=\delta_{k l} \quad \forall k, l \geq 0 \tag{8}
\end{equation*}
$$

where $\delta_{k l}$ is the Kronecker delta.
Proof. Integrating by parts.... \square

Some Applications of Hermite Polynomials for B*

Unique Continuation Theorem

The fundamental uniqueness concepts of general PDE theory: Holmgren (1901)-Carleman-Calderon-Pliss-Nirenberg-... Since, by blow-up scaling the generalized Hermite polynomials describe ALL types of multiple-zero formation, we state the following unique continuation results:
Consider a solution $u(x, t)$ of the bi-harmonic equations defined in $\mathbb{R} \times(-1,1)$ such that, say,

$$
u(0,0)=0 .
$$

Some Applications of Hermite Polynomials for B*

Theorem 1: no infinite-order zeros
A traditional theorem (Carleman-type):
Theorem
If $(0,0)$ is infinite-order zero of $u(x, t)$ (in any integral sense), then $u(x, t) \equiv 0$.

Proof. A Hermite polynomial for $k=\infty$ does not exist... .

Some Applications of Hermite Polynomials for B*

Theorem 2: Hermitian Structure Involved

Theorem

If formation of the multiple zero at $x=0$ as $t \rightarrow 0^{-}$DOES NOT asymptotically follow zero curves any of generalized Hermite polynomials $\psi_{k}^{*}(y)$, then $u(x, t) \equiv 0$.

Proof. Ψ^{*} is complete... \square
A new theorem: uses deep new results of Hermitian Spectral Theory developed: a complete knowledge of "micro-structure" of the PDE is available....

Hermitian Spectral Theory Were Absent for 170 Years!

Classic Theory: C. Sturm, 1836...

(i) The Heat Equation:

$$
u_{t}=u_{x x}
$$

(ii) the rescaled (blow-up) operator:

$$
\mathbf{B}^{*} v=v^{\prime \prime}-\frac{1}{2} y v^{\prime}
$$

(iii) $\sigma\left(\mathbf{B}^{*}\right)=\left\{-\frac{k}{2}\right\}, \Phi^{*}$ consists of Hermite classic polynomials....

Hermitian Spectral Theory Were Absent for 170 Years!

Third-order Linear Dispersion Equation: Absent

(i) The LDE

$$
u_{t}=u_{x x x}
$$

(ii) the rescaled (blow-up) operator:

$$
\mathbf{B}^{*} v=v^{\prime \prime \prime}-\frac{1}{3} y v^{\prime},
$$

(iii) $\sigma\left(\mathbf{B}^{*}\right)=\left\{-\frac{k}{3}\right\}, \Phi^{*}$ consists of generalized Hermite polynomials....
Fernandes, Galaktionov (2009 ?).

Hermitian Spectral Theory for the 1D LSE!

1D Linear Schrödinger Equation: Absent

(i) The LSE, scattering theory, Quantum Mechanics...

$$
\text { i } u_{t}=u_{x x} ; \quad \text { Hamiltonian: } \quad \int|u(x, t)|^{2} \mathrm{~d} x=\text { const.; }
$$

E. Schrödinger (1926), the most citable PDE EVER!
(ii) the rescaled (blow-up) operator:

$$
\mathbf{B}^{*} v=v^{\prime \prime}-\frac{\mathrm{i}}{2} y v^{\prime} ;
$$

(iii) $\sigma\left(\mathbf{B}^{*}\right)=\left\{-\frac{k}{2}\right\}, \Phi^{*}$ consists of generalized Hermite polynomials... .
Galaktionov, Kamotski (2008?).
Etc.

