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Lecture 2: PLAN
The Bi-Harmonic Equation, the fourth-order parabolic equation:

again, the Cauchy Problem.
Twenty-First Century Theory (2004).

SHARP Asymptotic Theory:
(i) as t — +o0, large-time behaviour, and
(i) blow-up behaviour,ast — T~ < oo.

Hermitian Spectral Theory of Non Self-Adjoint Operators
(2004).




Lecture 2: The Classic BI-HARMONIC EQUATION

The Cauchy problem for the bi-harmonic equation

In order to move ahead to higher-order diffusion-like equation,
using the lines of our previous analysis, we consider the
Cauchy Problem for the bi-harmonic equation. Then we will
underline the main principal differences between second- and
fourth-order linear parabolic PDEs:

with given bounded integrable initial data  up(x).




Lecture 2: The Classic BI-HARMONIC EQUATION

The Cauchy problem for the bi-harmonic equation

In order to move ahead to higher-order diffusion-like equation,
using the lines of our previous analysis, we consider the
Cauchy Problem for the bi-harmonic equation. Then we will
underline the main principal differences between second- and
fourth-order linear parabolic PDEs:

with given bounded integrable initial data  up(x).

Models various higher-order diffusion phenomena, a
well-known canonical PDE.



An Application in Hydrodynamics: Burnett
Equations are Fourth-Order (a Non-Standard Fact)

Two Main Models of Hydrodynamics

As customary, higher-order viscosity terms occur via Grad’s
method in Chapman—Enskog expansions for hydrodynamics,
where the viscosity part occurs as follows via “singular”
expansion of the kernels of collision-like operators by using
kernels with pointwise supports:

W=y + (u- Vuu=—-Vp+ 3 1A (punAu)
n=0

= e(poAu + 21 A%u + ...),

where € > 0is essentially the Knudsen number; u is the
solenoidal (div-free) velocity field and p the pressure.




An Application in Hydrodynamics: Burnett

Equations are Fourth-Order

Navier—Stokes Equations: n =0

In a full model, truncating such series at n = 0 leads to the
Navier-Stokes equations:

Ut + (u-Vu)u = —=Vp+ epplu, divu =0.

Global existence and Uniqueness of classical bounded
solutions are unknown:

The Millennium Problem of the Clay Institute!

One of the most important for hydrodynamics and PDE theory
of the XXI century... .




An Application in Hydrodynamics: Burnett

Equations are Fourth-Order

Burnett Equations: n=1

In a full model, truncating such series at n = 1 leads to the
Burnett equations:

U+ (u- Vu)u = —Vp — 2A%, divu=0.

Global Existence and Unigueness of classical bounded
solutions are also unknown....

(Not any Millennium Problem but seems to be much more
difficult mathematically; a problem for the XXII century!? Or
next Millennium?)




The Fundamental (Similarity) Solution

The Bi-Harmonic Equation

U = —Ugx IN R xRy,




The Fundamental (Similarity) Solution

The Bi-Harmonic Equation

~

The Fundamental Solution

= —F"+iyF=0.
Applying the Fourier transform yields

Fb 1)) =, and Fw)=FF()w) =" (1)

~




The Fundamental Rescaled Kernel

Hence, F is given by:

oo 1
Fiy) = &= ge_s‘l(slﬂ)”_%(slﬂ)ds-

is Bessel’s function:

=./2
J_%(z)_,/7TZ cosz

Oscillatory Behaviour of Changing Sign!

where J_

NI




The Oscillatory Kernel for the Bi-Harmonic

Equation

Rescaled Kernel of the Fundamental Solution to Ui = — Uy

The Fundamental Rescaled Kernel: US=U
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The Oscillatory Kernel for the Bi-Harmonic

Equation

Rescaled Kernel for u; = —uywx: tail enlarged

The Fundamental Rescaled Kernel: UsU e tail enlarged
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The Oscillatory Kernel for the Bi-Harmonic

Equation

Rescaled Kernel for u; = —uwx: tail in log-scale
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Oscillatory Rescaled Kernel of Changing Sign

Consequences:

(i) No order-preserving properties of the bi-harmonic flow,
(i) No comparison,

(iii) No Maximum Principle,

(iv) No Sturm zero set properties (No Sturm Theorems),...




Oscillatory Rescaled Kernel of Changing Sign

Consequences:

(i) No order-preserving properties of the bi-harmonic flow,
(i) No comparison,

(iii) No Maximum Principle,

(iv) No Sturm zero set properties (No Sturm Theorems),...

No Symmetry at All
(k) B IS NOT SELF-ADJOINT, no symmetry of the operator !




Sharp Asymptotics of the Oscillatory Rescaled
Kernel

WKBJ Expansion (1920s)

The ODE is

BF=-F@+1(yF)=0=F"+31yF=0.

Using standard classic WKBJ-type asymptotics (1920s!),
substitute the function

Fiy) ~y e’ y— 4o

This gives the algebraic equation for a,

(39)° -

, and |jp=3>0.

ENI




Sharp Asymptotics of the Oscillatory Rescaled

Kernel

WKBJ Oscillatory Asymptotics
Thus:
a= z5[cos(&) +isin(F)] = —do+ibo.

This gives the following double-scale asymptotics as y — +oo:
F(y) = y~% e~%¥"*[C; sin(boy*’3) + Cy cos(boy*/3)] + ..,

where Cy  are real constants, |C1| + |C;| # 0. Here

3

do=3-273, bp=32.2"3, §g=

Wl




By Convolution Theorem for Fourier Transforms

For bounded L! data, 3 ! solution

u(x,t) =b(t) x ug =t~ zlth(m)uo (2)dz,

in the corresponding Tikhonov-like class of not more than
exponentially growing initial data:

u(x,1)] < Ceshi*”.




Precise Asymptotic Behaviour ast — +oo

Rescaled Variables
Equation:
U= —Uxx, YER, t>0.

uxt) =t-av(y,7), y=%, r=Int>1




Precise Asymptotic Behaviour ast — +oo

Rescaled Variables
Equation:
U= —Uxx, YER, t>0.

uxt) =t-av(y,7), y=%, r=Int>1

The Rescaled Equation

V; =BV= —Wyy+3Wy+3V, YER, 7>0.




B IS NOT Self-Adjoint Operator

From 1836 to the XXI century

One can see that B does not admit any symmetric form in any
L,Z)-space for any p > 0 (easy negative calculus: too many
conditions imposed to be symmetric for 4th-order operator)!
We did not find any trace of such a B-spectral theory in existing
literature.




B IS NOT Self-Adjoint Operator

From 1836 to the XXI century

One can see that B does not admit any symmetric form in any
L,Z)-space for any p > 0 (easy negative calculus: too many
conditions imposed to be symmetric for 4th-order operator)!
We did not find any trace of such a B-spectral theory in existing
literature.

Non-Self Adjoint Theory Developed in 2004

Egorov, Galaktionov, Kondratiev, and Pohozaev, Adv. Differ.
Equat., 9 (2004), 1009-1038.




Expansion of the Semigroup

Using Convolution

1

(X t) =13 f F(t1/4) UO(Z)
Hence, for the rescaled solution v(y, 7) = t¥4u(x, 1),

vy, 7) = ﬁ{( F(y — ze~/*) up(2) dz




Expansion of the Semigroup

Using Convolution
X_

Hence, for the rescaled solution v(y, 7) = t¥4u(x, 1),

v(y,7) = [F(y — z&7/*) up(2) dz
R

|

Analytic Kernel Expansion
By Taylor’'s expansion

Fly—ze7/%) = Y9 w FOW)(—1)<Ze /4,

which converges uniformly on compact subsets (rather easy).
We next substitute this into the semigroup expression:




Eigenfunction Expansion in Lﬁ

Expansion

We have for the semigroup {eBT}TZo

vy, 7) = Yo € AR FM(y) Lo [ 2(?) dz

Here we see: REAL spectrum and both sets of eigenfunctions!

4




Eigenfunction Expansion in Lﬁ

Expansion

We have for the semigroup {€®7},>0
Wy, 7) = Sy e CE ) Jig [ 2w d

Here we see: REAL spectrum and both sets of eigenfunctions!

-
|

Bi-Orthonormal Sets of Eigenfunctions
For up € Lﬁ, this defines the eigenfunction expansion

VY, 7) = g0 € ) W), tily) = SEEFO(y),

and ¢x(y) MUST be polynomials, called the generalized
Hermite polynomials (have nothing to do with any self-adjoint

e o e W\




Domain of B

Exponential Weight and Domain

B if defined in the weighted space L,ZJ(R) with the exponential
weight

ply) = éM”? >0, ae (0,2d). )

The domain is a Hilbert space of functions H;‘ with the inner
product and the norm

= o) 3 5™ D*(y) DFw(y) dy.

VI = fp ZID"V(y)IZdy

Then Hj C L2 C L?, and B is a bounded linear operator from H#
to L2.
P




Discrete Real Spectrum of B

Spectral Properties of B (Non-Self Adjoint)

Lemma

(i) The spectrum of B comprises real simple eigenvalues only,
o(B)={=-% k=0,1,2,..}. (3)
(ii) The eigenfunctions v(y) are given by
_1\k
yi(y) = SE-DFR(y) @)
and form a complete subset in L2 and in L3.

(iii) The resolvent (B — Al)~*: L2, — L3 for A ¢ o(B) is a
compact integral operator (p* = 1/p, see below).

\




Domain of the Adjoint Operator B*

Definition of B* by Blow-up Scaling

U= —Upox, YER, —-1<t<0 |u(0,0)=1|

The adjoint operator B* occurs after the blow-up
(multiple-zero-like) scaling

uxt) =vy.7), y= =z 7=—In(-),
so that v(y, 7) solves the rescaled equation

— R*y = 1
Vr = B'V= -V — 2 YW

Here B* is formally adjoint to B in the standard (dual) L2-metric.



Domain of the Adjoint Operator B*

Domain of B*
The weight is:

P =y = e >0 ®

and we ascribe to B* the domain H:}*, which is dense in Lﬁ*.




Generalized Hermite Polynomials for B*

Discrete Spectrum

First, there holds

(Bv,w) = (v,B*w) for any v € Hj, w e HZ.. (6)

Lemma

(i) o(B) = o(B*).

(if) The eigenfunctions v (y) of B* are polynomials:

and form a complete subset in Lﬁ*.
(iii) B* has compact resolvent (B* — Al)~tin L3, for A & o(B*).

A\



Bi-Orthonormality of ¢ and ¢*

Corollary

With the given definitions of eigenfunctions, the orthonormality
condition holds

(Y, ) =dw ¥V k>0, (8)

where Jy is the Kronecker delta.

Proof. Integrating by parts.... O



Some Applications of Hermite Polynomials for B*

Unique Continuation Theorem
The fundamental uniqueness concepts of general PDE theory:
Holmgren (1901)-Carleman—Calderon—Pliss—Nirenberg-—....

Since, by blow-up scaling the generalized Hermite polynomials
describe ALL types of multiple-zero formation, we state the
following unique continuation results:

Consider a solution u(x, t) of the bi-harmonic equations defined
inR x (—1,1) such that, say,

u(0,0) = 0.



Some Applications of Hermite Polynomials for B*

Theorem 1: no infinite-order zeros

A traditional theorem (Carleman-type):

Theorem

If (0,0) is infinite-order zero of u(x,t) (in any integral sense),
then u(x,t) = 0.

Proof. A Hermite polynomial for k = co does not exist.... [

N,




Some Applications of Hermite Polynomials for B*

Theorem 2: Hermitian Structure Involved

Theorem

If formation of the multiple zero at x=0as t — 0~ DOES NOT
asymptotically follow zero curves any of generalized Hermite
polynomials v (y), then u(x,t) = 0.

Proof. ¥* is complete.... [

A new theorem: uses deep new results of Hermitian Spectral
Theory developed: a complete knowledge of “micro-structure”
of the PDE is available....




Hermitian Spectral Theory Were Absent for 170
Years!

Classic Theory: C. Sturm, 1836...
(i) The Heat Equation:

Ut = Uxx;

(i) the rescaled (blow-up) operator:
B'v=V — Iy,

(i) o(B*) = {—%}, ®* consists of Hermite classic
polynomials... .




Hermitian Spectral Theory Were Absent for 170

Years!

Third-order Linear Dispersion Equation: Absent
(i) The LDE
Ut = Uxxx;

(i) the rescaled (blow-up) operator:
Brv=v"—1

(i) o(B*) = {—%}, ®* consists of generalized Hermite
polynomials... .

Fernandes, Galaktionov (2009 ?).




Hermitian Spectral Theory for the 1D LSE!

1D Linear Schrodinger Equation: Absent
(i) The LSE, scattering theory, Quantum Mechanics...

iU = Ug; Hamiltonian: [ |u(x, t)\zdx = const.;

E. Schrodinger (1926), the most citable PDE EVER!
(i) the rescaled (blow-up) operator:

Bv=V'— LW,

(i) o(B*) = {—'z‘}, ®* consists of generalized Hermite
polynomials... .

Galaktionov, Kamotski (20087?).

Etc.




