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Lecture 3: PLAN
The Fourth-Order Porous Medium Equation (the PME-4)

ut = −(|u|nu)xxxx in R × R+,

with given bounded integrable initial data u0(x),

where n > 0 is a fixed constant.
(i) Existence-Uniqueness Theory in Sobolev Spaces (1960s);
(ii) Nonlinear Eigenfunction Theory, Behaviour as t → +∞;
(iii) Homotopy Approach,

n → 0+ =⇒ convergence to ut = −uxxxx. (1)

(iv) Numerical Evidences by MatLab, as Unavoidable Tools of
PDE Theory of the XXI Century... .



Lecture 3: The PME–4

The Cauchy problem (CP) for the PME–4

We first consider a quasilinear equation, with the crucial
exponent

n > 0.

The setting of the CP is standard:

ut = −(|u|nu)xxxx in R × R+,

We are looking for COMPACTLY SUPPORTED solutions.
|u|n is essential: the solutions are oscillatory near finite
interfaces (cf. the oscillatory eigenfunctions ψk(y)!)
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We first consider a quasilinear equation, with the crucial
exponent

n > 0.

The setting of the CP is standard:

ut = −(|u|nu)xxxx in R × R+,

We are looking for COMPACTLY SUPPORTED solutions.
|u|n is essential: the solutions are oscillatory near finite
interfaces (cf. the oscillatory eigenfunctions ψk(y)!)

Models various higher-order NONLINEAR diffusion
phenomena, many applications... .



Existence-Uniqueness Theory: Standard,
Fortunately

Weak Solution
Since the PDE is in divergent form in both t and x, this naturally
defines solutions in the weak sense, where all the derivatives
are distributions: the equation is understood in the distribution
sense:

−
∫∫

uχt = −
∫∫

(|u|nu)χxxxx ∀ χ ∈ C∞

0 ,

where u and |u|nu are assumed to be in L2, and initial data are
satisfied in L1- or L2-sense,

‖u(·, t) − u0(·)‖L1(L2) → 0, t → 0,

or in a weaker topology if necessary (in fact, L2 is fine).



Existence by Galerkin Approximation

Existence: Bubnov–Galerkin Method
Fixing a large bounded interval IL = (−L,L) such that u(x, t) is
supposed to be supported in IL for some t ∈ (0,T), a solution is
obtained by a finite-dimensional approximation:

u = lim
m→∞

um, where

(|um|
num)(x, t) =

∑m
k=1 ck(t)Vk(x)

where {Vk} are eigenfunctions of −D4 < 0 in IL with the
Dirichlet conditions:

−V(4) = µkV, V = V ′ = 0 at x = ±L.



Existence by Galerkin Approximation

Existence: Bubnov–Galerkin Method
A priori bounds for {um} are obtained by multiplication by |u|nu
in L2:

1
2

d
dt

∫

|u|n+1 = −
∫ [

(|u|nu)xx
]2

≤ 0,

and also by (|u|nu)t:

4(n+1)
(n+2)2

∫ [

(|u|
n
2 u)t

]2
= − 1

2
d
dt

∫ [

(|u|u)xx
]2

≤ 0.

This implies strong a priori bounds to pass to the limit m → ∞
by compact embedding of Sobolev spaces involved.



Uniqueness by Monotonicity

Monotonicity in H−2

The Operator A(u) = −(|u|nu)xxxx

is monotone in the metric of H−2 (negative Sobolev space): for
any u, v ∈ C∞

0 ,

〈A(u) − A(v), u − v〉H−2 ≡
∫

(A(u) − A(v))(D4)−1(u − v)

= −
∫

(|u|nu − |v|nv)(u − v) ≤ 0

(extension to weak solutions by closure...).
This implies uniqueness by classic theory of monotone
operators: let there exist two solutions u(x, t) and v(x, t) for the
same data u0, then by the above monotonicity:

1
2

d
dt ‖u(t) − v(t)‖H−2 = −

∫

(|u|nu − |v|nv)(u − v) ≤ 0



Uniqueness by Monotonicity

Monotonicity in H−2

Therefore:

=⇒ ‖u(t) − v(t)‖H−2 ≡ 0 =⇒ u(t) ≡ v(t).

Thus, as usual, we arrive at the next PROBLEM: describing
the actual evolution properties of solutions.



Similarity Solutions: Nonlinear Eigenfunctions

Similarity Solutions

By scaling invariance, the PME–4 formally possesses the
following similarity solutions:

uS(x, t) = t−αf (y), y = x
tβ , β = 1−αn

4 , (2)

where α > 0 is a parameter (a nonlinear eigenvalue).



Similarity Solutions: Nonlinear Eigenfunctions

Kernel Equation

The similarity kernel f (y) ∈ C0, f 6= 0 (compactly supported!)
satisfies the nonlinear eigenvalue problem

Bn(f ) ≡ −(|f |nf )(4) + 1−αn
4 y f ′ + αf = 0 in R. (3)

Collecting all terms with the eigenvalue α on the right-hand side
yields

B1
n(f ) ≡ −(|f |nf )(4) + 1

4 y f ′

= α
(

n
4 yf ′ − f ) ≡ αLnf .

(4)

An eigenvalue problem for a linear pencil of two, nonlinear B1
n

and linear Ln, ordinary differential operators.



Nonlinear Eigenfunction Setting

Even and Odd Eigenfunctions

The ODE for f is invariant under the group of scaling
transformations

f 7→ ε
4
n f , y 7→ ε y (ε > 0), (5)

so that, for a unique representation of necessary solutions, one
needs an additional normalization.
For solutions fl(y) with even l = 0, 2, ..., the following
normalization and the symmetry conditions at the origin y = 0:

f (0) = 1, and f ′(0) = 0, f ′′′(0) = 0, and (6)

f ′(0) = 1, and f (0) = 0, f ′′(0) = 0, l = 1, 3, 5, ... . (7)



Nonlinear Eigenfunction Setting

A General Approach Needed

For the above degenerate nonlinear fourth-order operator, any
simple geometric approach is not possible (no phase-plane
analysis!), and the shooting problem is always at least 3D.



Local Oscillatory Behaviour at Interfaces

Asymptotic Semilinear ODE

Finite propagation for the PME–4 can be proved by energy
methods (developed in the lines of Saint–Venant’s Principle
from solid mechanics, mid of XIX century).
Let y0 > 0 be the right-hand interface of a solution f (y). Then
from the ODE

−(|f |nf )(4) + β y f ′ + αf = 0

on integration once and neglecting some terms, making for
convenience the reflection y 7→ y0 − y, with y > 0 small enough,
for small y > 0, we have

(|f |nf )′′′ = −βy0f + ... (β > 0).



Local Oscillatory Behaviour at Interfaces

Asymptotic Semilinear ODE

We scale out the positive constant βy0 to get the ODE

(|f |nf )′′′ = −f for y > 0, f (0) = 0. (8)

Next, it is convenient to use the natural change

F = |f |nf =⇒ F′′′ = −
∣

∣F
∣

∣

−
n

n+1 F. (9)



Local Oscillatory Behaviour at Interfaces

ODE for the Oscillatory Component

We need to describe oscillatory solution of changing sign of the
ODE (9), with zeros concentrating at the given interface point
y = 0+.
We look for the solutions of the form

F(y) = yµϕ(s), s = ln y, µ = 3(n+1)
n > 3, (10)

where ϕ(s) is called the oscillatory component.



Local Oscillatory Behaviour at Interfaces

ODE for the Oscillatory Component

Substituting yields

P3(ϕ) = −|ϕ|−
n

n+1ϕ, (11)

where Pk denote linear differential polynomials

P1(ϕ) = ϕ′ + µϕ,

P2(ϕ) = ϕ′′ + (2µ− 1)ϕ′ + µ(µ− 1)ϕ,

P3(ϕ) = ϕ′′′ + 3(µ− 1)ϕ′′

+(3µ2 − 6µ+ 2)ϕ′ + µ(µ− 1)(µ − 2)ϕ.



Local Oscillatory Behaviour at Interfaces

Periodic Oscillatory Component

We are interested in uniformly bounded global solutions ϕ(s)
that are well defined as s = ln y → −∞, i.e., as y → 0+. The
best candidates for such global orbits are periodic solutions
ϕ∗(s):

Lemma

For any n > 0, (11) has a periodic solution ϕ∗(s) of changing
sign.

Proof. By 2D shooting... .

Galaktionov, Adv. Differ. Equat. (2008).



Local Oscillatory Behaviour at Interfaces: n = 0.75

Periodic Oscillatory Component for n = 0.75
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Local Oscillatory Behaviour at Interfaces: n = 1

Periodic Oscillatory Component for n = 1
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Local Oscillatory Behaviour at Interfaces: n � 1

Periodic Oscillatory Component for n � 1
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First four n-branches: explicit eigenvalues

Moments Conservation
We use the following conservation laws reflecting highly
divergent structure of the operator: for u0 ∈ C0(R) and
l = 0, 1, 2, 3,

d
dt

∫

xlu(x, t) dx = 0

=⇒
∫

xlu(x, t) dx =
∫

xlu0(x) dx for t ≥ 0.
(12)

For the similarity solutions uS, this yields
∫

xluS(x, t) dx = t−α+(l+1)β
∫

ylf (y) dy, so: (13)

−α+ (l + 1) 1−αn
4 = 0 =⇒

αl(n) = l+1
4+(l+1)n for l = 0, 1, 2, 3.

(14)



First four n-branches: explicit eigenvalues

Bernis–McLeod: l = 0, 1, 2, 3 (1991)

The corresponding nonlinear eigenfunctions fl(y) of (3) were
constructed in

Bernis–McLeod, Nonl. Anal., TMA, 17 (1991), 1039–1068.

The proof of existence and uniqueness is not easy at all! There
is still no any proof for f4 and others!

Very difficult and advanced mathematics!

For l ≥ 4, the ODE is true FOURTH-order and the known
techniques fail.



Numerical Construction of Nonlinear
Eigenfunctions

MatLab: Reliable Evidence with Tols up to 10−13

The nonlinear eigenvalue problem:

F = |f |nf =⇒

−F(4) + β(1 − µ)|F|−µF′y + α|F|−µF = 0, µ = n
n+1 .

We next present numerical results concerning existence and
multiplicity of solutions and stress some principal properties
and difficulties.
In the next Figure constructed by MatLab, we show the first
basic symmetric pattern that is again called the F0(y) for n = 0,
0.5, 1, and 2. The negative n = − 1

2 is included (for further
thinking: FAST diffusion).



First Nonlinear Eigenfunction

F0(y)
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Figure: The first solution F0(y) for various n.



1. Further Nonlinear Eigenfunctions

Fl(y)

In the next Figure, we show next four nonlinear eigenfunctions
from the family

Φ = {Fl, l = 0, 1, 2, ...}

for the same values of n.



2. Further Nonlinear Eigenfunctions

F1(y), the odd dipole-like profile
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Figure: The dipole F1(y) for various n.



3. Further Nonlinear Eigenfunctions

F2(y), even
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Figure: The third solution F2(y) for various n.



4. Further Nonlinear Eigenfunctions

F3(y), odd (second dipole)
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Figure: The odd profile F3(y) for various n.



5. Further Nonlinear Eigenfunctions

F4(y), even
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Figure: The even pattern F4(y) for various n.



6. Further Nonlinear Eigenfunctions

F6(y), even
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7. Further Nonlinear Eigenfunctions

F10(y), even

0 5 10 15

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

F(y)

m=2, N=1:  profile F
10

(y)

n=1, α
10

(1)=0.76...

n=0, α
10

(0)=2.75

Figure: The even pattern F10(y) for various n.



1. n-Branching of Nonlinear Eigenfunctions

n-Bifurcation Diagram

Here, we show first explicit n-branches of eigenfunctions; other
branches are not explicit.
We next show how to estimate their behaviour via branching at
the branching point n = 0 from eigenfunctions of the
corresponding linear eigenvalue problem.



1. n-Branching of Nonlinear Eigenfunctions

n-Bifurcation Diagram
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2. n-Branching of Nonlinear Eigenfunctions

Countable branching of eigenfunctions at n = 0

We study the behaviour of nonlinear eigenfunction curves
appeared at the branching point n = 0 from linear
eigenfunctions: looking forward to seeing the operator B! The
analysis is based on classic bifurcation-branching theory going
back to Lyapunov and Schmidt (turn of the XXth century).

Classic Monographs by Vainberg–Trenogin (1974),
Krasnosel’skii–Zabreiko (1984), Deimling (1985), etc.
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Equation for f

The similarity solutions kernels f ∈ C0 solve:

Bn(f ) ≡ −(|f |nf )(4) + 1−αn
4 yf ′ + αf = 0. (15)



3. n-Branching of Nonlinear Eigenfunctions

Countable branching of eigenfunctions at n = 0

For n > 0 small enough, the nonlinear eigenvalue problem is a
“perturbation” of the linear one for the linear operator B ≡ B0!
Indeed, since β = 1

4 − α
4 n, we write the equation as

Bf = g(f , n) ≡ [(|f |n − 1)f ](4) + nα
4 yf ′ −

(

α− 1
4

)

f . (16)

Next, since B has compact resolvent in L2
ρ, we form the strictly

negative operator B − I and, instead of (16), consider the
equivalent integral equation

f = A(f , n) ≡ (B0 − I)−1(g(f , n) − f ); (17)

the nonlinear operator being treated as compact in suitable
metrics.



4. n-Branching of Nonlinear Eigenfunctions

FORMAL n-branching analysis in R
2

There exist two parameters, n and α, so we deal with
bifurcation (branching) problem for

µ = (n, α)T ∈ R
2. (18)

the first n-branch is supposed to appear from the rescaled
kernel F at the branching point

µ0 =
(

0, 1
4

)T
.

The branching equations are famous scalar Lyapunov–Schmidt
ones:



4. n-Branching of Nonlinear Eigenfunctions

Asymptotic expansion of branches for small n > 0

Branching is possible under the following non-trivial kernel
assumption: for n = 0,

α− 1
4 = −λl = l

4 =⇒

αl(0) = 1+l
4 , l ≥ 0.

(19)

This gives an approximation of the countable sequence of
critical exponents {αl(n), βl(n)} (to be determined).



5. n-Branching of Nonlinear Eigenfunctions

FORMAL n-branching analysis in R
2

To this end, we use in (16) the expansion

|f |nf = f + nf ln |f | + o(n) as n → 0+; (20)

true uniformly on bounded intervals in f , and in the weak
sense... .
Substituting all expansions into the equation yields, still
formally:

Bn(f ) ≡ Bf +
(

α− 1
4

)

f + nL(f ) + o(n) = 0, (21)

with the perturbation operator

L(f ) = −
[

(f ln |f |)(4) + α
4 yf ′

]

. (22)



6. n-Branching of Nonlinear Eigenfunctions

FORMAL n-branching analysis in R
2

We apply the classical Lyapunov-Schmidt method to the above
equation. In this linearized setting, we naturally arrive at the
functional framework that is suitable for the linear operator B,
i.e., it is L2

ρ, with the domain H4
ρ, etc., and a similar setting for

the adjoint operator B∗.



7. n-Branching of Nonlinear Eigenfunctions

Asymptotics as n → 0

We perform linearization about f being a certain linear
eigenfunction ψl of B, with the eigenvalue λl = − l

4 .
ψl(y) ∼ DlF(y), so the nodal (zero) set of f (y) is well
understood: consists of isolated points (not easy to prove!)
concentrated as y → ∞, where

ψl(y) → 0 as y → ∞ uniformly and exponentially fast. (23)

All zeros are transversal (in the usual sense) a.e., which is
necessary for checking the key hypothesis on the nonlinearity:

L(ψl) ∈ L2
ρ. (24)



8. n-Branching of Nonlinear Eigenfunctions

Branching Formalities

By Spectral Theory from Lecture 2, the kernel of the linearized
operator

E0 = ker (B − λlI)

is always 1D! (Simple eigenvalues simplify).
Hence denoting by E1 the complementary (orthogonal to E0)
invariant subspace, we set

f = φl + V1, φl ∈ E0, V1 =
∑

k>l ckψk ∈ E1. (25)

According to classic theory, we set

V1 = nY + o(n) (Y⊥ψl),

αl(n) = l+1
4 + cln + o(n).



9. n-Branching of Nonlinear Eigenfunctions

Branching Equationd for any l ≥ 0

Then in the O(n)-approximation:

(B + l
4)Y + clψl + L(ψl) = 0. (26)

Multiplying by ψ∗

l yields the scalar equation:

cl = −〈L(ψl), ψ
∗

l 〉,

and then Y (not from the kernel) is uniquely determined from
the inhomogeneous equation (26).



9. n-Branching of Nonlinear Eigenfunctions

Branching Equationd for any l ≥ 0

Then in the O(n)-approximation:

(B + l
4)Y + clψl + L(ψl) = 0. (26)

Multiplying by ψ∗

l yields the scalar equation:

cl = −〈L(ψl), ψ
∗

l 〉,

and then Y (not from the kernel) is uniquely determined from
the inhomogeneous equation (26).

Final Branching Conclusion

Thus, under the fixed hypothesis, for small n > 0, there exists a
countable set of nonlinear eigenfunctions.



10. n-Branching of Nonlinear Eigenfunctions:
Open Problems

Open Problem 1

Global continuation of branches for larger n is unknown
(numerics confirm their global existence).
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Evolution completeness of nonlinear eigenfunctions.



10. n-Branching of Nonlinear Eigenfunctions:
Open Problems

Open Problem 1

Global continuation of branches for larger n is unknown
(numerics confirm their global existence).

Open Problem 2

Evolution completeness of nonlinear eigenfunctions.

Open Problem 3

Nonlinear eigenfunctions of the operator B∗

n for zero set blow-up
analysis, and convergence to Hermite polynomials as n → 0+.


