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Lectures 4 and 5: PLAN
The Fourth-Order Thin Film Equation (the TFE-4)

ut = −(|u|nuxxx)x in R × R+;

n > 0; compactly supported solutions.
(i) Self-Similar Solutions, Oscillatory Sign-Changing Behaviour,
Nonlinear Eigenfunction Theory,
(ii) Finite Interfaces, Homoclinic Bifurcation Parameter

nh = 1.758665... .

(iii) Existence-Uniqueness Concepts (no Proof still!) by a
Homotopy Approach,

n → 0+ =⇒ convergence to the bi-harm. eq. (1)

(iv) ALL Supported by Numerical Evidences by MatLab... .



Lectures 4-5: The TFE–4

The Cauchy problem (CP) for the TFE–4

The setting of the CP is standard:

ut = −(|u|nuxxx)x in R × R+,

We are looking for compactly supported solutions.



Lectures 4-5: The TFE–4

The Cauchy problem (CP) for the TFE–4

The setting of the CP is standard:

ut = −(|u|nuxxx)x in R × R+,

We are looking for compactly supported solutions.

A Classification
The distribution of the derivatives in (3, 1): 3 inside and 1
outside; the TFE–(3,1) = TFE–4, the canonical one.



Other TFE-like Equations

Back to PME–4
Then the fully divergent PME–4 is

u1 = −(|u|nu)xxxx =⇒ the TFE–(0,4).
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Other TFE-like Equations

Back to PME–4
Then the fully divergent PME–4 is

u1 = −(|u|nu)xxxx =⇒ the TFE–(0,4).

TFE–(2,2)

Another non-fully divergent PDE:

u1 = −(|u|nuxx)xx =⇒ the TFE–(2,2).

The Cauchy problem (CP) for the TFE–4

Again: |u|n is essential: the solutions are oscillatory near finite
interfaces (cf. the oscillatory eigenfunctions ψk(y)!)



The TFE–4: Derivation

Application and Derivation

Models various NONLINEAR thin-film phenomena... .
Example: A Hele–Shaw flow between two parallel plates,

{

conservation of mass: ut + (uv)x = 0, and

Darcy’s law: v = −
h2

0
12µ

px,
(2)

v is the average velocity of the fluid in the film, µ is the fluid
viscosity, and p is the pressure. Here: p = −γκ ≡ −γuxx,

where γ is the surface tension and κ is the curvature of the
surface. Substituting px into the second equation in (2) and the
resulting v into the first equation yields the TFE–4 with n = 1:

ut +
γh2

0
12µ

(uuxxx)x = 0.



The TFE–4: Application

Main Applications

- spreading of thin Newtonian liquid drops,

- n = 1: flows in a PM, Hele–Shaw cell,

- n = 2: Reynolds’ equation for Stokes flow,
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Stokes flow
The case n = 2 represents Navier-slip-dominated Stokes flows
of thin film. Then the analog is

(h2)y = −2
(
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PDE Theory

The TFEs entered general PDE theory in the 1980s (almost 30
years of very extensive study!)



The TFE–4: Application

Main Applications

- spreading of thin Newtonian liquid drops,

- n = 1: flows in a PM, Hele–Shaw cell,

- n = 2: Reynolds’ equation for Stokes flow,

Stokes flow
The case n = 2 represents Navier-slip-dominated Stokes flows
of thin film. Then the analog is

(h2)y = −2
(

h2hxxx
)

x.

Physical Experiments

Formation of travelling waves in thin films:

P. Kapitza (Noble Prize, 1979) and S. Kapitza, 1949.

PDE Theory

The TFEs entered general PDE theory in the 1980s (almost 30
years of very extensive study!)



Source-type Solution: First Nonlinear
Eigenfunction

First Similarity Pattern: Existence and Uniqueness

The source-type solution for the TFE–4

u∗(x, t) = t−
1

n+4 f (y), y = x/t
1

n+4 , (3)

−(|f |nf ′′′)′ + 1
n+4 (yf )′ = 0 =⇒ |f |nf ′′′ = 1

n+4 fy, f ′′′ = 1
n+4 |f |

−nfy.



Source-type Solution: First Nonlinear
Eigenfunction

Comparison with the PME-4

ut = −(|u|n̂u)xxxx, u∗(x, t) = t−
1

n̂+4 f (y), y = x/t
1

n̂+4 , (4)

−(|f |n̂f )(4) + 1
n̂+4 (yf )′ = 0 =⇒ (|f |n̂f )′′′ = 1

n̂+4 fy.

Finally,

f̂ = |f |n̂f =⇒ f̂ ′′′ = 1
n̂+4 |f̂ |

− n̂
n̂+1 fy.



Source-type Solution: First Nonlinear
Eigenfunction

First Similarity Pattern: TFE=PME for n ∈ (0, 1)

Comparing the boxed equation shows that these coincide (up
to easy scaling) if

n = n̂
n̂+1 , i.e., for any n ∈ (0, 1).

Hence they have the same unique (up to scaling) similarity
profiles that are oscillatory near interfaces!

This means a certain universality of formation of evolution
patterns for rather different PDE models: the TFE–4 and the
PME–4.



Source-type Solution: First Nonlinear
Eigenfunction

Warning 1: n ≥ 1?

For n ≥ 1, the ODEs for the TFE–4 and the PME–4 are
completely different!



Source-type Solution: First Nonlinear
Eigenfunction

Warning 1: n ≥ 1?

For n ≥ 1, the ODEs for the TFE–4 and the PME–4 are
completely different!

Warning 2: other nonlinear eigenfunctions?

Even for n ∈ (0, 1), other similarity patterns {Fl} (nonlinear
eigenfunctions) for the TFE–4 and the PME–4 are also
completely different!

Very difficult to study...



First Nonlinear Eigenfunction

F0(y)
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Figure: The first pattern f0(y) for various n.



Local Oscillatory Behaviour at Interfaces

ODE for the Oscillatory Component

For n ∈ (0, 1) is similar to the PME–4, but for n ≥ 1 is different!

Let y0 > 0 be the right-hand interface of a solution f (y). Then,
for y ≈ y−0 ( y0

n+4 scaled out),

f ′′′ = |f |−nf + ... =⇒

f (y) = (y0 − y)γϕ(s), s = ln(y0 − y), γ = 3
n =⇒

P3[ϕ] = |ϕ|−nϕ, where (5)

P3[ϕ] = ϕ′′′ + 3(γ − 1)ϕ′′ + (3γ2 − 6γ + 2)ϕ′

+ γ(γ − 1)(γ − 2)ϕ,



Local Oscillatory Behaviour at Interfaces

Periodic Oscillatory Component

Existence of a periodic oscillatory component for n ∈ [1, 3
2 + ε),

∀ ε > 0 is rather easy, but uniqueness is still open.

For which n ≥ 3
2 a periodic connection exists ?



Local Oscillatory Behaviour at Interfaces

Periodic Oscillatory Component

Existence of a periodic oscillatory component for n ∈ [1, 3
2 + ε),

∀ ε > 0 is rather easy, but uniqueness is still open.

For which n ≥ 3
2 a periodic connection exists ?

Two Types of Solutions: Positive and Oscillatory

Positive are known from the 1970s: Greenspan (1978); Smyth
and Smyth (1988);... Bernis, Peletier, and Williams (1992),... .
Oscillatory: in the XXI century... .

Which ones do correspond to the CP?



Local Oscillatory Behaviour at Interfaces

Numerics: Periodic Oscillatory Component for n = 1.6
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Positive and oscillatory solutions for n=1.6



Heteroclinic Bifurcation: Destruction of Periodic
Oscillations

Main Conjecture

Conjecture 1. A stable periodic solution ϕ∗(s) exists for all
n ∈ (0, nh), where nh ∈ ( 3

2 , 2) is a subcritical heteroclinic
bifurcation point of equilibria.
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Heteroclinic Bifurcation: Destruction of Periodic
Oscillations

Main Conjecture

Conjecture 1. A stable periodic solution ϕ∗(s) exists for all
n ∈ (0, nh), where nh ∈ ( 3

2 , 2) is a subcritical heteroclinic
bifurcation point of equilibria.

Numerics

nh = 1.758665... . (6)

Best Analytical Estimate:

nh < n∗ = 9
3+

√
3

= 1.901923... .

For extra details: Evans, Galaktionov, and King, Euro J. Appl.
Math., 18 (2007), 273–321.



Formation of a heteroclinic connection in as
n → n−

h

Standard Heteroclinic Bifurcation (Non-Local!)
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On “Homotopy” ODE Approach: n → 0

Continuous connection with B and ψ0

For small n > 0, the ODE from THE theory is

|f |nf ′′′ = 1
4 yf , where n → 0+. (7)



On “Homotopy” ODE Approach: n → 0

Continuous connection with B and ψ0

For small n > 0, the ODE from THE theory is

|f |nf ′′′ = 1
4 yf , where n → 0+. (7)

WKBJ Asymptotics

Then the WKBJ concepts suggest a double-scale expansion

y = n−
3
4 Y, f = n

1
2 (N− 1

p−1 )e−
1
n φ0(Y) + ... ,

where we use a complex representation:

φ0(Y) = u(Y) + iv(Y) =⇒ |f |n ∼ e−u(Y). (8)



On “Homotopy” ODE Approach: n → 0

Asymptotic Calculus

By differentiating and keeping the leading term:

f ′ = e−
1
n φ0

(

− 1
n

dφ0
dY

)

+ ... , . . .

=⇒ f ′′′ = e−
1
n φ0

(

− 1
n

dφ0
dY

)3
+ ... .



On “Homotopy” ODE Approach: n → 0

Asymptotic Calculus

By differentiating and keeping the leading term:

f ′ = e−
1
n φ0

(

− 1
n

dφ0
dY

)

+ ... , . . .

=⇒ f ′′′ = e−
1
n φ0

(

− 1
n

dφ0
dY

)3
+ ... .

Complex ODE for {u(Y), v(Y)}

Substituting yields the following equation:

e−u
(dφ0

dY

)3
= − 1

4 Y, e−
u
3 (uY + ivY) =

(1
2 ± i

√
3

2

)

(Y
4 )

1
3 .



On “Homotopy” ODE Approach: n → 0

Real System for {u(Y), v(Y)}

This is a system of the two first-order ODEs,






e−
u
3 uY = 1

2 (Y
4 )

1
3 ,

e−
u
3 vY = ±

√
3

2 (Y
4 )

1
3 .

(9)

Solving the independent first equation gives, up to omitted
constant,

u(Y) = −3 ln
(

1 − 1
2 (Y

4 )
4
3
)

. (10)



On “Homotopy” ODE Approach: n → 0

Real System for {u(Y), v(Y)}

This is a system of the two first-order ODEs,






e−
u
3 uY = 1

2 (Y
4 )

1
3 ,

e−
u
3 vY = ±

√
3

2 (Y
4 )

1
3 .

(9)

Solving the independent first equation gives, up to omitted
constant,

u(Y) = −3 ln
(

1 − 1
2 (Y

4 )
4
3
)

. (10)

Blow-up Behaviour of Interface as n → 0

Therefore, the leading order interface position is

y0(n) ∼ Y0 n−
3
4 as n → 0+; Y0 = 2

11
4 .



On “Homotopy” ODE Approach: n → 0

WKBJ Expansion as n → 0: Convergence to the Linear ODE

Finally, this yields the following expansion as n → 0+ of the
similarity profile:s

f (y) ∼ k
(

1 − 1
2 (Y

4 )
4
3
)

3
n cos

[

3
√

3
n ln

(

1 − 1
2 (Y

4 )
4
3
)

+ k1
]

,

where Y = n
3
4 y and Y0 = n

3
4 y0(n),

k > 0 and k1 being parameters. Not easy multi-scale... .



On “Homotopy” ODE Approach: n → 0

WKBJ Expansion as n → 0: Convergence to the Linear ODE

Finally, this yields the following expansion as n → 0+ of the
similarity profile:s

f (y) ∼ k
(

1 − 1
2 (Y

4 )
4
3
)

3
n cos

[

3
√

3
n ln

(

1 − 1
2 (Y

4 )
4
3
)

+ k1
]

,

where Y = n
3
4 y and Y0 = n

3
4 y0(n),

k > 0 and k1 being parameters. Not easy multi-scale... .

n = 0: Linear ODE for the Fundamental Kernel F(y) = ψ0(y)

BF ≡ −F(4) + 1
4 (yF)′ = 0 =⇒ F(y) = ψ0(y).



Existence-Uniqueness Theory: Non-Standard,
Very Difficult, Open

Standard Weak Solutions of the CP are not Available
The TFE–4,

ut = −(|u|nuxxx)x

is not fully divergent, so do not admit a standard definition of
weak solutions via integration by parts.

This is a principal difficulty!

On the other hand:



Existence-Uniqueness Theory: Non-Standard,
Very Difficult, Open

SECOND Fundamental Result of TFE Theory

Bernis and Friedman, J. Differ. Equat., 83 (1990), 179–206.
CIT.: 83

Construction of nonnegative solutions for any n ∈ (0, 3)

u(x, t) = lim
ε→0

uε(x, t) ≥ 0,

where {uε} solve the regularized “singular” parabolic equation
with

uε : |u|n 7→ |u|n+4

ε|u|n+u4 → |u|n, ε→ 0.



Existence-Uniqueness Theory: Non-Standard,
Very Difficult, Open

FIRST Fundamental Result of TFE Theory

RECALL: Bernis–McLeod, Nonl. Anal., TMA, 17 (1991),
1039–1068. CIT.: 7!

Oscillatory similarity Solutions of the PME–4.



Existence-Uniqueness Theory: Non-Standard,
Very Difficult, Open

FIRST Fundamental Result of TFE Theory

RECALL: Bernis–McLeod, Nonl. Anal., TMA, 17 (1991),
1039–1068. CIT.: 7!

Oscillatory similarity Solutions of the PME–4.

Free-Boundary Problem (FBP)

At least for n < nh = 1.7587... , positive are not solutions of the
CP (which are oscillatory and changing sign).
These are solutions of a special FBP.
Uniqueness for the TFEs is not settled (an open problem), since
there is no mechanism to distinguish the CP and VARIOUS
FBPs. A typical difficulty for higher-order parabolic PDE theory:
it is not clear which solutions you are dealing with... .



Homotopic PDE Approach to the Cauchy Problem

Extension of Analytic Semigroups

Unlike the FBPs, we need oscillatory solutions.
As usual, we will use homotopy of the TFE to the bi-harmonic
PDE

ut = −uxxxx.

We construct a homotopic path via equations: if ∃ a family of
uniformly parabolic PDEs (a homotopy deformation) with
coefficient ϕε(u) analytic in both variables u ∈ R and ε ∈ (0, 1],

uε : ut = −
(

ϕε(u)uxxx
)

x (11)

such that ϕ1(u) ≡ 1 and as ε→ 0, uniformly

ϕε(u) → |u|n. (12)



Homotopic PDE Approach to the Cauchy Problem

Example

For instance:

ϕε(u) = εn + (1 − ε)(ε2 + u2)
n
2 , ε ∈ (0, 1].



Homotopic PDE Approach to the Cauchy Problem

Extension of Analytic Semigroups

For an ε ∈ (0, 1], let uε(x, t) be the unique solution of the CP for
the regularized equation with same data u0. By classic
parabolic theory, uε is continuous (and analytic) in ε ∈ (0, 1] in
any natural functional topology.

Main problem: the limit ε→ 0 (regularized PDE loses its
uniform parabolicity).



Homotopic PDE Approach to the Cauchy Problem

Extension of Analytic Semigroups

For an ε ∈ (0, 1], let uε(x, t) be the unique solution of the CP for
the regularized equation with same data u0. By classic
parabolic theory, uε is continuous (and analytic) in ε ∈ (0, 1] in
any natural functional topology.

Main problem: the limit ε→ 0 (regularized PDE loses its
uniform parabolicity).

Proper (Extended) Solution

u(x, t) is called a proper solution of the CP for the TFE if

u(x, t) = limε→0 uε(x, t). (13)

A typical definition in extended semigroup theory (e.g., in
blow-up theory admitting u(x, t) ≡ ∞).



Homotopic PDE Approach to the Cauchy Problem

Extension of Analytic Semigroups

Proof of existence and uniqueness: difficult, simpler for
Riemann’s problems with particular clear step-like geometry of
u0(x).

Uniqueness: no O(1)-oscillations in ε→ 0.

In general: open problem: a typical difficulty with higher-order
parabolic PDEs with not monotone and potential operators... .



Homotopic PDE Approach to the Cauchy Problem

Example of Riemann Problem: Regularized TFE in Inner
Region

Close to singular points near interface, ∃ scaling

uε(x, t) = ε vε(y, τ), y = x
εα̂ , τ = t

εβ̂
,

where β̂ = 4α̂ − n. This gives at ε = 0 the corresponding
uniformly parabolic matching TFE (mTFE)

vτ = −
([

1 + (1 + v2)
n
2
]

vyyy
)

y (14)

or, simply,
vτ = −

[

(1 + v2)
n
2 vyyy

]

y.



Homotopic PDE Approach to the Cauchy Problem

Extension of Analytic Semigroups

CRUCIAL: well-posedness of the mTFE in a given class of data.
Can be proved for some Riemann’s problems, very difficult... .

The analytic parabolic flow describes a smooth ε-transition
through a singular layer occurring as ε→ 0.



Homotopic PDE Approach to the Cauchy Problem

Extension of Analytic Semigroups

CRUCIAL: well-posedness of the mTFE in a given class of data.
Can be proved for some Riemann’s problems, very difficult... .

The analytic parabolic flow describes a smooth ε-transition
through a singular layer occurring as ε→ 0.

Proper Extended Solution via a Formal Asymptotic Series

If the mTFE is uniquely solved (for a given Riemann Problem),
this gives an opportunity, by standard asymptotic theory, to
define

uε(x, t) =
∑

(k≥0)
Vk(x, t, ε), V0 = v,

where {Vk}k≥1 are defined from LINEAR (linearized) parabolic
PDEs; also a difficult problem... .



Some Nonlinear PDEs of the XXI Century

New Ideas Needed!
Local oscillatory structure near finite interfaces for solutions of
maximal regularity and homotopy approaches ∃ for :
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Some Nonlinear PDEs of the XXI Century

New Ideas Needed!
Local oscillatory structure near finite interfaces for solutions of
maximal regularity and homotopy approaches ∃ for :

TFE–4 with Unstable/Stable Terms

ut = −(|u|nuxxx)x ± (|u|p−1u)xx;

The TFE–6

ut = (|u|nuxxxxx)x ± (|u|p−1u)xx;

DLSS: from Hierarchy of Dispersion Models

ut =
[

u
(

− uxx
u + 2uxuxx

u2 − (ux)3

u3

)]

x;



Further Nonlinear PDEs of the XXI Century
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CAHN–HILLIARD (C-H) EQUATIONS WITH DEGENERATE

MOBILITY
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Further Nonlinear PDEs of the XXI Century

New Ideas Needed!
CAHN–HILLIARD (C-H) EQUATIONS WITH DEGENERATE

MOBILITY

ut = −(|1 − u2|nuxxx)x ± (|1 − u2|mux)x;

DNTFE–6
DOUBLY NONLINEAR TFE (a model by King)

ut = (|u|m|uxxxxx |
nuxxxxx)x;

TFE–8
EIGHTH-ORDER TFE (another King’s model)

ut = −(unuxxxxxxx)x;



More Nonlinear PDEs of the XXI Century

New Ideas Needed!
Third (odd) order ROSENAU–HYMAN (RH) EQUATION

ut = (u2)xxx + (u2)x;

Entropy theory still not fully developed...



More Nonlinear PDEs of the XXI Century

New Ideas Needed!
Third (odd) order ROSENAU–HYMAN (RH) EQUATION

ut = (u2)xxx + (u2)x;

Entropy theory still not fully developed...

NDEs
NONLINEAR DISPERSION EQUATIONS (NDE):

ut = α(u2)xxxxx + β(u2)xxx + γ(u2)x;

Entropy theory ?



More Nonlinear PDEs of the XXI Century

The NDE–2m + 1

(2m + 1)TH-ORDER NONLINEAR DISPERSION EQUATION

(NDE–2m)
ut = Dx(|u|

nD2m
x u);



More Nonlinear PDEs of the XXI Century

The NDE–2m + 1

(2m + 1)TH-ORDER NONLINEAR DISPERSION EQUATION

(NDE–2m)
ut = Dx(|u|

nD2m
x u);

The Rosenau equation

The ROSENAU EQUATION

ut + uxxt = 3uux +
[

uuxx + 1
2(ux)

2]

x,

and higher-order extensions;



More and More Nonlinear PDEs of the XXI Century

New Ideas Needed!
THE FFCH EQUATION

ut − uxxt = −3uux + 2uxuxx + uuxxx,

and other extensions, not integrable... .



More and More Nonlinear PDEs of the XXI Century

New Ideas Needed!
THE FFCH EQUATION

ut − uxxt = −3uux + 2uxuxx + uuxxx,

and other extensions, not integrable... .

Higher-order in Time Models

HIGHER-ORDER DISPERSION EQUATIONS such as

uttt = −(|u|nuxxxx)xxx, ... ;



More and More Nonlinear PDEs of the XXI Century

Quasilinear wave equations, QWE–4

utt = −(unuxx)xx ± up (shocks!);



More and More Nonlinear PDEs of the XXI Century

Quasilinear wave equations, QWE–4

utt = −(unuxx)xx ± up (shocks!);

Higher-Order Monge–Ampère PDEs

HIGHER-ORDER HESSIAN EQUATIONS SUCH AS

ut = −|D2mu| ± up, m = 1, 2, ... ;

where |D2mu| is the determinant of catalecticant determinant of
the Hessian matrix of 2mth-order derivatives; non fully convex
flows, ALL open... , ETC., see examples in:
Galaktionov and S.R. Svirshchevskii, Exact Solutions and
Invariant Subspaces of Nonlinear Partial Differential Equations
in Mechanics and Physics, Chapman & Hall/CRC, Boca Raton,
Florida, 2007.



Final Slides:

A Tendency of PDE Theory in the XXI Century:

• Incredibly difficult NEW Models,

• Classic Fundamental Techniques of the XX century hardly
apply,

• A FULL Theory CANNOT be developed (too many
hypotheses...),



Final Slides:

CONCLUSION
Those who want to develop XXI Century PDE Theory MUST
know all fundamental tools developed earlier, even these do not
apply directly, and MUST work in ALL the key directions,
concerning various PDEs, in order to use this exceptional
experience for

understanding and feeling crucial nonlinear properties of
the models under the pressure of the absence of fully
rigorous tools of the analysis...



Final Slides:

CONCLUSION
Those who want to develop XXI Century PDE Theory MUST
know all fundamental tools developed earlier, even these do not
apply directly, and MUST work in ALL the key directions,
concerning various PDEs, in order to use this exceptional
experience for

understanding and feeling crucial nonlinear properties of
the models under the pressure of the absence of fully
rigorous tools of the analysis...
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