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Nonlinear (thermo)elasticity model

Y

QC R3
X

0S2

Find a deformation y : 2 — R3 minimizing

I(y) = |_¥(Dy(x),0) dx

subject to suitable boundary conditions, e.g. y|sgo =¥,
where 6 is the (constant) temperature.

Here Dy(x) = (ayi) = y; o IS the deformation gradient, and

837(1/

Y(F, 0) is the free-energy density of the material, defined for
F € GLT(3,R) := {3 x 3 real matrices F with detF > 0}.



To avoid interpenetration of matter y should be invertible.
Also we require that y is orientation-preserving, so that
det Dy(x) > 0. In order to help ensure this it is typically
supposed that ¢¥(F,0) — oo as detF — 0+.

By Cauchy’s polar decomposition theorem any F &
GLT(3,R) can be decomposed uniquely as F = RU with
R € SO(3) and U=U"' > 0.

We assume that v Iis frame-indifferent, that is

Y(QF,0) = ¢(F,0) for all Q € SO(3),
so that, choosing Q = RY, «(F,0) = (U, 6).

In particular, the set of matrices minimizing ¥(-,0) is
invariant to left multiplication by rotations.



Applying polar decomposition to Dy(x) we have that

Dy(x) = R(x)U(x),
where R(x) € SO(3) and U(x) = U{(x) > 0.
Theorem

Let y € W12(Q,R3). Then U(x) constant implies Dy(x)
constant.

Proof (cf Shield 1971). By considering §(x) = y(U~1x)

we may assume that U(x) = 1.

Then cof Dy(x) = cof R(x) = R(x) = Dy(x) and since
div cof Dy(x) = 0 we have that Ay(x) = 0. In particular
y IS smooth.

But |Dy(x)|? = y; a¥i,o = 3 and so

(Yi,a¥i,a) 88 = 2YiapBYia + 2YiapYias = O-




Compatibility
Suppose F(x) is a smooth field of 3 x 3 matrices in .

When is F(x) a gradient? i.e. when does there exist
y : Q2 — R3 with F(x) = Dy(x), that is

F,,;a(X) = y'z',,oz(x) for x € €2.

A necessary condition, which is sufficient if €2 is simply-
connected, is that

Fia’B(X) = F,,;B’Od(X) for x € 2.

Another necessary and sufficient condition is the vanishing of
the Riemann curvature tensor, which is a nonlinear function of
the metric g(x) = F/(x)F(x) = U(x)? and its first and second
derivatives, expressing the fact that Euclidean space is flat. ¢



An important special case of compatibility is the
Hadamard jump condition for a continuous piecewise
affine map.

X-n >k

A—B=a®n

Dy =B where (a® n);, := a;na
X -n <k (a matrix of rank one if A #= B)
Proof. Let C=A —-B. Then Cx =0 if x-n=0.

Thus C(z — (z-n)n) =0 for all z, and so
Cz=(Cn®n)z.




Open Problem. Give necessary and sufficient conditions for a
nonsmooth (e.g. in L>®) map x — U(x), U(x) = Ux)T > 0,
to be such that Dy(x)! Dy(x) = U(x)? for some y.

. . n
Here is a simple case when we » Ux)=1U
can give an answer. X-n>k

When is this possible for
U #= V7 Equivalently,
when is there a rank-
one connection between x-n<k
SO(3)U and SO(3)V?~

RU

RU-R;V=a®n

Note that we can suppose R{ = 1.



T heorem
Let U=UY >0, Vv=V!L >0. Then SO3)U, SOB)V
are rank-one connected iff

U2-V2=c(n®ii+i®n)

for unit vectors n, n and some ¢ % 0.
If n = +n there are exactly two rank-one connections
between V and SO(3) U given by

RU=V+4+a®n, RU=V+a®n,
for suitable R,R € SO(3), a,a € R3.

(JB/Carstensen version of standard result cf. Ericksen, Gurtin, JB/James ...)

RU
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A Bravais lattice is an infinite lattice of points in R3
generated by linear combinations with integer coefficients
of three linearly independent basis vectors b1, bo, bs.

Setting B = (bq1,bo,b3), so that Bij = bj - €e;, We
write the corresponding Bravais lattice as

L(B) = {m1b
Cubic lattices

Simple cubic

Face-centred
cubic (fcc)

Body-centred
cubic (bcc)

mobo

m3b3:mi€Z}={Bm:mEZ3}

1 0 O
Bc=|01 0 |=1,
O 0 1
1 -1 0
BfCC:;(l 1 1),
W 0O 01
-1 1 1
Bbcczg( 1 -1 1)
1 1 -1



We think of a single crystal
as consisting of a part of
a Bravais lattice consisting
of many points, each point
representing an atomic po-
sition.

Pure metal examples include Fe, Cr, W, Nb (bcc) and
Al, Cu, Au, Ag (fcc).

Typical alloys are solid solutions of different elements, so
that each lattice site has a probability of being occupied by
a particular element according to the overall composition.

Some crystals form multilattices which are finite unions of
translates of a Bravais lattice. We will not consider these.



= integer 3 x 3 matrices

Theorem (on equivalent lattices) | .

with determinant 41
L(B) =L(C) iff C = Bu, for some u € GL(3,7Z).
(See e.g. Ericksen (1977), Pitteri & Zanzotto (2003).)

Proof. Let B = (bl,bz,bg,), C = (Cl,CQ,Cg).

If L(B) = L(C) then b; = pj;c; for some p = (u;;) €
73%3, so that B = Cu. Similarly C = Bu/ for some
p €73%3, So /' =p~1and pe GL(3,72).
Conversely, if B = Cpu then b; = pj;c; and so
L(B) C £(C). Similarly £(C) c £(B).

— real invertible
3 x 3 matrices

Corollary If F € GL(3,R), then L(FB) = £(B) iff

F = By,B_1 for some u € GL(3,7Z).
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Ericksen energy well picture

Suppose that the free energy per unit volume of a crystalline
material with atoms at the points of the Bravais lattice
£(C), where C € GLT(3,R), at temperature 0, is given by
0(C,0) > 0. By adding a function of 8 to ¢ we can and will
suppose that mingc ¢(C,0) = 0 for all 6.

Natural requirements are
(i) (frame-indifference) ¢o(QC,0) = o(C,0) for all Q € SO(3),
(ii) (lattice invariance) ¢(Cpu,0) = ©(C,0) for all p € GLT(3,Z).

We now use the Cauchy-Born rule to relate the mesoscopic
free-energy density ¥ to ¢, thus defining an elastic free
enerqgy

I(y) = |_¥(Dy(x),0) dx

for a deformation y ;: Q2 — R3. 13



Choosing a reference configuration in which the crystal lattice
is £(B), where B € GL1(3,R), assume that

W(F,0) = o(FB,0), for F € GLT(3,R).

Thus ¥ > 0 inherits from ¢ the invariances:

(i) (frame-indifference) ¥ (QF,0) = ¢(F,0) for all Q € SO(3),
(ii) (symmetry) ¢ (FBuB—1,0) = «(F,0) for all u € GL1(3,7).

Hence ¢ has symmetry group S = BGLT(3,Z)B1,
which is a subgroup of the unimodular group
SL(3,R) :={A € GLT(3,R) : detA = 1}.

In particular, setting

K(0) = {F € GLT(3,R) : ¥(F,0) = 0}
we have that SO(3)K(0)S = K(6).



First let us suppose that
K(0) = S0O(3)S,

so that, up to rotations and lattice-invariant transforma-
tions, F = 1 (corresponding to the Bravais lattice B) is

the unique minimizer of (-, 0).

hus

K(0) = v SO(3)BuB~ 1!
pneGLT(3,2)
IS a union of energy wells, infinitely many of which
are distinct.

Are these energy wells rank-one connected??



Without loss of generality we can consider rank-one connec-
tions between SO(3) and SO(3)M, where M = BuB~1 and
M?M # 1. Thus we require that

MIM-1=c(n@ii+i®n)
for unit vectors n,n and c # 0.

Since det MM = 1 a necessary and sufficient condition for
this is that MM has an eigenvalue 1 (which is the middle
eigenvalue). Then there are exactly two rank-one connections:

SO(3) — SO(3)M at - n4
1 /

l1+a_®n_=R_M

|
o
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Two possible kinds of rank-one connections
F=14+a®n=RM are:

(i) slip, for which R =1

(ii) twins, for which the lattices £(B) and FL(B) on either
side of the interface are nontrivially reflected with respect
to each other, so that F is not a slip and satisfies for some
unit vector m

FLB)=(1-2m@m)L(B)=(-14+2mm)L(B).

Type 1 twins are those for which mm = n, so that

l1+a®n=(-14+2n®n)BuB™ 1,

a

and Type 2 twins are those for which m = al”

There are twins that are neither Type 1 or Type 2, and
rank-one connections that are neither slips not twins._



One can rigorously calculate (an integer minimization
problem) the slips and Type 1/Type 2 twins that mini-
' 2 a popular criterion loosely related to energetics.

For example for fcc the minimum value for slips is given
by |a|? = 3, while for Type 1/Type 2 twins it is |a|? = l
(and these twins minimize |a|? among all rank-one con—
nections). In both cases the normals are parallel to

e; + e; = e, with 4, 5, k distinct.

T hese results correspond to experiment and calculations
in the materials science literature due to Chalmers &
Martius (1952), Jaswon & Dove (1956,1957,1960), Bilby
& Crocker (1965), Bevis & Crocker (1968,1969) and
summarized in Christian & Mahajan (1995).



Martensitic phase transformations

These involve a change of shape of the crystal lattice of

some alloy at a critical temperature.

e.g. cubic to tetragonal

9 > 06 . 1 9 < HC
cubic T three tetragonal variants
. of martensite
austenite
0 < 0.
cubic to

SiX orthornombic variants
of martensite 19

orthorhombic




Taking the reference configuration to be the cubic Bra-
vais lattice at temperature 6., the change of shape of the
lattice with respect to B is given by U(8) = U(8)T > 0.

For example, in the case of a cubic to tetragonal trans-
formation we can take

U(0) = diag (n2(0),711(0),7n1(6)),
with n1(0) > 0,72(0) > 0,71(0) 7= n2(0).

Thus we assume that

| a(0)SO(3)S 0> 0.
K(0) ={ SO(3)SUSOB)U(6)S 6 =06, ,
SO(3)U(0)S 0 < O

where a(f) > 0 gives the thermal expansion of the
cubic lattice, with a(6.) = 1.



To restrict the model to a finite number of energy wells, and
to eliminate e.g. large lattice invariant shears associated with
plasticity, we replace S =BGLT(3,Z)B~1 by

S=BP*B L

where P24 = GL1(3,%2) N SO(3) (the proper rotations in the
point group), i.e. the 24 rotations mapping a cube to itself.

Thus
0(9)30(3) 0 > 6
K(8) = SO(3) VUL SOB3)Uy(6c) 0= be ,
U’L:]_ SO(3)U@(9) 0 < 0O

where the U,;(6) are the distinct matrices QU(0)QL for
Q € P?%, the N variants of martensite.

21



For cubic-to-tetragonal (e.g. InTIl, NiAl, NiMn, BaTiO3)
N = 3 and

U;(0) = diag (n2,m1,7m1), U2(0) = diag (n1,m2,1m1),
U3(0) = diag (n1,m1,12)-

For cubic to orthorhombic (e.g. CuAINi) N = 6 and

[ oty a=y ) [ oty a—a 5\ [ oty o a=7v
2 _2|_ =~ 2 i = 2 =~ 2
U, = oy a1y o |, U= | 22 27 o |, Uz= O B8 O ,
2 2 2 2 o oty
0 0 8 0 0 8 s 0 I
VRPN ~~  \ / A ~ ~ / A ~ ~ \
[ 5t 0 =) (P Y Vo) [P Y Vo)
U, = | 0 B 0 |, Ug=| 0 &2 a2 Ug=| 0 237 152 |
\M 0 oz-l—v) \O a—" aiv} ko S® aiv}
2 2 2 2 2 2

where a = «a(f0) > 0,8=p3(0) >0,y =~(08) >0
are distinct.



There are rank-one connections between the martensitic
energy wells that are twins, and they can be calculated
explicitly. For example, for cubic to tetragonal the twins

have normals parallel to e; = e; for i # j.
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he existence of these rank-one connections implies that

W(-,0) is not rank-one convex, that is not convex in the
direction of matrices of rank-one.

he central convexity condition of the multi-dimensional
calculus of variations is quasiconvexity (in the sense of
Morrey (1950)), which is roughly speaking necessary

and sufficient for the existence of minimizers for general
boundary conditions.

But quasiconvexity implies rank-one convexity (the con-
verse is false due to a famous counterexample of Sverak),
and so ¢(-,0) is not quasiconvex.



Thus we don’'t expect energy-minimizing configurations to
exist in this model (1), and this can be viewed as an expla-
nation for why we see extremely fine microstructures.

In contrast there are good models for rubber for which
W(-,0) is quasiconvex, and for which there exist energy
minimizers.

By definition the function ¢ = ¢g(Dy) is quasiconvex if

£ 9(D2() dx > 9(A)

whenever z is smooth with z(x) = Ax for x € 9Q, where
Q= (0,1)3.

Unfortunately quasiconvexity is poorly understood, and
there is no known general way of deciding whether a
given g is quasiconvex. In particular Kristensen (1999)
showed that quasiconvexity is not a local condition.



Even though (-, 0) is not quasiconvex, quasiconvexity is
crucial for understanding microstructure. For example,
suppose 0 < 6., so that

N
K(0) = | J SO(3)U,(0).
=1

Then the set of macroscopic deformation gradients corre-
sponding to zero-energy microstructures, i.e. gradients of
(weak) limits of minimizing sequences, is given by the quasi-
convex hull of K(0)

K(0)9¢ :={B e GLT(3,R) : ¢(B) < max g(A)VY quasiconvex g}.
AcK(0)

Largely because we do not have a tractable characteriza-

tion of quasiconvexity, we do not know how to calculate
this set when N > 3.

26



How does austenite transform to martensite as the tem-
perature 0 is reduced through 6.7

In order for there to be a rank-one connection be-
tween SO(3) (the austenite energy well at 8 = 6.) and
SO(3)U,(6.) we have seen that it is necessary and suffi-
cient that U;(6.) has middle eigenvalue one, which is not
usually the case.

Instead the martensite is typically nucleated by a (classi-
cal) austenite-martensite interface separating the austenite
(Dy(x) = 1 say) from a finely-twinned martensitic laminate,
whose macroscopic deformation gradient F is compatible
with the austenite, i.e.

F=14+b&®m

for some b € R3 and habit plane normal m.



austenite

28
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Nonclassical austenite-martensite interface in CuAINi (experiment of

H. Seiner following theory of JB/Carstensen)
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Nucleation of austenite in martensite (CuAINi).
Experiment H.Seiner, theory Seiner/JB/Koumatos




But what if the composition of the alloy is tuned so that

the middle eigenvalue of U(6.) equals one?

Zn,:Au,,Cu, ultra low hysteresis alloy

Yintao Song, Xian Chen, Vivekanand Dabade,
Thomas W. Shield, Richard D James, Nature, 502, 85—88 (03 October 2013)
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Summary

e Nonlinear elasticity gives rise to a successful mesoscopic
theory of solid phase transformations and associated
microstructures, explaining many observations.

e But it is handicapped by a lack of understanding of
quasiconvexity.

e And it is not truly predictive — for that one would need
a well-posed set of dynamic equations, a key issue

being whether solutions could produce infinitely-fine
microstructures in the Iimit ¢t — .
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