Giovanni Franzina (Padua, Italy)

On a more general nonlinear eigenvalue problem.

Abstract. Let $N \in \mathbb{N}$, $p \in (1, +\infty)$, $q \in (1, p^*)$, where $p^* = Np/(N-p)$ if p < N and $p^* = +\infty$ if $p \ge N$. We consider the quasilinear PDE

$$-\operatorname{div}(|\nabla \mathbf{u}|^{p-2}\nabla \mathbf{u}) = \lambda \|\mathbf{u}\|_{\mathrm{L}^{q}(\Omega)}^{p-q} |\mathbf{u}|^{q-2} \mathbf{u},$$
(P)

in a domain of finite Lebesgue measure in \mathbb{R}^N , with the Dirichlet conditions u = 0 on the boundary $\partial\Omega$. We will point out that several results known for the case q = p, when (P)reduces to the typical eigenvalue problem for the *p*-laplacian, extend to the more general case $q \in (1, p^*)$. It turns out that (P) can be regarded as well as an eigenvalue problem. In particular, we will focus on surveying some uniqueness results concerning the first eigenvalue

$$\lambda_1(p,q) = \min_{\substack{0 \neq u \in W_0^{1,p}(\Omega)}} \frac{\int_{\Omega} |\nabla u|^p dx}{(\int_{\Omega} |u|^q dx)^{p/q}}.$$

In the "subtypical" cases $q \leq p$ the first eigenvalue is simple for all domain Ω of finite Lebesgue measure, whereas, if q > p, it this false in general. Nevertheless, if Ω is a ball in \mathbb{R}^N , then $\lambda_1(p,q)$ is simple for all $q \in (1, p^*)$.