
ON THE MORSE CRITICAL GROUPS
FOR INDEFINITE SUBLINEAR ELLIPTIC PROBLEMS

VITALY MOROZ

Abstract. We consider the Dirichlet problem for the equation −∆u = αu +

m(x)u|u|q−2 + g(x, u), where q ∈ (1, 2) and m changes sign. We prove that

the Morse critical groups at zero of the energy functional of the problem are
trivial. As a consequence, existence and bifurcation of nontrivial solutions of

the problem are established.

1. Introduction.

In this paper we are concerned with the Dirichlet problem

(P )
{
−∆u = αu + m(x) u|u|q−2 + g(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 2) is a connected open bounded set, α ∈ R, q ∈ (1, 2),
m ∈ L∞(Ω) and g : Ω×R → R is a Caratheodory function, i.e. g(x, u) is measurable
in x for all u ∈ R and continuous in u for almost all x ∈ Ω.

Throughout the paper we assume that the sets

Ω+ = {x ∈ Ω : m(x) > 0}, Ω− = {x ∈ Ω : m(x) < 0}
are open, Ω+ 6= ∅ and g satisfies the condition

g(x, u) = o(|u|) as u → 0.

Thus u ≡ 0 is a trivial solution of (P ) and the non–Lipschitz term m(x)u|u|q−2

dominates g(x, u) near zero. We are interested in the existence and bifurcation of
nontrivial weak solutions of (P ) for the case of indefinite weight function m, that is
when both Ω+ and Ω− are nonempty sets. Indefinite problems of this type arise in
population dynamics (see, e.g. [18]). They describes the asymptotic behaviour of
population in a heterogeneous environment. The weight m represents the intrinsic
growth rate of the population. It is positive on favourable habitats and negative
on unfavourable ones.

In the case when m is constant or nonnegative there is extensive literature on
nontrivial solutions of the problems of the type (P ) (see, e.g., [4, 5, 11, 17, 14] and
references therein). The typical feature of (P ) in the indefinite case is that nontrivial
solution of (P ) may vanish on a nonempty open set within Ω−. As a consequence
of this fact, the structure of the solution set of (P ) might be rather complicated.
This phenomenon has been studied in details by C. Bandle, M. A. Pozio and A.
Tesei [6, 21] in the case α = 0. Existence and bifurcation of nontrivial nonnegative
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solutions for varying α has been recently studied by S. Alama [2]. The techniques
used in these papers were mainly the methods of sub– and super–solutions and
mountain–pass type arguments.

In the present paper we study problem (P ) by methods of infinite dimensional
Morse theory (see [9, 15]). Our first result here is the computation of the Morse
critical groups at zero for the energy functional of (P ). In the case m ≡ 1 this has
been done in [17, 20]. The main difference and difficulty in the indefinite case is that
a suitable control on the values of the parameter α is required. Roughly speaking,
we prove, that if α is not too large, then the Morse critical groups at zero for the
energy functional of (P ) are trivial. This allows us to establish the existence of a
nontrivial (possibly changing sign) solution of (P ) when the nonlinearity g(x, u) is
asymptotically linear. We also study bifurcation of small solutions of (P ) when the
weight m is endowed with a small parameter.

The precise framework and statements of results are given in Section 2, while
the proofs are delegated to consequent Sections 3-5.

2. Preliminaries and statements of results.

Throughout the paper, we denote by ‖ · ‖p the standard norm on the Lebesgue
space Lp(Ω). By (·, ·) we denote the usual inner product on L2(Ω). By ‖u‖ = ‖∇u‖2

and 〈u, v〉 = (∇u,∇v) we denote the norm and the corresponding inner product
on the Sobolev space H1

0 (Ω). We denote by λ1(Ω) the principal eigenvalue of
the Dirichlet Laplacian on Ω and by e1(Ω) the corresponding normalized positive
eigenfunction. By a solution of problem (P ) we always mean a weak solution. Also,
the letter c will be used to denote various positive constants whose exact value is
irrelevant.

The usual energy functional corresponding to problem (P ) is defined by the
formula

J(u) =
1
2
‖u‖2 − α

2
‖u‖2

2 −
1
q

∫
Ω

m(x)|u|q dx−
∫

Ω

G(x, u) dx,

where

G(x, u) =
∫ u

0

g(x, ξ) dξ.

Let 2∗ = 2N
N−2 if N ≥ 3 or 2∗ = ∞ if N = 2 be the critical Sobolev exponent. It is

well–known that if g satisfies the subcritical growth condition

(g) |g(x, u)| ≤ c(1 + |u|p−1) with p ∈ (2, 2∗),

then the energy J is of class C1 on H1
0 (Ω) and the critical points of J are weak

solutions of (P ). Moreover, if m, g and Ω satisfy some additional regularity assump-
tions, then by elliptic regularity theory weak solutions of (P ) are actually classical
solutions.

Following [19, 3], we consider the number

λ∗(m) = inf{‖v‖2 : v ∈ H1
0 (Ω), ‖v‖2

2 = 1,
∫

Ω

m(x)|v|q dx = 0},

where we set inf ∅ ≡ +∞. In particular λ∗(m) = +∞ provided that mes{x ∈ Ω :
m(x) ≤ 0} = 0. It is easy to see that λ∗(m) ≥ λ1(Ω), where the equality holds if
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and only if

(2.1)
∫

Ω

m(x)|e1(Ω)|q dx = 0.

It is also clear that λ∗(m) ≤ λ1(Ω0), where Ω0 = {x ∈ Ω : m(x) = 0} and
λ1(Ω0) ≤ +∞ is the principal eigenvalue of −∆ on the (relatively) closed set Ω0.
We refer to [12] for the definition of the Dirichlet Laplacian on arbitrary subsets of
Ω. One can construct an indefinite function m in such a way that λ∗(m) becomes
arbitrarily close to λ1(Ω0). A related example is given in [3, p.112].

The Morse critical groups of J at the critical point u with J(u) = c are defined
by

Ck(J, u) = Hk(Jc ∩ U , {Jc ∩ U} \ {u}), k ∈ N̄ = N ∪ {0},
where Jc = {u ∈ H1

0 (Ω) : J(u) ≤ c} denotes the sublevel of J , U is a closed
neighborhood of u and Hk is the k-th singular homology group, cf. [9]. Due to the
excision property of homology Ck(J, u) is independent of U . We refer to [22] for
the topological notions mentioned in the paper. Our main result reads as follows.

Theorem 2.1. Let α < λ∗(m) and (g) hold. Then Ck(J, 0) = 0 for all k ∈ N̄.

Let σ(Ω) be the spectrum of the Dirichlet Laplacian −∆ on Ω and 0 < λ1 <
λ2 ≤ λ3 ≤ . . . its eigenvalues, counted with their multiplicity. Then comparing the
Morse critical groups of J at zero and at infinity in the usual way (see [9, 7]), we
prove the existence of nontrivial solution of (P ) when g is asymptotically linear.

Theorem 2.2. Let α < λ∗(m). Suppose that for some l ∈ N one of the following
conditions holds:

i) g(x, u) = βu + o(|u|) as |u| → ∞ with β + α ∈ (λl, λl+1);
ii) g(x, u) = βu + o(|u|q−1) as |u| → ∞ with β + α = λl < λ∗(m).

Then (P ) has a solution v 6= 0.

Next we consider the parameter dependent problem

(Pµ)
{
−∆u = αu + µm(x)u|u|q−2 + g(x, u) in Ω,

u = 0 on ∂Ω,

where µ ∈ R and the other data are as in (P ). By using Theorem 2.1 and the
stability of the Morse critical groups under C1–perturbations of the functional (cf.
[10]), we prove the following bifurcation result for (Pµ).

Theorem 2.3. Let α < λ∗(m) and α 6∈ σ(Ω). Then for each ρ > 0 there exists
µ+ ∈ (0, ρ) and µ− ∈ (−ρ, 0) such that (Pµ±) have nontrivial solutions v(µ±) 6= 0
with ‖v(µ±)‖ < ρ.

Remarks. (1) Notice that in case m ≡ 1, Theorem 2.1 is a variant of results of
[17, 20]. Our proof in the indefinite case relies on the ideas of S. Alama and M. Del
Pino [3], where the topology of sublevels of indefinite superquadratic functionals
has been studied.

(2) The statement of Theorem 2.2 should be compared with the results of C.
Bandle, M. A. Pozio, A. Tesei [6, 21] and S. Alama [2]. In [6, 21] the existence of
nonnegative nontrivial solutions of (P ) has been studied for α = 0. In [2] (under the
Neumann boundary conditions and suitable assumptions on g and m) the author
exhibits a number α∗ ≥ 0 such that (P ) has several nonnegative solutions for
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α ≤ α∗ and no nonnegative nontrivial solutions for α > α∗. In our framework one
can show that if, for instance,

(2.2)
∫

Ω

m(x)|e1(Ω)|q dx ≥ 0 and ug(x, u) ≥ 0 for all x ∈ Ω,

then α∗ = λ1(Ω). On the other hand, if (2.1) does not hold then λ∗(m) > λ1(Ω).
Thus λ∗(m) could be greater then α∗ at least for some specific choices of m. In these
cases Theorem 2.2 complements the result from [2] for α ∈ (α∗, λ∗(m)). Moreover,
if λ∗(m) > α∗ then the nontrivial solution v given by Theorem 2.2 necessarily
changes sign in Ω. We conjecture that v is actually a changing sign solution also
for α ≤ α∗ and, in particular, that it does not coincide with nonnegative solutions
obtained in [6, 2]. The difficulty here is that, as we observed before, nontrivial
solution of (P ) may vanish on a nonempty open set contained in Ω− ([6, 21]). As a
consequence, the order preserving pseudo gradient flow forJ (if it exists) may not
be strongly order preserving. Thus the methods of critical point theory in partially
ordered spaces in the spirit of [11] or [8, 14], do not apply directly to (P ). We are
going to return such problems in future.

(3) In Theorem 2.3 we do not assume any growth condition on g. This means that
bifurcation of small solutions at µ = 0 is rather a local phenomenon which does not
depend on the behavior of nonlinearity for large |u|. This gives a non symmetric
complement to the results of Z. Jin [13] and Z.–Q. Wang [23], where the local
bifurcation “to the right” from µ = 0 has been established for odd nonlinearities
and m  0. Notice also that the assumption α 6∈ σ(Ω) could be omitted, but then
we need to impose some additional conditions on g such that critical groups of J
at zero could be computed when µ = 0, cf. [7].

3. Proof of Theorem 2.1.

We divide our proof in several steps. First we establish a geometrical description
of the sublevels of J in a neighborhood of zero. Let

E+ = {u ∈ H1
0 (Ω) :

∫
Ω

m(x)|u|q dx > 0}.

Clearly, E+ ∪{0} is starshaped with respect to the origin and H1
0 (Ω+) \ {0} ⊂ E+.

One can easily check that for each fixed u ∈ E+ and τ ∈ R the point τ = 0 is a
strict local maximum of the scalar function J(τu). In particular, J0 ∩Bρ ∩E+ 6= ∅
for any ρ > 0, where Bρ stands for the the closed ball in H1

0 (Ω) of radius ρ > 0
with the center at zero.

Lemma 3.1. Let α < λ∗(m) and (g) holds. Then there exists ρ > 0 such that
{J0 ∩Bρ} \ {0} ⊂ E+ ∩Bρ.

Proof. By a direct computation we obtain

(3.1) J(u) =
1
2
‖u‖2 − α

2
‖u‖2

2 −
1
q

∫
Ω

m(x)|u|q dx + o(‖u‖2
2) as ‖u‖2 → 0.

Assume by a contradiction, that there exists a sequence (un) ⊂ H1
0 (Ω) such that

(3.2) ‖un‖ → 0, un 6= 0, J(un) ≤ 0 and
∫

Ω

m(x)|un|q dx ≤ 0.
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Thus J(un) → 0 by continuity of J . Set vn = un‖un‖−1
2 . By (3.2) and (3.1) we

obtain

(3.3)
J(un)
‖un‖2

2

=
1
2

(
‖vn‖2 − α

)
− 1

q
‖un‖q−2

2

∫
Ω

m(x)|vn|q dx + o(1) ≤ 0.

Then by (3.2) it follows that

(3.4)
1
2
‖vn‖2 ≤ 1

q
‖un‖q−2

2

∫
Ω

m(x)|vn|q dx +
α

2
+ o(1) ≤ α

2
+ o(1).

Hence ‖vn‖2 ≤ α+o(1) and a subsequence (which we still denote by (vn)) converges
weakly in H1

0 (Ω) to a certain v0 ∈ H1
0 (Ω) such that

(3.5) ‖v0‖2 ≤ α and ‖v0‖2 = 1.

On the other hand, from (3.2) and (3.3) we derive

0 ≥ 1
q
‖un‖q−2

2

∫
Ω

m(x)|vn|q dx ≥ 1
2
‖vn‖2 − α

2
+ o(1) ≥ −α

2
+ o(1).

Hence
0 ≥

∫
Ω

m(x)|vn|q dx ≥
(
−αq

2
+ o(1)

)
‖un‖2−q

2 = o(1).

Thus by weak continuity∫
Ω

m(x)|v0|q dx = lim
∫

Ω

m(x)|vn|q dx = 0.

By definition of λ∗(m) it follows that ‖v0‖2 ≥ λ∗(m), in contradiction with (3.5)
and with assumption α < λ∗(m). �

Lemma 3.2. Let α < λ∗(m) and (g) hold. Then there exists ρ > 0 such that

(3.6)
d

dτ |τ=1
J(τu) > 0.

for any u ∈ Mρ = {u ∈ Bρ ∩ E+ : J(u) ≥ 0}.
Proof. By a direct computation we obtain

(3.7)
1
q

d

dτ |τ=1
J(τu) = J(u) + (

1
q
− 1

2
)(‖u‖2 − α‖u‖2

2) + o(‖u‖2
2),

and

(3.8)
1
2

d

dτ |τ=1
J(τu) = J(u) + (

1
q
− 1

2
)
∫

Ω

m(x)|u|q dx + o(‖u‖2
2)

as ‖u‖2 → 0. If α < λ1(Ω), then the statement of the lemma follows immediately
from (3.7). Let α ≥ λ1(Ω). Assume, by contradiction, that there exists a sequence
(un) ⊂ H1

0 (Ω) such that

(3.9) ‖un‖ → 0, un 6= 0, J(un) ≥ 0,
d

dτ |τ=1
J(τun) ≤ 0.

Then we set vn = un‖un‖−1
2 . From (3.7) we obtain

0 ≥ (
1
q
− 1

2
)(‖vn‖2 − α) + o(1).

Thus ‖vn‖2 ≤ α+o(1) and a subsequence (which we still denote by (vn)) converges
weakly in H1

0 (Ω) to a certain v0 ∈ H1
0 (Ω) such that

(3.10) ‖v0‖2 ≤ α and ‖v0‖2 = 1.
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From (3.8) we obtain

0 ≥ (
1
q
− 1

2
)‖un‖q−2

2

∫
Ω

m(x)|vn|q dx + o(1).

Hence ∫
Ω

m(x)|vn|q dx ≤ ‖un‖2−q
2 o(1) = o(1)

Thus by weak continuity we obtain∫
Ω

m(x)|v0|q dx = lim
∫

Ω

m(x)|vn|q dx = 0

By definition of λ∗(m) it follows that ‖v0‖2 ≥ λ∗(m), in contradiction with (3.10)
and with assumption α < λ∗(m). �

Lemma 3.3. For all ρ > 0, the set E+ ∩Bρ is contractible in itself.

Proof. We are going to show that the embedding i : H1
0 (Ω+) \ {0} → E+ is a

homotopy equivalence. Since H1
0 (Ω+) \ {0} is well–known to be contractible in

itself and E+ ∪ {0} is starshaped with respect to the origin, then the assertion
follows

Let θ : Ω̄ → R be a Lipschitz continuous function such that

0 < θ ≤ 1 on Ω+, θ = 0 on Ω \ Ω+.

Let φ be the map defined by the formula

φ(u) = θ(x)u.

Clearly, φ is a (linear) continuous map from H1
0 (Ω) into H1

0 (Ω). Moreover,

φ(u) = 0 in Ω \ Ω+

and hence φ(u) ∈ H1
0 (Ω+) (cf. [1, Theorem 9.1.3]). Moreover, if u ∈ E+ then

Supp(u) ∩ Ω+ 6= ∅ and hence φ(u) 6= 0. Thus φ maps continuously E+ into
H1

0 (Ω+) \ {0}.
We now consider the linear homotopy on E+ defined by the formula

Ht(u) = (1− t)u + tφ(u).

Clearly H0(u) = idE+ and H1(u) = i ◦ φ. Moreover, since uφ(u) ≥ 0 we can
estimate∫

Ω

m(x)|Ht(u)|q dx =
∫

Ω

m(x)|(1− t)u + tφ(u)|q dx

≥
∫

Ω+

m(x)|(1− t)u|q dx +
∫

Ω−

m(x)|(1− t)u|q dx

= (1− t)q

∫
Ω

m(x)|u|q dx > 0 for t ∈ (0, 1].

Therefore H : [0, 1]× E+ → E+ is a homotopy between idE+ and i ◦ φ.
In the same way we can show that idH1

0 (Ω+)\{0} is (linearly) homotopic to φ ◦ i.
Thus φ is the homotopy inverse to i. �

Remark. A version of Lemma 3.3 has been proved in [3, Lemma 2.4] under the
additional assumption Ω̄+ ∩ Ω̄− = ∅. We note that the statement of Lemma 3.3
remains true for any q ∈ [1, 2∗].
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Proof of Theorem 2.1. Let us fix ρ > 0 such that Lemmas 3.1, 3.2 hold. To prove
the theorem it is enough to verify the following two conditions

(a) J0 ∩Bρ is contractible in itself;
(b) {J0 ∩Bρ} \ {0} is contractible in itself.

Thus the result follows by the standard exactness properties of homology groups,
cf. [22] and [17] for details.

Claim (a). We will show that the set J0 ∩ Bρ is starshaped with respect to the
origin, i.e. that u ∈ J0 ∩ Bρ implies that τu ∈ J0 ∩ Bρ for all τ ∈ [0, 1]. Then the
claim follows.

Assume, by a contradiction, that there exists u0 ∈ J0 ∩ Bρ and τ0 ∈ (0, 1) such
that J(τ0u0) > 0. Then from (3.6) it follows that

d

dτ
J(τ0u0) > 0.

By the monotonicity arguments this implies that

J(τu0) > 0 for all τ ∈ [τ0, 1].

This contradicts the definition of u0.

Claim (b). By Lemma 3.1 we know that {J0∩Bρ}\{0} ⊆ E+. By Lemma 3.3, the
set E+ ∩Bρ is contractible in itself. Moreover, by [22] the retract of the set which
is contractible in itself is also contractible in itself. Thus it is suffices to show that
{J0 ∩Bρ} \ {0} is a retract of E+ ∩Bρ, which we now will prove.

As above, we set
Mρ = {u ∈ E+ ∩Bρ : J(u) ≥ 0}.

From Lemma 3.2 it follows that for each u ∈ Mρ there exists a positive solution
τ(u) ∈ (0, 1] of the equation

J(τu) = 0.

From the starshapeness of J0 ∩ Bρ it follows that such a solution τ(u) is unique.
Fix u ∈ Mρ. By (3.6) we have

d

dτ
J(τ(u)u) > 0.

Hence the Implicit Function Theorem implies the continuity of the function τ(u)
in a neighborhood of u in M . Therefore τ : Mρ → (0, 1] is a continuous function.

Let r : E+ → {J0 ∩Bρ} \ {0} be the map defined by the formula

r(u) =

{
τ(u)u, u ∈ Mρ,

u, u ∈ {J0 ∩Bρ} \ {0}.

The continuity of r follows from the continuity of τ and by the fact that by the
definition

τ(u) = 1 as u ∈ Mρ and J(u) = 0.

Moreover
r(u) = u for u ∈ {J0 ∩Bρ} \ {0}.

Thus r is a retraction of {E+ ∩Bρ} \ {0} into {J0 ∩Bρ} \ {0}. �
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4. Proof of Theorem 2.2.

We will only deal with case (ii), where α + β = λl for some l ∈ N. Case (i) is
simple and can be treated following arguments used in [17, p.394–395].

Our hypotheses on g implies that J is of class C1 on H1
0 (Ω), is asymptotically

quadratic and has the form

J(u) =
1
2

(
‖u‖2 − ω‖u‖2

2

)
− 1

q

∫
Ω

m(x)|u|q dx + o(‖u‖q
2)(4.1)

=
1
2

(
‖u‖2 − ω‖u‖2

2

)
+ o(‖u‖2

2) as ‖u‖2 →∞,(4.2)

where ω = α + β. We claim also that J satisfies Palais–Smale condition (PS). We
are going to show that one can split H1

0 (Ω) into the direct sum H1
0 (Ω) = V + ⊕ V −

with dim(V −) = k ∈ N such that

J is bounded from below on V +,(4.3)
J(u) → −∞ as u ∈ V −, ‖u‖ → ∞.(4.4)

Then J has a critical point v such that Ck(J, v) 6= 0 by the version of the Saddle
Point Theorem with information on Morse critical groups. (See [15, Theorem 8.11]
for the C2–statement of the theorem. The proof for C1–functionals is the same if
one uses the C1–Deformation Lemma, see [9, p.21].)

We decompose H1
0 (Ω) = H+⊕H−⊕H0 according to the eigenvalues of −∆−ω.

That is, H+ and H− are the eigenspaces of −∆ spanned by the eigenfunctions
corresponding to the eigenvalues λ > ω and λ < ω, H0 is the eigenspace of −∆ cor-
responding to eigenvalues λ = ω. The subspaces H− and H0 are finite–dimensional
and H− is possibly trivial. Set

Λ∗ =
∫

Ω

m(x)|e1(Ω)|q dx.

We shall distinguish the cases Λ∗ > 0 and Λ∗ < 0. Note that Λ∗ = 0 implies
λ∗(m) = λ1(Ω), see (2.1). This contradicts assumptions of the theorem.

Case Λ∗ > 0. Set V + = H+ and V − = H0 ⊕H−. First we observe that

(4.5)
∫

Ω

m(x)|u|q dx > 0 for all u ∈ V −, u 6= 0.

Indeed, assume that

(4.6)
∫

Ω

m(x)|u|q dx ≤ 0 for some u ∈ V −.

Note that e1(Ω) ∈ V − and that V − \ {0} is arcwise connected. Since Λ∗ > 0 then
by (4.6) and continuity there exists ũ ∈ V − \ {0} such that∫

Ω

m(x)|ũ|q dx = 0.

Thus ‖ũ‖2 ≥ λ∗(m)‖ũ‖2
2 by definition of λ∗(m). On the other hand ‖ũ‖2 ≤ ω‖ũ‖2

2

by definition of V −, in contradiction with assumption ω < λ∗(m). This proves
(4.5).
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Later on, since E is homogeneous of order q and V − is finite–dimensional, then
(4.5) implies that

(4.7)
∫

Ω

m(x)|u|q dx ≥ c‖u‖q for all u ∈ V −.

Using (4.1), (4.7) by direct computations we obtain

J(u) ≤ −1
q

∫
Ω

m(x)|u|q dx + o(‖u‖q)

≤ − c

q
‖u‖q + o(‖u‖q) → −∞ as u ∈ V −, ‖u‖ → ∞.

Also one can easily check that J is bounded from below on V +. Thus (4.4) and
(4.3) hold. Therefore J has a critical point v with Ck(J, v) 6= 0 where k = dim(V −).
But Ck(J, 0) = 0 by Theorem 2.1 and hence v 6= 0.

Case Λ∗ < 0. Set V + = H0 ⊕H+ and V − = H−. It is easy to see that J satisfies
(4.4) on V −. We are going to check (4.3). Assume, by a contradiction, that there
exists a sequence (un) ⊂ H1

0 (Ω) such that

(4.8) (un) ⊂ V + and J(un) ≤ −n.

Thus by (4.2) we have

ω

2
‖un‖2

2 ≥ n +
1
2
‖un‖2 + o(‖un‖2

2) ≥ n + o(‖un‖2
2).

We conclude that ‖un‖2 is unbounded.
Set vn = un‖un‖−1

2 . Thus by (4.2) we obtain

(4.9)
J(un)
‖un‖2

2

=
1
2

(
‖vn‖2 − ω

)
+ o(1) ≤ 0.

It follows that ‖vn‖2 ≤ ω + o(1). Since ‖vn‖2 ≥ ω on V + we conclude that a
subsequence (which we still denote by (vn)) converges weakly in H1

0 (Ω) to a certain
v0 ∈ H1

0 (Ω) such that

(4.10) v0 ∈ H0 and ‖v0‖2 = 1.

Later on, we observe that

1
q

∫
Ω

m(x)|un|q dx + o(‖un‖q
2) ≥ 0

in view of (4.8) and (4.1). By dividing by ‖un‖q
2 we obtain∫

Ω

m(x)|vn|q dx + o(1) ≥ 0.

Thus by weak continuity

(4.11)
∫

Ω

m(x)|v0|q dx = lim
∫

Ω

m(x)|vn|q dx ≥ 0.

Set Ṽ = H− ⊕ H0. Thus v0, e1(Ω) ∈ Ṽ . Note that Ṽ \ {0} is arcwise connected.
Since Λ∗ < 0 then by (4.11) and continuity one can find ũ ∈ Ṽ \ {0} such that∫

Ω

m(x)|ũ|q dx = 0.
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Therefore ‖ũ‖2 ≥ λ∗(m)‖ũ‖2
2 by definition of λ∗(m). On the other hand ‖ũ‖2 ≤

ω‖ũ‖2
2 by definition of Ṽ , in contradiction with assumption ω < λ∗(m).

Thus (4.4) and (4.3) hold. Therefore J has a critical point v with Ck(J, v) 6= 0
where k = dim(V −). But Ck(J, 0) = 0 by Theorem 2.1 and hence v 6= 0.

(PS)–condition. To complete the proof we have to verify (PS). Let (un) ∈ H1
0 (Ω)

be a (PS)–sequence for J , i.e.

(4.12) J(un) = O(1), ‖∇J(un)‖ = o(1).

We claim that ‖un‖2 is bounded. Suppose the contrary and set vn = un‖un‖−1
2 .

Using (4.2) and (4.12) we obtain

o(1) =
J(un)
‖un‖2

2

=
1
2

(
‖vn‖2 − ω

)
+ o(1).

Hence ‖vn‖2 = ω+o(1) and a subsequence (which we still denote by (vn)) converges
weakly to v0 ∈ H1

0 (Ω) such that

(4.13) ‖v0‖2 ≤ ω and ‖v0‖2 = 1.

Then by a direct computation and exploiting (4.12) we obtain

O(1) + o(1)‖un‖ = J(un)− 1
2
〈∇J(un), un〉

= (
1
q
− 1

2
)
∫

Ω

m(x)|un|q dx + o(‖un‖q
2).

By dividing by ‖un‖q
2 we obtain

o(1) + o(1)‖vn‖ = (
1
q
− 1

2
)
∫

Ω

m(x)|vn|q dx + o(1).

Since ‖vn‖ is bounded then by weak continuity∫
Ω

m(x)|v0|q dx = lim
∫

Ω

m(x)|vn|q dx = 0.

Also, by definition of λ∗(m), we have ‖v0‖2 ≥ λ∗(m), in contradiction with (4.13).
We conclude that ‖un‖2 is bounded.

Finally, from (4.2) and (4.12), we obtain

O(1) = J(un) =
1
2

(
‖un‖2 − ω‖un‖2

2

)
+ o(‖un‖2)

=
1
2
‖un‖2 + O(1).

Therefore (un) is bounded in H1
0 (Ω) and the subcritical growth of g ensures that

there is a strongly convergent subsequence. �

5. Proof of Theorem 2.3.

Let r > 0 be fixed and g̃ : Ω× R → R be a Caratheodory function such that

(5.1) g̃(x, u) = g(x, u) for all |u| ≤ r,

(5.2) lim
|u|→∞

g̃(x, u)
u

= β with β + α < λ1(Ω).
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We define the truncated energy for (Pµ) by

J̃µ(u) =
1
2
‖u‖2 − α

2
‖u‖2

2 −
µ

q

∫
Ω

m(x)|u|q dx−
∫

Ω

G̃(x, u) dx,

where

G̃(x, u) =
∫ u

0

g̃(x, ξ) dξ.

Due to (5.2) the functional J̃µ is of class C1, is coercive and satisfies (PS) for each
fixed µ ∈ R. Furthermore, for each ρ > 0 the map µ 7→ J̃µ is continuous from [0, ρ]
into C1(Bρ) and J̃µ is uniformly bounded on [0, ρ]×Bρ.

By contradiction, we assume that there exists ρ > 0 such that for each fixed
µ ∈ [0, ρ] zero is the unique critical point of J̃µ in Bρ. Then by the C1–homotopy
invariance of the Morse critical groups (see Theorems IV.4 and IV.3 in [10]) we can
conclude that Ck(J̃0, 0) = Ck(J̃ρ, 0).

On the other hand, we have α 6∈ σ(Ω) by the assumption of the theorem. Then
zero is an (isolated) nondegenerate critical point of J̃0. Therefore Ck(J̃0, 0) = δlkF
for some l ∈ N, cf. [16]. Since λ∗(ρm) = λ∗(m), the assumption α < λ∗(m) and
Theorem 2.1 ensure that Ck(J̃ρ, 0) = 0 for all k ∈ N̄, a contradiction. Due to the
arbitrariness of ρ > 0 this means that there exists a sequence µn ↓ 0 such that J̃µn

has critical points v(µn) 6= 0 with ‖v(µn)‖ → 0.
By using (5.2) it can be shown by standard arguments that ‖v(µn)‖∞ < c for

some c > 0. By elliptic regularity theory this implies that the sequence (v(µn)) is
precompact in L∞(Ω) and hence that ‖v(µn)‖∞ → 0. Thus, for n large ‖v(µn)‖∞ <
r and v(µn) are solutions of the original problems (Pµn

).
The same arguments apply in the left neighborhoods of µ = 0. �
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