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Abstract

We study positive supersolutions to an elliptic equation (∗) −∆u = c|x|−sup, p, s ∈ R,
in cone–like domains in RN (N ≥ 2). We prove that in the sublinear case p < 1 there exists
a critical exponent p∗ < 1 such that equation (∗) has a positive supersolution if and only if
−∞ < p < p∗. The value of p∗ is determined explicitly by s and the geometry of the cone.

1 Introduction

We study the existence and nonexistence of positive solutions and supersolutions to the equation

−∆u =
c

|x|s up in Cρ
Ω.(1)

Here p ∈ R, s ∈ R, c > 0 and Cρ
Ω ⊂ RN (N ≥ 2) is an unbounded cone–like domain

Cρ
Ω := {(r, ω) ∈ RN : ω ∈ Ω, r > ρ},

where (r, ω) are the polar coordinates in RN , ρ > 0 and Ω ⊆ SN−1 is a subdomain (a connected
open subset) of the unit sphere SN−1 in RN . We say that u ∈ H1

loc(Cρ
Ω) is a supersolution

(subsolution) to equation (1) if
∫

Cρ
Ω

∇u · ∇ϕ dx ≥ (≤)
∫

Cρ
Ω

c

|x|s upϕ dx for all 0 ≤ ϕ ∈ C∞
0 (Cρ

Ω).

If u is a sub and supersolution to (1) then u is said to be a solution to (1). By the weak Harnack
inequality any nontrivial nonnegative supersolution to (1) is positive in Cρ

Ω.
The classical Liouville theorem asserts that every positive superharmonic function on RN

is constant. Generalizations of this result to positive (super) solutions of semilinear elliptic
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equations of type (1) go back to earlier works by Serrin [14] and celebrated paper by Gidas
and Spruck [6] (for recent results and a historical survey see [15]). Equation (1), known also in
astrophysics as a generalized Lane–Emden equation, is a prototype model for general semilinear
equations. The qualitative theory of equations (1) has been extensively studied because of the
rich mathematical structure and various applications for the whole range of the parameter p ∈ R,
e.g in combustion theory (p > 1) [13], population dynamics (0 < p < 1) [11], pseudoplastic fluids
(p < 0) [9]. Liouville type theorems for equation (1) have been obtained so far mainly for the
superlinear case p > 1. In this short note we uncover a new critical phenomenon for p < 1,
similar in nature to the phenomena known in the superlinear case. In order to describe old and
new results we define critical exponents for equation (1) as

p∗ = p∗(Ω, s) = inf{p > 1 : (1) has a positive supersolution in Cρ
Ω for some ρ > 0},

p∗ = p∗(Ω, s) = sup{p < 1 : (1) has a positive supersolution in Cρ
Ω for some ρ > 0}.

Set p∗ = −∞ if (1) has no positive supersolution in Cρ
Ω for any p < 1.

Remark 1. (i) One can show that if p < p∗ or p > p∗ then (1) has a positive solution in Cρ
Ω (see

[7] for the proof of the case p > 1 and the proofs below for the case p < 1). The existence (or
nonexistence) of positive (super) solutions at the critical values p∗ and p∗ is a separate issue.

(ii) Observe that in view of the scaling invariance of the Laplacian the critical exponents p∗
and p∗ do not depend on ρ > 0.

(iii) We do not make any assumptions on the smoothness of the domain Ω ⊆ SN−1.

Let λ1 = λ1(Ω) ≥ 0 be the principal eigenvalue of the Dirichlet Laplace–Beltrami operator
−∆ω on Ω. Let α+ ≥ 0 and α− < 0 be the roots of the quadratic equation

α(α + N − 2) = λ1(Ω).

In the superlinear case p > 1 the value of the critical exponent is p∗ = 1 − 2−s
α− . Moreover, if

s < 2 then (1) has no positive supersolutions in the critical case p = p∗. This has been proved by
Bandle and Levine [3], Bandle and Essen [2] and Berestycki, Capuzzo–Dolcetta and Nirenberg
[4] (see also [7, 10, 12] for further extensions of this result and related problems).

The sublinear case p < 1 has been studied in [5, 8]. From the result of Brezis and Kamin [5]
it follows that for p ∈ (0, 1) equation (1) has a bounded positive solution in RN if and only if
s > 2. It has been proved in [8] (amongst other things) that for any p ∈ (−∞, 1) equation (1)
has a positive supersolution outside a ball in RN if and only if s > 2.

In this note we show that in sublinear case equation (1) exhibits a ”non-trivial” critical
exponent (p∗ > −∞) in cone–like domains. The main result of the paper reads as follows.

Theorem 1. For p ≤ 1, the critical exponent for equation (1) is p∗ = min{1 − 2−s
α+

, 1}. If
p∗ < 1 then (1) has no positive supersolutions in the critical case p = p∗. If p < p∗ then (1) has
a positive solution.

Remark 2. (i) If α+ = 0 then we set p∗ = −∞. Then the result follows from [8, Theorem 1.2].
(ii) If s > 2 then p∗ = p∗ = 1 and (1) has positive solutions for any p ∈ R [5, 8]. If s = 2

then p∗ = p∗ = 1. In this critical case (1) becomes a linear equation with the potential c|x|−2,
which has a positive (super) solution if and only if c ≤ (N−2)2

4 + λ1(Ω).
(iii) Let Sk = {x ∈ SN−1 : x1 > 0, . . . xk > 0}. Then λ1(Sk) = k(k+N−2) and α+(Sk) = k,

α−(Sk) = 2 −N − k. Hence p∗(Sk, s) = 1 − 2−s
k and p∗(Sk, s) = 1 − 2−s

2−N−k . In particular, in
the case of the halfspace S1 we have p∗(S1, s) = s− 1 and p∗(S1, s) = N+1−s

N−1 .
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Figure 1: Existence and nonexistence zones for equations (1) (left) and (2) (right).

Applying the Kelvin transformation y = y(x) = x
|x|2 we see that if u is a positive solution

to (1) in C1
Ω then û(y) = |y|2−Nu(x(y)) is a positive solution to

−∆û =
c

|y|σ ûp in Ĉ1
Ω,(2)

where σ = (N + 2) − p(N − 2) − s and Ĉ 1
Ω := {(r, ω) ∈ RN : ω ∈ Ω, 0 < r < 1}. We define

the critical exponents p̂∗ = p̂∗(Ω, s) and p̂∗ = p̂∗(Ω, s) for equation (2) similarly to p∗(Ω, s)
and p∗(Ω, s). In the superlinear case p > 1, Bandle and Essen [2] proved that if σ > 2 then
p̂∗ = 1 − 2−σ

α+
and (2) has no positive supersolutions when p = p̂∗(Ω). In the sublinear case

p < 1 by an easy computation we derive from Theorem 1 the following result.

Theorem 2. For p ≤ 1, the critical exponent for equation (2) is p̂∗ = min{1 − 2−σ
α− , 1}. If

p̂∗ < 1 then (2) has no positive supersolutions in the critical case p = p̂∗. If p < p̂∗ then (2) has
a positive solution.

In the remaining part of the paper we prove Theorem 1.

2 Proof of Theorem 1

From now on we assume that λ1(Ω) > 0.

Existence. In the polar coordinates equation (1) reads as follows

−urr − N−1
r

ur − 1
r2

∆ωu =
c

rs
up in C1

Ω.(3)

Let s ≤ 2, p < 1− 2−s
α+

. Let 0 < ψ ∈ H1
loc(Ω) be a positive solution to the equation

−∆ωψ − α(α + N − 2)ψ = ψp in Ω,(4)

where α := 2−s
1−p . Then it is readily seen that u := c

1
1−p rαψ ∈ H1

loc(C1
Ω) is a positive solution to

(3) in C1
Ω. Thus the problem reduces to the existence of positive solutions to (4).
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Note that 0 < α(α + N − 2) < λ1(Ω). Hence the operator −∆ω − α(α + N − 2) is coercive
on H1

0 (Ω) and satisfies the maximum principle. We consider separately the cases p ∈ [0, 1) and
p < 0.

Case p ∈ [0, 1). Let φ1 > 0 be the principal Dirichlet eigenfunction of −∆ω on Ω. Let φ > 0
be the unique solution to the problem

−∆ωφ− α(α + N − 2)φ = 1, φ ∈ H1
0 (Ω).

Observe that φ1, φ ∈ L∞. Hence τφ is a supersolution to (4) for a large τ > 0, and εφ1 is a
subsolution to (4) for a small ε > 0. Thus by the sub and supersolutions argument equation (4)
has a solution ψ ∈ H1

0 (Ω) such that εφ1 < ψ ≤ τφ.

Case p < 0. Consider the problem

−∆ωφ− α(α + N − 2)(φ + 1) = (φ + 1)p, φ ∈ H1
0 (Ω).(5)

Let φ > 0 be the unique solution to the problem

−∆φ− α(α + N − 2)(φ + 1) = 1, φ ∈ H1
0 (Ω).

It is clear that φ is a supersolution to (5) and φ ≡ 0 is a subsolution to (5). We conclude that
(5) has a positive solution φ ∈ H1

0 (Ω) such that 0 < φ ≤ φ. Then ψ := φ + 1 ∈ H1
loc(Ω) is a

positive solution to (4). This completes the proof of the existence part of Theorem 1.

Nonexistence. In what follows we set δ := 1 if p < 0 and δ := 0 if p ∈ [0, 1). Let G ⊂ RN

be a domain, 0 6∈ G. Observe that equation (1) has a positive supersolution in G if and only if
the equation

−∆w =
c

|x|s (w + δ)p in G(6)

has a positive supersolution. Indeed, if u > 0 is a supersolution to (1) in G then u is a
supersolution to (6). If w > 0 is a supersolution to (6) then u = w + δ is a supersolution to (1).
The main argument of the proof nonexistence rests upon the following two lemmas.

The next lemma is an adaptation a comparison principle by Ambrosetti, Brezis and Cerami
[1, Lemma 3.3].

Lemma 3. Let G ⊂ RN be a domain, 0 6∈ G. Let 0 ≤ w ∈ H1
0 (G) be a subsolution and

0 ≤ w ∈ H1
loc(G) a supersolution to (6). Then w ≤ w in G.

Proof. In [1, Lemma 3.3] the result was proved for a smooth bounded domain G and w, w ∈
H1

0 (G) (and more general nonlinearities). The proof given in [1] carries over literally to the case
of an arbitrary bounded domain G and w, w ∈ H1

0 (G), or a smooth domain G, w ∈ H1
0 (G) and

0 ≤ w ∈ H1(G). Thus we only need to extend the lemma to an arbitrary bounded domain G
and w ∈ H1

loc(G).
Let w ∈ H1

loc(G) be a supersolution to (6) in G. Let (Gn)n∈N be an exhaustion of G,
that is a sequence of bounded smooth domains such that Gn ⊂ Gn+1 ⊂ G and ∪n∈NGn = G.
Analogously to the argument given above in the existence part of the proof, one can readily
see that, for each n ∈ N, there exists a solution 0 < wn ∈ H1

0 (Gn) to (6) (e.g., by constructing
appropriate sub and supersolutions). Moreover, wn ≤ wn+1. Observe that wn ≤ w in Gn by [1,
Lemma 3.3].
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We claim that sup ‖∇wn‖L2 < ∞. This is clear for p < 0, since (u + 1)p ≤ 1. For p ∈ [0, 1),
using wn as a test function in (6), we have

∫

G
|∇wn|2dx =

∫

G

c

|x|s wp+1
n dx ≤ c1

(∫

G
|∇wn|2dx

)(p+1)/2

,

which implies the claim. It follows that wn converges pointwise in G, strongly in L2(G) and
weakly in H1

0 (G) to a positive w∗ ∈ H1
0 (G). Clearly w∗ > 0 is a solution to (6) in G and

0 < w∗ ≤ w in G.
Now let 0 ≤ w ∈ H1

0 (G) be a subsolution to (6) in G. By [1, Lemma 3.3] we conclude that
w ≤ w∗ in G.

Next, consider the initial value problem

−vrr − N − 1
r

vr +
λ1

r2
v =

c

rs
vp for r > 1; v(1) = δ, vr(1) = K;(7)

where p < 1, s ∈ R, c > 0, K > 1 and δ as above. Let (1, R), R = R(δ,K) ≤ ∞, be the maximal
right interval of existence of the solution v to (7) in the region {(r, v) ∈ (1,+∞)× (δ, +∞)}.
Lemma 4. Let s < 2 and p ∈ [1− 2−s

α+
, 1). Then for any interval [r∗, r∗] ⊂ (1, +∞) there exists

K0 > 1 such that

i) for all K > K0 one has r∗ < R < +∞ and v(r) → δ as r ↗ R;

ii) for any M > δ there exists K > K0 such that min[r∗,r∗] v ≥ M .

Proof. Set α := α+, v := wrα, t = r2−N−2α. Then w solves the following problem

wtt + c1t
−σwp = 0 for t ∈ (T, 1); w(1) = δ, wt(1) = −L,

where σ = 2N−2+α(p+3)−s
N−2+2α ≥ 2, c1 > 0, 0 ≤ T = R2−N−2α < 1 and L = K−αδ

N−2+2α → ∞ as
K →∞. Choose K0 such that L > δ. Observe that w(t) is concave, hence

δ < w(t) ≤ w(1)− wt(1)(1− t) ≤ δ + L for t ∈ (T, 1).

To see that T > 0 let w̃ := w for p < 0, otherwise let w̃ := w1−p. Then w̃ satisfies the inequality

w̃tt + c2t
−2w̃q ≤ 0 for t ∈ (T, 1),

with c2 > 0 and q := min{p, 0}. Integrating w̃tt twice one can easily see that such inequality
has no positive solutions in any neighborhood of zero. Thus we conclude that T > 0, hence
w(t) → δ as t ↘ T . In particular, w(t) attains its maximum on (T, 1).

Let T0 ∈ (T, 1) be such that wt(T0) = −L−δ
2 . Since δ ≤ w(t) ≤ δ + L for t ∈ (T0, 1), it

follows that

L + δ

2
= wt(T0)− wt(1) = −

∫ 1

T0

wttdτ = c1

∫ 1

T0

wp

τσ
dτ ≤ c3

(
1

T σ−1
0

− 1
)

for t ∈ (T0, 1).

Hence T0 → 0 as L → +∞. Therefore for any given t∗ < 1 there exists L0 > 1 such that for
any L > L0 one has 0 < T < T0 < t∗. Thus, (i) follows with r∗ = (t∗)

1
N−2+2α .

Observe now that for any L > L0 we have

−L− δ

2
≥ wt(t) ≥ −L for t ∈ (t∗, 1),

since w is concave. Hence for any t ∈ (t∗, 1) we obtain

w(t) = w(1)−
∫ 1

t
wt dτ ≥ δ + (1− t)

L− δ

2
→∞ as L →∞.

Thus (ii) follows.
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Nonexistence – completed. Let p ∈ [1 − 2−s
α+

, 1). Fix a compact K ⊂ C1
Ω and M > 1. There

exists an interval [r∗, r∗] ⊂ (1, +∞) such that K ⊂ C(r∗,r∗)
Ω , where C(r1,r2)

Ω denotes the set
{x ∈ C1

Ω | r1 ≤ |x| ≤ r2}. Then by Lemma 4 there exists v : (1, R) → (δ,+∞) solving (7) such
that R > r∗ and inf [r∗,r∗] v ≥ M + δ.

Let φ1 > 0 be the principal Dirichlet eigenvalue of −∆ω on Ω with ‖φ1‖∞ = 1. Set
wM := (v − δ)φ1. Then 0 < wM ∈ H1

0 (C(1,R)
Ω ), and direct computation shows that wM is a

subsolution to (6) in C(1,R)
Ω . Now assume that w > 0 is a supersolution to (6) in C1

Ω. By Lemma
3 it follows that that w ≥ wM in C(1,R)

Ω . By the weak Harnack inequality we have

inf
K

w ≥ cH

∫

K
w dx ≥ cH

∫

K
wM dx ≥ c2M.

Since M was arbitrary, we conclude that w ≡ +∞ in K.
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