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Abstract

We study the existence and nonexistence of positive (super) solutions to the nonlinear
p-Laplace equation

−∆pu− µ

|x|p up−1 =
C

|x|σ uq

in exterior domains of RN (N ≥ 2). Here p ∈ (1, +∞) and µ ≤ CH , where CH is the critical
Hardy constant. We provide a sharp characterization of the set of (q, σ) ∈ R2 such that the
equation has no positive (super) solutions.

The proofs are based on the explicit construction of appropriate barriers and involve
the analysis of asymptotic behavior of super-harmonic functions associated to the p-Laplace
operator with Hardy-type potentials, comparison principles and an improved version of
Hardy’s inequality in exterior domains. In the context of the p-Laplacian we establish the
existence and asymptotic behavior of the harmonic functions by means of the generalized
Prüfer-Transformation.
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1 Introduction and Results

We study the problem of the existence and nonexistence of positive (super) solutions to nonlinear
p-Laplace equation with Hardy potential

−∆pu− µ

|x|p up−1 =
C

|x|σ uq in Bc
ρ, (1.1)

where −∆pu = −div(|∇u|p−2∇u) is the p-Laplace operator, 1 < p < ∞, C > 0, µ ∈ R,
(q, σ) ∈ R2 and Bc

ρ := {x ∈ RN : |x| > ρ} is the exterior of the ball in RN , with N ≥ 2. We say
that u ∈ W 1,p

loc (G)∩C(G) is a super-solution to equation (1.1) in a domain G ⊆ RN with 0 6∈ G

if for all 0 ≤ ϕ ∈ W 1,p
c (G) ∩ C(G) the following inequality holds
∫

G
∇u|∇u|p−2∇ϕ dx−

∫

G

µ

|x|p up−1ϕdx ≥
∫

G

C

|x|σ uqϕ dx.

Here and below W 1,p
c (G) := {u ∈ W 1,p

loc (G), supp(u) b G}. The notions of a sub-solution and
solution are defined similarly, by replacing ” ≥ ” with ” ≤ ” and ” = ”, respectively. It follows
from the Harnack inequality (cf. [43]) that any nontrivial nonnegative super-solution to (1.1)
in G is strictly positive in G.

One of the features of equation (1.1) on unbounded domains is the nonexistence of positive
solutions for certain values of the exponent q. Such Liouville type nonexistence phenomena
have been known for semilinear elliptic equations (p = 2) at least since the celebrated works of
Serrin in the earlier 70’s (cf. the references in [44]) and of Gidas and Spruck [25]. One of the
first Liouville-type results for the nonlinear p-Laplace equations in exterior domains is due to
Bidaut–Véron [8, Theorem 1.3]. Theorem A below extends the result in [8], including the cases
p > N and q < p− 1.

Theorem A ([8, Theorem 1.3], Theorem 1.1 below). The equation

−∆pu = uq in Bc
ρ (1.2)

has no positive super-solutions if and only if q∗ ≤ q ≤ q∗, where q∗ = N(p−1)
N−p when p < N , or

q∗ = +∞ when p ≥ N , and q∗ = −∞ when p ≤ N or q∗ = N(p−1)
N−p when p > N .

Theorem A had been generalized and extended in various direction by many authors (see,
e.g., [1, 9, 35, 44, 48] and references therein). The techniques in those works usually involve
careful integral estimates and/or sophisticated analysis of related nonlinear ODE’s. A different
approach to nonlinear Liouville type theorems goes to back to an earlier paper by Kondratiev
and Landis [26] and was recently developed in the context of semilinear equations (p = 2) in
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[27, 28, 29, 30]. The approach is based on the pointwise Phragmén–Lindelöf type bounds on
positive super-harmonic functions and related Hardy–type inequalities.

Recall that the classical Hardy inequality states that
∫

Bc
ρ

|∇u|pdx ≥ CH

∫

Bc
ρ

up

|x|p dx, ∀ u ∈ C∞
c (Bc

ρ), (1.3)

with the sharp constant CH =
∣∣∣N−p

p

∣∣∣
p
, p > 1. The optimality of the Hardy constant CH implies,

via Picone’s identity, the following nonexistence result.

Theorem B ([6, Corollary 2.2], Corollary 3.2 below) The equation

−∆pu− µ

|x|p up−1 = 0 in Bc
ρ (1.4)

has no positive super-solutions if and only if µ > CH .

Let us sketch a simple proof of the nonexistence part of Theorem A in the case p 6= N
and q∗ < q < q∗. Indeed, let u > 0 be a super-solution to (1.2). Then −∆pu ≥ 0 in Bc

ρ. A
comparison principle for the p-Laplacian in exterior domains (see Theorem 2.1 and Theorems
3.4 and 3.5 below) implies that u obeys the Phragmén–Lindelöf type bounds

c|x|γ− ≤ inf
|x|=r

u ≤ c−1|x|γ+ in Bc
2ρ, (1.5)

where γ− = min{0, p−N
p−1 } and γ+ = max{0, p−N

p−1 }.
Assume that q ≥ p − 1 and perform a homogenization of equation (1.2) rewriting it in the

from
−∆pu = V up−1 in Bc

ρ, (1.6)

where V (x) := uq−(p−1). Using the lower bound from (1.5), we conclude that

V (x) ≥ c1|x|γ−(q−p+1) in Bc
2ρ.

Hence, by Theorem B, equation (1.6) has no positive super-solutions provided γ−(q−p+1) > −p.
Therefore (1.2) has no positive super-solutions when p− 1 ≤ q < q∗.

Now assume that q < p − 1. Then a standard scaling argument (see Lemma 4.4 below)
shows that any super-solution u > 0 to nonlinear equation (1.2) obeys the lower bound

u ≥ c|x|
p

(p−1)−q in Bc
2ρ.

Comparing this ”nonlinear” estimate with the upper bound in (1.5), we conclude that equation
(1.2) has no positive super-solutions for q∗ < q < p− 1.

The above simple proof relies only on Theorem B and pointwise Phragmén–Lindelöf type
bounds (1.5). It does not cover the critical cases q = q∗ and q = q∗, where additional arguments
are required. On the other hand, an explicit construction of radial super-solutions to (1.2) when
q 6∈ [q∗, q∗] shows that the values of the critical exponents q∗ and q∗ are sharp. Considerations
of this type first appeared in [27]. They have proved to be a powerful and flexible tool for
studying nonlinear Liouville phenomena for various classes of elliptic operators and domains,
see [27, 28, 29, 30, 32, 33].

In this paper we are interested in nonlinear Liouville theorems for perturbations of the p-
Laplace operator by the Hardy type potential. To explore the impact of the potential on the
value of the critical exponents q∗ and q∗, let us consider the equation of the form

−∆pu− µ

|x|p+ε
up−1 = uq in Bc

ρ, (1.7)
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where µ ∈ R and ε ∈ R. One can verify directly that if ε < 0 and µ < 0, then (1.7) admits
positive solutions for all q ∈ R, while if ε < 0 and µ > 0 then (1.7) has no positive super-
solutions for any q ∈ R. The latter follows immediately from Theorem B. On the other hand,
one can show (see [33, Theorem 1.2]) that if ε > 0 then (1.7) has the same critical exponents q∗

and q∗ as (1.2). This follows from the fact that positive super-solutions to

−∆pu− µ

|x|p+ε
up−1 = 0 in Bc

ρ (1.8)

satisfy the same bound (1.5) as super-solutions to −∆pu ≥ 0 in Bc
ρ.

In this paper we show that in the borderline case ε = 0 the critical exponents for equation
(1.7) explicitly depend on µ. This is a consequence of the fact that the Phragmén–Lindelöf
bounds for equation (1.8) with ε = 0 become sensitive to the value of the parameter µ. Such
phenomenon and its relation to the Hardy type inequalities has been recently observed for
p = 2 in the case of the ball as well as exterior domains in [12, 13, 19, 32, 37, 45, 47]. The
main difficulty comparing with the semilinear case p = 2 arises when a comparison principle
for the p–Laplacian has to be involved in the argument. After examples in [16, 21] (see also
[23, 46]) it is known that solutions to the equation −∆pu+V up−1 = 0 may not satisfy the usual
comparison principle as soon as the potential has a nontrivial negative part. The proof of the
(restricted) comparison principle requires delicate arguments. We provide a new version of the
comparison principle (Theorem 2.1), following the ideas from [34]. In order to use this result for
obtaining sharp Phragmén–Lindelöf bounds one has to produce explicitly a radial sub-solution
to a homogeneous equation in the exterior of the ball with zero data on the sphere. This has
been resolved in this paper by means of the generalized Prüfer transformation (see [39] and
Appendix B.3), which, up to our knowledge, has never been used before in this context. We
also provide an elementary proof of an improved Hardy Inequality in exterior domains. The
improved Hardy Inequality plays a crucial role in our analysis of equation (1.1) in the critical
case µ = CH .

To formulate the main result of the paper we assume that µ ≤ CH , otherwise (1.1) has no
positive super-solutions by Theorem B. When µ ≤ CH , the scalar equation

−γ|γ|p−2 (γ(p− 1) + N − p) = µ (1.9)

has two real roots γ− ≤ γ+. Note that if µ = CH then γ− = γ+ = p−N
p . For µ ≤ CH we

introduce the critical line Λ∗(q, µ) for equation (1.1) on the (q, σ)–plane

Λ∗(q, µ) := min{γ−(q − p + 1) + p, γ+(q − p + 1) + p} (q ∈ R),

and the nonexistence set

N = {(q, σ) ∈ R2 \ (p− 1, p) : (1.1) has no positive supersolutions in Bc
ρ}.

Theorem 1.1. The following assertions are valid.

(i) If µ < CH then N = {σ ≤ Λ∗(q)}.
(ii) If µ = CH then N = {σ < Λ∗(q)} ∪ {σ = Λ∗(q), q ≥ −1}.

Remark 1.2. (i) Observe that in view of the scaling invariance of (1.1) if u(x) is a solution to

(1.1) in Bc
ρ then τ

p−σ
q−(p−1) u(τy) is a solution to (1.1) in Bc

ρ/τ , for any τ > 0. So in what follows,
for q 6= p−1, we confine ourselves to the study of solutions to (1.1) on Bc

1. For the same reason,
for q 6= p− 1 we may assume that C = 1, when convenient.
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(ii) Using sub- and super-solutions techniques one can show that if (1.1) has a positive super-
solution in Bc

ρ then it has a positive solution in Bc
ρ (see Lemma 2.6). Thus for any (q, σ) ∈ R2\N

equation (1.1) admits positive solutions.
(iii) Figure 1 shows the qualitative pictures of the set N for typical values of γ−, γ+ and
different relations between p and the dimension N ≥ 2.

The paper is organized as follows. Section 2 contains various preliminary results, including
versions of the Comparison Principle and Weak Maximum Principle in unbounded domains. In
Section 3 we give a new proof of an improved Hardy Inequality with sharp constants, which is
based on Picone’s identity and simplifies some arguments used in the recent papers [3, 7, 20, 24].
Section 3 also includes sharp Phragmén–Lindelöf bounds. The proof of the main result of the
paper, Theorem 1.1, is contained in Section 4.

The Appendix includes various auxiliary results which are systematically used in the main
part of the paper and often are of independent interest. Part A of the Appendix describes well–
known Picone’s identity and some of its corollaries. Parts B and C of the Appendix contain
explicit constructions and estimates of radial sub- and super-solutions to homogeneous p-Laplace
equations with Hardy–type potentials. Finally, in Part C of the Appendix we construct large
sub-solutions to a homogeneous equation in the exterior of the ball with zero data on the sphere
using the generalized Prüfer transformation techniques.

2 Background, framework and auxiliary facts

Here and thereafter N ≥ 2, 1 < p < ∞, q ∈ R and C > 0, unless specified otherwise. For
0 < ρ < R ≤ +∞, we denote the exterior of the closed ball, the open annulus and the sphere of
the radii ρ by

Bc
ρ =

{
x ∈ RN : |x| > ρ

}
, Aρ,R =

{
x ∈ RN : ρ < |x| < R

}
, Sρ = {x ∈ RN : |x| = ρ}.

For a function u = u(x) we denote u+ = max{u, 0} and u− = −min{u, 0} the positive and
negative parts of u, respectively. By c, c1, c2, . . . we denote various positive constants whose
exact values are irrelevant.

Homogeneous form associated to p-Laplacian. Let EV be a homogeneous form defined
by

EV (u) :=
∫

G
|∇u|p dx−

∫

G
V |u|p dx (u ∈ W 1,p

c (G) ∩ C(G)), (2.1)

where G ⊆ RN is a domain (i.e. an open connected set), and 0 ≤ V ∈ L∞loc(G) a potential.
Consider the equations associated with EV

−∆pu− V |u|p−2u = 0 in G, (2.2)

−∆pu− V |u|p−2u = f in G, (2.3)

where 0 ≤ f ∈ L1
loc(G). We say that u ∈ W 1,p

loc (G) ∩ C(G) is a super-solution to equation (2.3)
in a domain G ⊆ RN if for all 0 ≤ ϕ ∈ W 1,p

c (G) ∩ C(G) the following inequality holds
∫

G
∇u|∇u|p−2∇ϕdx−

∫

G

µ

|x|p |u|
p−2uϕdx ≥

∫

G
fϕ dx.

The notions of sub-solution and solution are defined similarly by replacing ” ≥ ” with ” ≤ ”
and ” = ” respectively.
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γ
−

< γ+ < 0 (p < N)

q

σ

p

p −1

(p−1)− p

γ
−

p−(p−1)γ+

Nonexistence

Existence

0 < µ < CH

γ
−

= γ+ < 0 (p < N)

q

σ

p

N
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Nonexistence

Existence

µ = CH

q

σ

p
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γ
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Nonexistence
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µ < 0

γ
−
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Nonexistence

Existence

µ = CH = 0

γ
−

= γ+ = 0 (p = N)

0 < γ
−

< γ+ (p > N)

q

σ

p

p −1

(p−1)− p

γ+

p−(p−1)γ+

Nonexistence

Existence

0 < µ < CH

γ
−

= γ+ > 0 (p > N)

q

σ

p

N

p −1−1

Nonexistence

Existence

µ = CH

Figure 1: The nonexistence set N of equation (1.1) for typical values of γ− and γ+.
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Let u ≥ 0 be a solution to (2.2) in G and let G′ b G. Then the following strong Harnack
inequality (cf. [43, Theorems 5, 6, 9]) holds

sup
G′

u ≤ CS inf
G′

u, (2.4)

where the constant CS > 0 depends on p, N , G′, G only. The Harnack inequality and comparison
principle in bounded domains [23, 46] imply that any nontrivial nonnegative super-solution to
(1.1) in G is strictly positive in G.

Comparison and Maximum Principles. We say that 0 ≤ w ∈ W 1,p
loc (G) satisfies condition

(S) if the following holds:

(S) there exists (θn)n∈N ⊂ W 1,∞
c (RN ) such that 0 ≤ θn → 1 a.e. in RN and
∫

G
R(θnw, w) dx → 0 as n → +∞,

where R is defined in Proposition A.1. Notice that if G is bounded and w ∈ W 1,p(G) then
condition (S) is trivially satisfied with θ = 1 in G.

Using condition (S), we establish a version of comparison principle in a form suitable for
our framework. The proof follows with certain modifications the ideas in [34, 38, 42].

Theorem 2.1 (Comparison Principle). Let q < p − 1 and 0 ≤ f ∈ L1
loc(G). Let 0 < u ∈

W 1,p
loc (G) ∩ C(Ḡ) be a super-solution and v ∈ W 1,p

loc (G) ∩ C(Ḡ) a sub-solution to equation

−∆pu− V |u|p−2u = f |u|q−1u in G. (2.5)

If G is an unbounded domain, assume in addition that ∂G 6= ∅ and v+ satisfies condition (S).
Then u ≥ v on ∂G implies u ≥ v in G.

Proof. Let S := {x ∈ G : v > u}. Assume for a contradiction that S 6= ∅. Then

K := sup
x∈S

(
log

v

u

)
∈ (0,+∞].

Fix a positive constant b such that 5b < K. Let η ∈ C1(R) be a nondecreasing function such
that

η(t) = 0 for t ≤ 2b, η(t) = 1 for t ≥ 5b and η′(t) > 0 for 3b ≤ t ≤ 4b.

Let ξ = η(log v
u). Then 0 ≤ ξ ∈ W 1,p

loc (G) ∩ C(Ḡ) and supp(ξ) ⊂ S ⊆ G. Let θ ∈ W 1,∞
c (RN )

then supp(θ ξ) is compact in G. Later on we specify θ for the case of a bounded and unbounded
G. Set

φ1 :=
(

θpvp

up−1

)
ξ, φ2 := θpvξ.

Clearly φ1, φ2 ∈ W 1,p
c (G). Since u is a super-solution to (2.5), testing (2.5) by φ1 and using

Picone’s Identity we infer that

0 ≤
∫

S
ξ|∇u|p−2 · ∇u · ∇

(
θpvp

up−1

)
dx +

∫

S
θpvp∇ log u · |∇ log u|p−2 · ∇ξ dx

−
∫

S
V θpvpξdx−

∫

S

fuq

up−1
θpvpξ dx

=
∫

S
|∇(θv)|pξ dx−

∫

S
R(θv, u)ξ dx +

∫

S
θpvp∇ log u · |∇ log u|p−2 · ∇ξ dx

−
∫

S
V θpvpξdx−

∫

S
fuq−(p−1)θpvpξ dx.
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Thus from Proposition A.1 we obtain
∫

S
|∇(θv)|pξ dx +

∫

S
θpvp|∇ log u|p−2∇ log u · ∇ξ dx −

∫

S
V θpvpξ dx

≥
∫

S
fuq−(p−1)θpvpξ dx.

Since v is a sub-solution to (2.5), testing (2.5) by φ2 we derive
∫

S
|∇v|p−2∇v · ∇(θpv)ξdx +

∫

S
θpvp|∇ log v|p−2∇ log v · ∇ξdx −

∫

S
V θpvpξdx

≤
∫

S
fθpvq+1ξdx.

Subtracting the former inequality from the latter one and using Picone’s Identity again we
obtain

Iθ :=
∫

S
θpvp

(|∇ log v|p−2 · ∇ log v − |∇ log u|p−2 · ∇ log u
)∇ξ dx

≤
∫

S

{
|∇(θv)|p − |∇v|p−2 · ∇v · ∇(θpv)− fθpvp(uq−(p−1) − vq−(p−1))

}
ξ dx

≤
∫

S∩supp(θξ)
R(θv, v) dx. (2.6)

We claim that

I∗ :=
∫

S
vp

(|∇ log v|p−2 · ∇ log v − |∇ log u|p−2 · ∇ log u
)∇ξ dx ≤ 0 (2.7)

implies S = ∅. Define the open subset S′ ⊂ S by

S′ := {x ∈ G :
(
log

v

u

)
∈ (3b, 4b)} ⊂ S

and observe that η′(log v
u) > 0 on S′. There exists at least one connected component Si of the

set S′ such that log u
v attains all values between 3b and 4b on Si.

Since
∇ξ = (∇ log v −∇ log u) η′(log

v

u
),

and (|z1|p−2z1 − |z2|p−2z2

)
(z1 − z2) ≥ 0, ∀ z1, z2 ∈ RN ,

with equality if and only if z1 = z2, from (2.7) we have I∗ = 0. Therefore log v
u = ci on Si,

which is a contradiction.

Below we show that (2.7) holds. Indeed, if the domain G is bounded then supp(ξ) b S and
one simply chooses θ ≡ 1 on Ḡ and θ ≡ 0 on RN \ Ḡ. Then (2.6) implies that I∗ ≤ 0.

Now let G be an unbounded domain. Let θn satisfies condition (S). Then supp(θn) ∩
supp(ξ) 6= ∅ for n large enough and from (2.6) we have

Iθn ≤
∫

G
R(θnv, v) dx → 0 as n →∞.

So the assertion follows.
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The proof of the following lemma follows closely the arguments in [5, Lemma 2.9].

Lemma 2.2. Let v be a sub-solution to (2.2). Then v+ is a sub-solution to (2.2).

Proof. For any ε > 0 define vε = (v2 + ε2)1/2. Then 0 < vε ∈ W 1,p
loc (G) and by the Lebesgue

dominated convergence theorem, vε converges to |v| in W 1,p
loc (G). Let 0 ≤ φ ∈ W 1,p

loc (G) ∩ C(G).
A direct computation shows that

∇vε · ∇φ = ∇v · ∇
(

v

vε
φ

)
− v2

ε − v2

v3
ε

φ |∇v|2,

which implies that ∇vε · ∇φ ≤ ∇v · ∇
(

v
vε

φ
)
. Set φε = 1

2

(
1 + v

vε

)
φ. It follows that

1
2
∇(v + vε) · ∇φ =

1
2

(∇v · ∇φ +∇vε · ∇φ) ≤ ∇v · ∇φε. (2.8)

Testing (2.2) against φε and using (2.8) we derive

0 ≥
∫

G
|∇v|p−2∇v · ∇φε dx−

∫

G
V |v|p−2vφε dx

≥
∫

G
|∇v|p−2∇1

2
(v + vε) · ∇φ dx−

∫

G
V |v|p−2vφε dx. (2.9)

Notice that 1
2(v + vε) → v+ and φε → χ{v+>0}φ a.e. in G as ε → 0. Letting ε → 0 in (2.9) we

infer that ∫

G
|∇(v+)|p−2∇(v+) · ∇φdx−

∫

G
V (v+)p−1φdx ≤ 0,

which completes the proof.

We establish the Weak Maximum Principle for super-solutions to (2.2) as a corollary of the
Comparison Principle and Lemma 2.2.

Proposition 2.3 (Weak Maximum Principle). Let ∂G 6= ∅. Assume that (2.2) admits a positive
super-solution 0 < φ ∈ W 1,p

loc (G)∩C(Ḡ). Let u ∈ W 1,p
loc (G)∩C(Ḡ) be a super-solution to equation

(2.2) such that u ≥ 0 on ∂G. For an unbounded G assume in addition that u− satisfies condition
(S). Then u ≥ 0 in G.

Proof. By Proposition 2.2 observe that u− ∈ W 1,p
loc (G) ∩ C(Ḡ) is a sub-solution to (2.2) and

u− = 0 on ∂G. Thus u− ≤ εφ on ∂G, for any ε > 0. By Theorem 2.1, we conclude that
u− ≤ εφ in G for an arbitrary small ε > 0. Hence u− = 0 in G.

Remark 2.4. After examples constructed in [16, 21] (see also discussions in [23, 46]) it is
known that the form EV is nonconvex as soon as p 6= 2 and the potential V has a nontrivial
’negative’ part V +, even if EV is nonnegative and admits representation (A.1) with respect to a
positive super-solution of (2.3). One of consequences of this fact is that the assumption f ≥ 0
in Theorem 2.1 can not be removed, otherwise the comparison principle fails.
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Positive solution between sub- and super-solutions. We show that the existence of a
positive super-solution to nonlinear equation (1.1) implies the existence of a positive solution
to (1.1). The following result on bounded domains is standard.

Lemma 2.5. Let µ ≤ CH and G ⊂ Bc
1 be a bounded smooth domain. Let v, u ∈ W 1,p(G)∩C(Ḡ)

be a sub- and super-solution to (1.1) in G, respectively. Assume that 0 < v ≤ u in Ḡ. Then
there exists a solution w ∈ W 1,p(G) ∩ C(Ḡ) to (1.1) in G, so that v ≤ w ≤ u in G and w = v
on ∂G.

Proof. The proof is a standard consequence of the comparison principle and monotone iterations
scheme (cf. [18, 46] for similar results). We omit the details.

By means of the standard digitalization techniques Lemma 2.5 extends to the following.

Proposition 2.6. Let µ ≤ CH . Assume that (1.1) has a positive super-solution in Bc
1. Then

(1.1) has a positive solution in Bc
1.

Proof. Let u > 0 be a super-solution to (1.1). Set v = crγ− and observe that

−∆pv − µ

|x|p vp−1 = 0 in Bc
1,

so v > 0 is a sub-solution to nonlinear equation (1.1) in Bc
1. By Proposition C.1, v satisfies

condition (S). Choose c in such a way that u ≥ cv for |x| = 2. Thus Theorem 2.1 implies that
u ≥ v in Bc

2. By Lemma 2.5, for each n ≥ 3 there exists a solution wn ∈ W 1,p(A2,n) to (1.1) in
A2,n such that

v ≤ wn ≤ u in A2,n, wn = v on ∂A2,n. (2.10)

By Corollary A.6, we conclude that there exists a constant Mn > 0 such that

||∇wn+1||Lp(A3,n) ≤ Mn, ∀n ≥ 4. (2.11)

Using (2.11) and (2.10), one can proceed following the standard digitalization techniques in
order to construct a solution to (1.1) with the required properties.

3 Hardy inequalities and positive super-solutions

One of the crucial components in our proof of Theorem 1.1 is an improved Hardy inequality on
exterior domains. Inequalities of this type were recently obtained by several authors using vari-
ous techniques, see [2, 3, 7, 20, 24]. Here we give a simple proof of an improved Hardy inequality
on exterior domains for all p > 1 and N ≥ 2, which is based on the explicit construction of
appropriate super- and sub-solution and inequality (A.1).

Throughout the paper we use the notation γ∗ := p−N
p and

CH :=
∣∣∣∣
p−N

p

∣∣∣∣
p

, C∗ :=





p−1
2p

∣∣∣N−p
p

∣∣∣
p−2

, N 6= p,
(

N−1
N

)N
, N = p,

m∗ :=
{

2, N 6= p,
N, N = p.

(3.1)

Recall that, according to Proposition A.2 the existence of a positive super-solution to the
equation

−∆pu− µ

|x|p up−1 − ε

|x|p logm∗ |x|u
p−1 = 0 in Bc

ρ, (3.2)
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with some ρ > 1, implies that the form

Eµ,ε(u) =
∫

G
|∇u|pdx− µ

∫

G

up

|x|p dx− ε

∫

G

|u|p
|x|p logm∗ |x|dx,

is nonnegative for all u ∈ W 1,p
c (Bc

ρ) ∩ C(Bc
ρ)). Thus, in order to prove an improved Hardy

inequality it is sufficient to find a super-solution for the corresponding equation. The idea to
use Picone’s identity for proving Hardy type inequalities related to p-Laplace operator goes back
to [6], see also [1, 2]. However, as discovered in [22], such a technique can be in fact attributed
as far as to an 1907’s paper by Boggio [11].

Theorem 3.1 (Improved Hardy Inequality). For every p > 1 there exists ρ ≥ 1 such that
∫

Bc
ρ

|∇v|pdx ≥ CH

∫

Bc
ρ

|v|p
|x|p dx + C∗

∫

Bc
ρ

|v|p
|x|p logm∗ |x|dx, (3.3)

for all v ∈ W 1,p
c (Bc

ρ) ∩ C(Bc
ρ). The constants CH and C∗ are sharp in the sense that the

inequality
Eµ,ε(v) ≥ 0, ∀ v ∈ W 1,p

c (Bc
ρ) ∩ C(Bc

ρ),

fails in any of the following two cases:

(i) µ = CH , ε > C∗,

(ii) µ > CH , ε ∈ R.

Proof. Lemma B.1 for p 6= N and a direct computation for p = N show that the function

φ(r) = rγ∗(log r)β(log log r)τ ,





β = 1
p , τ ∈

(
0, 2

p

)
for p 6= N,

β = N−1
N , τ = 0 for p = N.

is a super-solution to equation (3.2) with µ = CH and ε = C∗ in Bc
ρ with some ρ > 1. Thus

(3.3) follows immediately from Proposition A.2.

Sharpness of the constants. (i) Define

φ(r) = rγ∗(log r)β(log log r)τ ,





β = 1
p , τ ∈

(
−1

p , 0
)

for p 6= N,

β = N−1
N , τ = 0 for p = N.

By Lemma B.1 (ii) one can choose ρ > 11 such that φ is a sub-solution with µ = CH and ε = C∗
in Bc

ρ. Let R > ρ. Following [3], we define the cut-off function

θR(t) :=





2t/ρ− 3, 3
2ρ ≤ t ≤ 2ρ,

1 2ρ ≤ t ≤ R,

log R2

t
log R , R ≤ t ≤ R2.

(3.4)

Below we show that for any ε > 0,

ECH ,C∗+ε(φ θα
R) → −∞ as R →∞,
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where α = 1 if p ≥ 2, and α > 2
p if p < 2. By Proposition A.2 and using (C.5), (C.6), (C.7) we

obtain
ECH ,C∗(φ θα

R) ≤ c1 + c2

∫

AR,R2

R(θα
R φ, φ) dx ≤ c3. (3.5)

Further, it is easy to see that
∫

A 3
2 ρ,R2

|φ θα
R|p

|x|p logm∗ |x|dx ≥
∫ R

2ρ

(log log r)τp

r log r
dr = c4(log log R)τp+1 − c5.

Thus for any ε > 0 we arrive at

ECH ,C∗+ε(φ θα
R) = ECH ,C∗(φ θα

R)− ε

∫

Bc
3
2 ρ

|φ θα
R|p

|x|p log2 |x|dx → −∞ as R →∞.

(ii) Choosing φ(r) = rγ∗ as a sub-solution to (3.2) with µ = CH and ε = C∗ in Bc
2, one can

verify that (3.3) with µ > CH and any ε ∈ R fails on the family of functions φθR defined as
above.

As a consequence of the last theorem we obtain the following nonexistence result, which is
crucial in our proofs of nonexistence of positive super-solutions to nonlinear equation (1.1).

Corollary 3.2. Equation (3.2) admits positive super-solutions in Bc
ρ with some ρ > 1 if and

only if µ < CH and ε ∈ R, or µ = CH and ε ≤ C∗.

Remark 3.3. Equation (3.2) with ε 6= 0 is not homogeneous with respect to scaling, i.e. the
existence of a positive (super) solution in Bc

ρ with ρ > 1 does not imply the existence of positive
(super) solution in Bc

1 and so the value of the radius ρ > 1 becomes essential.

Next we describe the behavior at infinity of positive super-solutions to equation (3.2) in the
case when µ ≤ CH and ε ∈ [0, C∗). For ε ∈ [0, C∗), denote by β− < β+ the real roots of the
equation

1
2 |γ∗|p−2(p− 1)(2− βp)β = ε if p 6= N,

(N − 1)(1− β)βN−1 = ε if p = N.
(3.6)

Notice that 0 ≤ β− < 1
p < β+ ≤ 2

p if p 6= N and 0 ≤ β− < N−1
N < β+ ≤ 1 if p = N .

Theorem 3.4 (Lower bound). Let u > 0 be a super-solution to (3.2) in Bc
ρ. The following

assertions are valid.

(i) Let µ ≤ CH , ε = 0. There exists c > 0 such that

u ≥ c|x|γ− , x ∈ Bc
2ρ.

(ii) Let µ = CH , ε = 0. There exists c > 0 such that

u ≥ c|x|γ∗ , x ∈ Bc
2ρ.

(iii) Let µ = CH , ε ∈ (0, C∗). For every τ < 0 there exists c > 0 such that

u ≥ c|x|γ∗(log |x|)β−(log log |x|)τ , x ∈ Bc
2ρ.

Proof. Follows from Theorem 2.1 and small sub-solutions estimates in Proposition C.1.
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The next lemma establishes a Phragmén–Lindelöf type upper bound on super-solutions.

Theorem 3.5 (Upper bound). Let u > 0 be a super-solution to (3.2) in Bc
ρ. The following

assertions are valid.

(i) Let µ < CH , ε = 0. There exists c > 0 such that

inf
SR

u ≤ cRγ+ , R > 2ρ.

(ii) Let µ = CH , ε = 0. There exists c > 0 such that

inf
SR

u ≤ cRγ∗(log R)β∗ , R > 2ρ,

where β∗ = 2
p for p 6= N or β∗ = 1 for p = N .

(iii) Let µ = CH , 0 < ε < C∗. For every β ∈ (β+, β∗) there exists c > 0 such that

inf
SR

u ≤ cRγ∗(log R)β, R > 2ρ.

Proof. Let v > 0 be a large sub-solution to (3.2), that is a positive sub-solution to (3.2) that
satisfies the boundary condition v = 0 on Sρ, as constructed in Appendix D. We are going to
show that

inf
SR

u ≤ c sup
SR

v, R > 2ρ. (3.7)

For a contradiction, assume that for an arbitrary large c > 0 there exists R > 2ρ so that u ≥ cv
on SR. Thus

u− cv ≥ 0 on ∂Aρ,R.

Then Theorem 2.1, applied on Aρ,R yields

u− cv ≥ 0 on Aρ,R.

In particular, this implies that
u(x) ≥ cv(x), x ∈ S2ρ.

But this contradicts to the continuity of u.
Now the assertions (i)-(iii) follow from (3.7) via Theorems D.1 and D.2.

4 Proof Theorem 1.1

First, we prove the nonexistence of positive super-solutions to (1.1) in the super-homogeneous
case q ≥ p − 1 and sub-homogeneous case q < p − 1. After this we show sharpness of our
nonexistence results by constructing explicit super-solutions in all complementary cases.

4.1 Nonexistence: super-homogeneous case q ≥ p− 1

We distinguish between the cases µ < CH and µ = CH .
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Case µ < CH . First we prove the nonexistence of super-solutions in the subcritical case, i.e.
when (q, σ) is below the critical line Λ∗.

Proposition 4.1. Let σ < γ−(q − p + 1) + p. Then (1.1) has no positive super-solution in Bc
1.

Proof. Let u > 0 be a super-solution to (1.1) in Bc
1. Then u is a super-solution to the homoge-

neous equation
−∆pu− µ

|x|p up−1 = 0 in Bc
1. (4.1)

By Theorem 3.4(i) we conclude that u ≥ c1|x|γ− in Bc
2. Thus from equation (1.1) it follows that

u > 0 is a super-solution to

−∆pu− µ + W (x)
|x|p up−1 = 0 in Bc

2, (4.2)

where
W (x) := C|x|p−σuq−(p−1) ≥ Cc

q−(p−1)
1 |x|γ−(q−p+1)+p−σ,

with γ−(q − p + 1) + p− σ > 0. Then the assertion follows by Corollary 3.2.

Next we prove the nonexistence in the critical case, i.e. when (q, σ) belongs to the critical
line Λ∗.

Proposition 4.2. Let σ = γ−(q − p + 1) + p. Then (1.1) has no positive super-solution in Bc
1.

Proof. Let u > 0 be a super-solution to (1.1) in Bc
1. Arguing as in the proof above, we conclude

that u is a super-solution to (4.2), where

W (x) := C|x|p−σuq−(p−1) ≥ Cc
q−(p−1)
1 |x|γ−(q−p+1)+p−σ = c.

Thus u > 0 is a super-solution to the homogeneous equation

−∆pu− µ̃

|x|p up−1 = 0 in Bc
2, (4.3)

where µ̃ = µ + c. Without loss of generality, we may assume that µ̃ < CH . Then by Theo-
rem 3.4(i) we conclude that u ≥ c2|x|γ̃− in Bc

2, with γ̃− ∈ (γ−, γ∗). Therefore u is a super-solution
to (4.2) with

W (x) ≥ Cc
q−(p−1)
2 |x|γ̃−(q−p+1)+p−σ

and γ̃−(q − p + 1) + p− σ > 0. Then the assertion follows by Corollary 3.2.

Case µ = CH . In this case the proof of the nonexistence can be performed in one step for
both subcritical and critical cases.

Proposition 4.3. Let σ ≤ γ∗(q − p + 1) + p. Then (1.1) has no positive super-solution in Bc
1.

Proof. Let u > 0 be a super-solution to (1.1) in Bc
1. Then u is a super-solution to

−∆pu− CH

|x|p up−1 = 0 in Bc
1. (4.4)

By Theorem 3.4(ii) we conclude that u ≥ c|x|γ∗ in Bc
2. So u is a super-solution to

−∆pu− CH + W (x)
|x|p up−1 = 0 in Bc

2, (4.5)

where
W (x) := C|x|p−σuq−(p−1) ≥ Ccq−(p−1)|x|γ∗(q−p+1)+p−σ,

with γ∗(q − p + 1) + p− σ ≥ 0. Then the assertion follows by Corollary 3.2.
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4.2 A nonlinear lower bound

We will use the comparison principle (Theorem 2.1 in order to establish the following lower
bound on positive solutions to nonlinear equation (1.1) in the sub-homogeneous case q < p− 1.

Lemma 4.4. Let q < p − 1. Let u > 0 be a solution to (1.1) in Bc
1. Then there exists c > 0

such that
u ≥ c|x|

σ−p
q−(p−1) in Bc

2. (4.6)

Proof. Let u > 0 be a solution to (1.1) in Bc
1. Let x = Ry with y ∈ A2,R and R ≥ 1. Set

vR(y) := R
− σ−p

q−(p−1) u(Ry).

Then vR(y) satisfies

−∆pvR − µ

|y|p vR
p−1 =

C

|y|σ vR
q in A2,4. (4.7)

Let λ1 > 0 be the principal eigenvalue and φ1 > 0 be the principal eigenfunction to the
eigenvalue problem

−∆pφ− µ

|y|p φp−1 = λφ, φ ∈ W 1,p
0 (A2,4),

see [23]. By the direct computation, τ0φ1 is a sub-solution to (1.1) for a sufficiently small τ0 > 0.
Therefore, Theorem 2.1 implies that

vR ≥ τ0φ1 in A2,4.

So, lower bound (4.6) follows.

4.3 Nonexistence: sub-homogeneous case q < p− 1

As before, we distinguish the cases µ < CH and µ = CH .

Case µ < CH . First we consider the subcritical case, when (q, σ) is below to the critical line
Λ∗.

Proposition 4.5. Let σ < γ+(q − p + 1) + p. Then (1.1) has no positive super-solution in Bc
1.

Proof. Let u > 0 be a super-solution to (1.1) in Bc
1. According to Lemma 2.6, we may assume

that u is a solution to (1.1) in Bc
1. Then u is a super-solution to the homogeneous equation

−∆pu− µ

|x|p up−1 = 0 in Bc
1. (4.8)

By Theorem 3.5(i) we conclude that

inf
SR

u ≤ c1R
γ+ , R > 2. (4.9)

Since γ+ < σ−p
q−(p−1) this contradicts to lower bound (4.6).

Next we prove the nonexistence in the critical case. When (q, σ) belongs to the critical line
Λ∗, (4.9) is no longer incompatible with (4.6), so we need to improve estimate (4.9).

Proposition 4.6. Let σ = γ+(q − p + 1) + p. Then (1.1) has no positive super-solution in Bc
1.

15



Proof. Let u > 0 be a super-solution to (1.1) in Bc
1. According to Lemma 2.6, we may assume

that u is a solution to (1.1) in Bc
1. Using (4.6) we conclude that u > 0 is a solution to

−∆pu− µ + W (x)
|x|p up−1 = 0 in Bc

1, (4.10)

where W (x) := C|x|p−σuq−(p−1) ∈ L∞(Bc
2). Thus the strong Harnack Inequality (2.4) combined

with upper bound (4.9) implies that

sup
AR/2,R

u ≤ CS inf
AR/2,R

u ≤ cRγ+ , R > 4,

and hence W (x) ≥ c1 in Bc
4, for some c1 > 0. Therefore u > 0 is a super-solution to

−∆pu− µ̃

|x|p up−1 = 0 in Bc
4, (4.11)

where µ̃ = µ + ε with 0 < ε < c1 small enough. Without loss of generality we may assume
that µ̃ < CH . Then by Theorem 3.4(i) we conclude that infSR

u ≤ cRγ̃+ for all R > 4, where
γ̃+ ∈ (γ∗, γ+) is the largest root of the equation (B.3) with µ̃ in place of µ. This improved
estimate contradicts to lower bound (4.6).

Case µ = CH . First we prove the nonexistence in the subcritical case, when (q, σ) is below to
the critical line Λ∗.

Proposition 4.7. Let σ < γ∗(q − p + 1) + p. Then (1.1) has no positive super-solution in Bc
1.

Proof. We start as in the proof of Proposition 4.5 with CH in place of µ in (4.8). By Theorem
3.5(ii) we conclude that

inf
SR

u ≤ cRγ∗(log R)β∗ , R > 2, (4.12)

where β∗ = 1 for p = N and β∗ = 2
p for p 6= N . This contradicts to lower bound (4.6).

Now we consider the critical case, i.e. when (q, σ) belongs to the critical line Λ∗. We need
to distinguish between the cases q > −1 and q = 1.

Proposition 4.8. Let q ∈ (−1, p − 1) and σ = γ∗(q − p + 1) + p. Then (1.1) has no positive
super-solution in Bc

1.

Proof. We start as in Proposition 4.6 with CH in place of µ in (4.10). The strong Harnack
Inequality (2.4) and upper bound (4.12) imply that

sup
AR/2,R

u ≤ CS inf
AR/2,R

u ≤ cRγ∗(log R)β∗ , R > 4. (4.13)

We conclude that
W (x) ≥ ε(log |x|)β∗(q−p+1) in Bc

4,

for some ε > 0. Hence u > 0 is a super-solution to the equation

−∆pu− CH

|x|p up−1 − ε(log |x|)t

|x|p logm∗ |x|u
p−1 = 0 in Bc

4, (4.14)

where t := β∗(q − p + 1) + m > 0. So, the assertion follows by Corollary 3.2.
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In the ’double critical’ case q = −1 equation (4.14) does not directly lead to the nonexistence,
because t = 0. So we need to improve estimate (4.13).

Proposition 4.9. Let q = −1 and σ = γ∗(q − p + 1) + p. Then (1.1) has no positive super-
solution in Bc

1.

Proof. Arguing as in the proof of Proposition 4.8, we conclude that u > 0 is a super-solution to
the equation (4.14) with t=0. We may assume that ε1 < C∗. Then using Lemma 3.5(iii) and
applying the strong Harnack inequality to equation (4.14), we conclude that

sup
AR/2,R

u ≤ CS inf
AR/2,R

u ≤ cRγ∗(log R)β, R > 2ρ, (4.15)

where β ∈ (β+, β∗) and ρ > 4. Therefore u > 0 is a super-solution to the equation

−∆pu− CH

|x|p up−1 − W (x)
|x|p logm∗ |x|u

p−1 = 0 in Bc
2ρ,

where
W (x) := C|x|p−N logm∗ |x|u−p ≥ c(log |x|)2−βp in Bc

2ρ.

Hence, the assertion follows by Corollary 3.2.

This completes the description of the nonexistence region N and the proof of the nonexis-
tence part of Theorem 1.1. Next we show that the established nonexistence results are sharp.

4.4 Existence

As soon as the nonexistence region N is described, the construction of explicit super-solutions
in its complement is straightforward.

Case µ < CH . Let (q, σ) ∈ R2 \ N . Choose γ ∈ (γ−, γ+) such that




γ− < γ < σ−p
q−p+1 if q > p− 1,

σ−p
q−p+1 < γ < γ+ if q < p− 1,

γ− < γ < γ+ if q = p− 1.

Then one can verify directly that the functions u = τrγ are super-solutions to (1.1) in Bc
ρ for

an appropriate choice of τ > 0 and ρ ≥ 1.

Case µ = CH . Let (q, σ) ∈ R2 \ N . For p = N , choose β ∈ (0, 1) such that
{

0 < β < 1 if σ > N, q ∈ R,
N

N−1−q < β < 1 if σ = N, q < −1.

Then one can verify directly that the functions u = τ logβ r are super-solutions to (1.1) in Bc
ρ

for an appropriate choice of τ > 0 and ρ > 1.
For p 6= N , choose β ∈ (0, 2/p) such that

{
0 < β < 2

p if σ > Λ∗(q), q ∈ R,

− 2
q−p+1 < β < 2

p if σ = γ∗(q − p + 1) + p, q < −1.
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Then (B.6) implies that the function u = τrγ∗(log r)β satisfies

−∆pu− CH

|x|p up−1 ≥ ε

|x|p log2 |x|u
p−1 ≥ C

|x|σ uq in Bc
ρ, (4.16)

where ε = β(p − 1)(2 − βp)/2 ∈ (0, C∗) and τ > 0, ρ > 1 are chosen appropriately. This
completes the proof of Theorem 1.1.

A Picone’s identity and corollaries

We say that the form EV is positive definite if

EV (u) > 0, ∀ u ∈ W 1,p
c (G) ∩ C(G), u 6= 0.

Below we describe the relation between the positivity of the form EV and the existence of positive
super-solutions to the equation (2.3). In the linear case p = 2 such a relation is well-documented,
see e.g. [4]. We start with formulating the well–known Picone’s Identity for p-Laplacian (see
e.g. [6, 17, 42]).

Proposition A.1 (Picone’s Identity). Let w, φ ∈ W 1,p
loc (G)∩C(G) be such that w ≥ 0 and φ > 0.

Set

L(w, φ) := |∇w|p + (p− 1)
(

w

φ

)p

|∇φ|p − p

(
w

φ

)p−1

∇w|∇φ|p−2∇φ,

R(w, φ) := |∇w|p −∇
(

wp

φp−1

)
|∇φ|p−2∇φ.

Then L(w, φ) = R(w, φ) ≥ 0 a.e. in G. Moreover, L(w, φ) = R(w, φ) = 0 a.e. in G if and only
if w = cφ in G for a constant c > 0.

An immediate consequence of Picone’s identity is that the existence of a positive super-
solution to (2.3) implies positivity of the form EV , as the following proposition shows.

Proposition A.2. Let φ > 0 be a super-solution (sub-solution) to equation (2.3). Then the
form EV satisfies the following inequality

EV (u) ≥ (≤)
∫

G
R(u, φ) dx +

∫

G

f

φp−1
|u|p dx, ∀ u ∈ W 1,p

c (G) ∩ C(G). (A.1)

Proof. Let φ > 0 be a super-solution (sub-solution) to (2.3). Testing (2.3) by ξ = |u|p
φp−1 ∈

W 1,p
c (G) ∩ C(G) we obtain
∫

G
V up dx ≤ (≥) p

∫

G

u∇φ

φ

∣∣∣∣
u∇φ

φ

∣∣∣∣
p−2

∇u dx− (p− 1)
∫

G
|∇φ|p

∣∣∣∣
u

φ

∣∣∣∣
p

dx−
∫

G

f

φp−1
|u|p dx,

which implies (A.1).

Remark A.3. (i) If φ > 0 is a super-solution to (2.3) then R(u, φ) ≥ 0 a.e. in G and, in
particular,

EV (u) ≥
∫

G

f

φp−1
|u|p dx ≥ 0, ∀ u ∈ W 1,p

c (G) ∩ C(G).

If, in addition, f > 0 then

EV (u) > 0, ∀ u ∈ W 1,p
c (G) ∩ C(G), u 6= 0.

(ii) If φ > 0 is a solution to (2.3) then inequality (A.1) becomes an identity.
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The following straightforward corollary of Proposition A.2 is our main tool in proving nonex-
istence of positive solutions to nonlinear equation (1.1).

Corollary A.4 (Nonexistence principle). Assume that there exists u ∈ W 1,p
c (G) ∩ C(G) such

that EV (u) < 0. Then equation (2.2) has no positive super-solution.

Another interesting application of Proposition A.2 is a version of Barta’s inequality (cf. [6]).

Corollary A.5 (Barta’s inequality). Assume that equation (2.2) admits a positive super-solu-
tion. Then for every 0 < ϕ ∈ W 1,p

loc (G)∩C(G) such that −∆pϕ−V ϕp−1 ∈ L1
loc(G) the following

inequality holds

inf
x∈G

−∆pϕ− V ϕp−1

ϕp−1
≤ inf

0�u∈W 1,p
c ∩C(G)

∫
G(|∇u|p − V up)dx∫

G up dx
. (A.2)

Proof. Set F (x) := −∆pϕ−V ϕp−1 ∈ L1
loc(G). We may assume that F ≥ 0 (otherwise inequality

(A.2) is trivial). Proposition A.2 implies that

EV (u) ≥
∫

G

F

ϕp−1
updx ≥ inf

x∈G

F

ϕp−1

∫

G
updx, ∀ u ∈ W 1,p

c (G) ∩ C(G).

So the assertion follows.

We need the following version of the Caccioppoli inequality, which is a consequence of
Proposition A.2.

Corollary A.6 (Caccioppoli-type Inequality). Let u > 0 be a sub-solution to (2.2). Then
∫

G
|θ∇u|pdx ≤ p

∫

G
V up|θ|pdx + pp

∫

G
up|∇θ|pdx, ∀ θ ∈ W 1,∞

c (G). (A.3)

Proof. From (A.1) we have

EV (uθ) ≤
∫

G
|∇(uθ)|pdx− p

∫

G
θ∇u |θ∇u|p−2∇(uθ) dx + (p− 1)

∫

G
|θ∇u|pdx

≤
∫

G
|∇(uθ)|pdx + p

∫

G
|θ∇u|p−1u|∇θ| dx−

∫

G
|θ∇u|pdx.

Using the Young’s Inequality and (2.1) we obtain
∫

G
|θ∇u|pdx ≤

∫

G
V up|θ|pdx + pp−1

∫

G
|u∇θ|pdx +

p− 1
p

∫

G
|θ∇u|pdx,

so the assertion follows.

B Sample sub- and super-solutions

Below we construct explicit super- and sub-solutions to the homogeneous equation of the form

−∆pu− µ

|x|p up−1 − ε

|x|p logm∗ |x|u
p−1 = 0 in Bc

ρ, (B.1)

where ρ ≥ 2. In what follows we assume that µ ≤ CH and ε ∈ [0, C∗), where CH , C∗ and m∗ are
defined in (3.1). When u is radially symmetric we loosely write u(|x|) = u(r) instead of u(x).
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In this case in the polar coordinates (r, ω) on RN equation (B.1) transforms into the ordinary
differential equation

−r1−N (rN−1|ur|p−2ur)r − µ

rp
up−1 − ε

rp logm∗ r
up−1 = 0 (r > ρ). (B.2)

Let µ ≤ CH . Set γ∗ := p−N
p . By γ− ≤ γ+ we denote the real roots of the equation

−γ|γ|p−2 (γ(p− 1) + N − p) = µ. (B.3)

If µ < CH then γ− < γ∗ < γ+. If µ = CH then γ± = γ∗. It is straightforward to see
that if µ ≤ CH and ε = 0 then the function u = rγ is a sub-solution to equation (B.2) if
γ ∈ (−∞, γ−] ∪ [γ+, +∞) and a super-solution if γ ∈ [γ−, γ+].

Let p = N and ε ∈ [0, C∗]. Then β− ≤ β+ denote the real roots of the equation

βN−1(1− β)(N − 1) = ε. (B.4)

Notice that 0 ≤ β− ≤ N−1
N ≤ β+ ≤ 1. It is simple to verify that the function u := logβ r is a

sub-solution to (B.2) if β ∈ (−∞, β−] ∪ [β+,+∞) and a super-solution if β ∈ [β−, β+].
When p 6= N , µ = CH and ε ∈ [0, C∗] the situation becomes more delicate. We denote by

β− ≤ β+ the real roots of the equation

1
2
|γ∗|p−2(p− 1)(2− βp)β = ε, (B.5)

If ε < C∗ then 0 ≤ β− < 1
p < β+ ≤ 2

p . If ε = C∗ then β− = β+ = 1
p .

Lemma B.1. Let p 6= N , µ = CH and ε ∈ [0, C∗]. Let uβ,τ (r) := rγ∗(log r)β(log log r)τ , where
β ≥ 0 and τ ∈ R. The following assertions are valid.

(i) Let ε ∈ [0, C∗). Then there exists ρ = ρ(p,N, β, τ) > 1 such that

(a) uβ,τ is a super-solution to (B.2) if β ∈ (β−, β+) and a sub-solution if β < β− or
β > β+;

(b) uβ−,τ is a super-solution to (B.2) if τ > 0 and a sub-solution if τ < 0;
(c) uβ+,τ is a super-solution to (B.2) if τ < 0 and a sub-solution if τ > 0;
(d) uβ±,0 is a super-solution to (B.2) if p ∈ (1, 2] ∪ (N,+∞) and a sub-solutions if

p ∈ [2, N).

(ii) Let ε = C∗. Then there exists ρ = ρ(p,N, β, τ) > 1 such that

(a) uβ,τ is a sub-solution to (B.2) if β 6= 1/p;
(b) u1/p,τ is a super-solution to (B.2) if τ ∈ (0, 2

p) and a sub-solution if τ < 0 or τ > 2/p;
(c) u1/p,0 is a super-solution to (B.2) if p ∈ (1, 2] ∪ (N, +∞) and a sub-solution if p ∈

[2, N).

Proof. Observe that for every β, τ ∈ R there exists ρ > 2 such that ur does not change sign on
(ρ,∞). Then a direct computation similar to [40, Lemmas 2.1, 2.2] verifies that

−∆p uβ,τ =
|γ∗|p−2

rp
up−1

(
|γ∗|2 +

β(p− 1)(2− βp)
2

1
log2 r

+ τ(p− 1)(1− βp)
1

log2 r log log r
+

τ(p− 1)(2− τp)
2

1
log2 r log log2 r

+
p(p− 1)(p− 2)

3(N − p)
β2(βp− 3)

1
log3 r

+ R(r)
)

, (B.6)
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Sub-solution Super-solution Sub-solution

p = N , ε = 0 β ≤ β− , τ = 0 β ∈ [β−, β+], τ = 0 β ≥ β+ , τ = 0
p 6= N , ε = 0 β ≤ 0 , τ = 0 β ∈ [0, 2/p], τ = 0 β > 2/p , τ = 0

β = 2/p , τ > 0
p 6= N , ε ∈ (0, C∗) β < β− , τ = 0 β ∈ (β−, β+), τ = 0 β > β+ , τ = 0

β = β− , τ < 0 β = β−, τ > 0 or β = β+, τ < 0 β = β+ , τ > 0
p 6= N , ε = C∗ β < 1/p , τ = 0 β > 1/p , τ = 0

β = 1/p , τ < 0 β = 1/p , τ ∈ (0, 2/p) β = 1/p , τ > 2/p

Table 1: Case µ = CH . Properties of uβ,τ = rγ∗(log r)β(log log r)τ , for a large ρ > 1.

where

R(r) = O

(
1

log3 r log log r
+

1
log4 r

)
as r →∞.

The rest of the proof is straightforward.

Remark B.2. Table 1 summarizes some values of the parameters β, τ ∈ R which make the
function uβ,τ = rγ∗(log r)β(log log r)τ a sub- or super-solution to (B.2) with µ = CH and
ε ∈ [0, C∗], for a sufficiently large radius ρ > 1. Observe that the radius ρ > 1 depends on the
data and, in general, can not be determined explicitly. Similar calculations with τ = 0 were
provided in [40, 41] for interior domains.

C Small sub-solutions

A small (sub) solution to equation (B.1) is a (sub) solution v > 0 to (B.1) that satisfies the
condition:

(S) there exists a sequence (θn) ∈ W 1,∞
c (RN ) such that θn → 1 a.e. in Rn and

∫

Bc
ρ

R(θnv, v) dx → 0 as R → +∞,

where R(w, v) = |∇w|p−∇ (
wp

vp−1

) |∇v|p−2∇v is defined as in Proposition A.1. In order to apply
Theorem 2.1 to equation (B.1) we need to verify that (B.1) has small sub-solutions, which is
done in the following proposition.

Proposition C.1. Set v = rγ(log r)β(log log r)τ . The following assertions are valid.

(i) Let γ ≤ γ∗, β = 0, τ = 0. Then v is a small sub-solution to (B.1) with µ ≤ CH and ε = 0;

(ii) Let p 6= N , γ = γ∗, β = 1/p, τ < 0. Then v is a small sub-solution to (B.1) with µ = CH

and ε ∈ (0, C∗);

(iii) Let p = N , γ = γ∗, β = N−1
N , τ < 0. Then v is a small sub-solution to (B.1) with µ = 0

and ε ∈ (0, C∗).
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Proof. Lemma B.1 in case (ii) and direct computations in cases (i), (iii) show that v is a sub-
solution to (B.1) for corresponding µ and ε. Below we show that

∫
Bc

ρ
R(θα

Rv, v) dx → 0 as

R → +∞, where θR ∈ C1,1(0,∞) is defined by

θR(r) :=





1, 0 ≤ r ≤ R,

log R2

r
log R , R ≤ r ≤ R2,

0, r ≥ R,

and α ≥ 1 will be chosen later. By Proposition A.1, for R > ρ we have
∫

Bc
ρ

R(θα
Rv, v) dx =

∫

Aρ,R

R(θα
Rv, v) dx +

∫

AR,R2

R(θα
Rv, v) dx

=
∫

Aρ,R

R(v, v) dx +
∫

AR,R2

R(θα
Rv, v) dx

= cN

∫ R2

R
R(θα

Rv, v)rN−1dr

Below we estimate the latter integral.

(i) Using the inequalities (see, e.g., [42, Lemma 7.4] )

R(θRv, v) ≤ c1|θRv′r|p−2|v(θR)′r|2 + c2|v (θR)′r|p, (p > 2), (C.1)
R(θRv, v) ≤ c3|v (θR)′r|p, (1 < p ≤ 2), (C.2)

we obtain directly that there exists c > 0 such that

∫ R2

R
R(θRv, v)rN−1dr ≤ c

Rγp+N−p

(log R)p
. (C.3)

(ii) Set Q(r) := −γ∗ log r log log r − β log log r − τ. Then direct computations give

R(θα
Rv, v) =

(log r)(β−1)p(log log r)(τ−1)p

rN (log R)αp

(
log

R2

r

)αp−p

Qp(r)×

×
{∣∣∣∣ log

R2

r
+ α

log r log log r

Q(r)

∣∣∣∣
p

−
(

log
R2

r

)p−1 (
log

R2

r
+ αp

log r log log r

Q(r)

)}
.

Let p ≥ 2. Choose α = 1. We use the inequality (see, e.g., [42, Lemma 7.4])

|z1 + z2|p − |z1|p − p|z1|p−2z1z2 ≤ p(p− 1)
2

(|z1|+ |z2|)p−2 |z2|2, ∀z1, z2 ∈ R (C.4)

with

z1 = log
R2

r
, z2 =

log r log log r

Q(r)

to obtain that

R(θRv, v) ≤ c
(log r)(β−1)p+2(log log r)(τ−1)p+2

rN logp R
Qp−2(r)

∣∣∣∣log
R2

r
+

log r log log r

Q(r)

∣∣∣∣
p−2

= c
(log r)(β−1)p+2(log log r)(τ−1)p+2

rN logp R

∣∣∣∣Q(r) log
R2

r
+ log r log log r

∣∣∣∣
p−2

.

22



Thus we arrive at
∫

AR,R2

R(θRv, v) dx ≤ c

log2 R

∫ R2

R

(log r)βp(log log r)τp

r
dr

≤ c(log R)βp−1(log log R)τp. (C.5)

If 1 < p < 2, choose α > 2
p . Observe that the Taylor expansion applied to the function

f(t) = |z1 + tz2|p with 0 < t < 1, z1, z2 ∈ R, z1 6= 0 and z1z2 ≥ 0 leads to

|z1 + z2|p − |z1|p − p|z1|p−2z1z2 =
p(p− 1)

2
|z1 + t0z2|p−2|z2|2 ≤ p(p− 1)

2
|z1|p−2|z2|2,

for some t0 ∈ (0, 1). Using the above inequality with

z1 = log
R2

r
, z2 = α

log r log log r

Q(r)
,

we obtain

R(θRv, v) ≤ c
(log r)(β−1)p+2(log log r)(τ−1)p+2

rN (log R)αp

(
log

R2

r

)αp−2

Qp−2(r).

Since αp− 2 > 0 we conclude that

∫

AR,R2

R(θRv, v) dx ≤ c

log2 R

∫ R2

R

(log r)βp(log log r)τp

r
dr

≤ c(log R)βp−1(log log R)τp. (C.6)

(iii) An easy computations shows that

R(θRv, v) ≤ c

rN logN R
(log r)βN (log log r)τN .

Therefore
∫

AR,R2

R(θRv, v) dx ≤ c

logN R

∫ R2

R

(log r)βN (log log r)τN

r
dr

≤ c(log R)βN−N+1(log log r)τN . (C.7)

This completes the proof.

D Large sub-solutions

A large (sub) solution to equation (B.1) is a positive (sub) solution of the problem

−∆pu− µ

|x|p up−1 − ε

|x|p logm∗ |x|u
p−1 = 0 in Bc

R, u = 0 on SR, (D.1)

with a sufficiently large R > 1. Below we establish the existence and asymptotic behavior of
large sub-solutions.

Theorem D.1. Let µ ≤ 0 and ε = 0. The following assertions are valid.
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(i) if p 6= N or µ < 0 then u = |x|γ+ −Rγ+ is a positive sub-solution to (D.1).

(ii) if µ = 0 and p = N then u = log |x| − log R is a positive sub-solution to (D.1).

Proof. Note that if µ ≤ 0 then 0 ∈ [γ−, γ+]. Hence positive constants are super-solutions
to (D.1). Then a direct computation verifies that u = rγ+ − Rγ+ or u = log |x| − log R are
sub-solutions to (D.1).

Theorem D.2. The following assertions are valid.

(i) Let p 6= N , µ ∈ (0, CH) and ε = 0. Then (D.1) admits a solution u > 0 such that

u = c|x|γ+(1+o(1)) as r → +∞.

(ii) Let p 6= N , µ = CH and ε = 0. Then (D.1) admits a solution u > 0 such that

u = c|x|γ∗ (log |x|) 2
p

(1+o(1)) as r → +∞.

(iii) Let p = N , µ = CH and ε ∈ (0, C∗). Then (D.1) admits a solution u > 0 such that

u = c (log |x|)β+(1+o(1)) as r → +∞.

(iv) Let p 6= N , µ = CH and ε ∈ (0, C∗). Then (D.1) admits a solution u > 0 such that for
every δ ∈ (0,min{β+ − 1

p , 2
p − β+}) there exists cδ > 0 and Rδ > e and u satisfies

c−1
δ |x|γ∗ (log |x|)β+−δ ≤ u ≤ cδ|x|γ∗ (log |x|)β++δ in (Rδ, +∞).

Our proof of Theorem D.2 employs the generalized Prüfer Transformation. The classical
Prüfer transformation is a well-known tool in the theory of linear second-order elliptic equations,
cf. [15, Chapter 8]. Its generalization to the context of p-Laplace equations was recently
introduced by Reichel and Walter [39], see also [10, 14]. For the readers’ convenience we collect
below required facts for the generalized sine functions and Prüfer transformation.

D.1 Generalized sine function

The generalized sine function Sp(ψ) (p > 1) was introduced in [31] as the solution to the problem

|w′|p +
|w|p
p− 1

= 1, w(0) = 0, w′(0) = 1. (D.2)

Equation (D.2) arises as a first integral of (w′|w′|p−2)′ + w|w|p−2 = 0. The solution of (D.2)
defines the function Sp(ψ) = sinp(ψ) as long as it is increasing, that is, for ψ ∈ [0, πp/2], where

πp

2
=

∫ (p−1)1/p

0

dt

1− tp/(p− 1)1/p
=

(p− 1)1/p

p sin(π/p)
π. (D.3)

Since S′p(πp/2) = 0, we define Sp on the interval [πp/2, πp] by Sp(ψ) = Sp(πp − ψ), and for
ψ ∈ (πp, 2πp] we put Sp(ψ) = −Sp(2πp − ψ) and extend Sp as a 2πp – periodic function on R.
The following properties of Sp will be used frequently (see [31]).

Lemma D.3. The generalized sine function Sp satisfies the following properties.
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(i) Sp satisfies (D.2) on R; Sp ∈ C1(R) and ‖Sp‖∞ = (p− 1)1/p;

(ii) S′p|S′p|p−2 ∈ C1(R), ‖S′p‖∞ = 1 and ‖(S′p|S′p|p−2)′‖∞ = (p− 1)(p−1)/p;

(iii) if p ≤ 2 then S′p ∈ C1(R), while if p ≥ 2 then S′p ∈ C1,1/(p−1)(R);

(iv) (p− 1)Sp
′′(ψ) = −Sp−1

p |S′p|2−p , ψ ∈ (0, πp), ψ 6= πp/2.

Clearly, S2(ψ) = sin(ψ) and π2 = π. Notice also that Sp(t) → 1 − |t − 1| as p → ∞, and
Sp(t) → 0 as p → 1. The generalized sine function was discussed in great detail by Lindquist in
[31].

D.2 Generalized Prüfer transformation

In order to construct a positive solution of (D.1) it is sufficient to solve the initial value problem
{ −r1−N (rN−1|ur|p−2ur)r − V (r)up−1 = 0 in (R, +∞),

u(R) = 0, u′(R) > 0,
(D.4)

where we set
V (r) :=

µ

rp
+

ε

rp logm∗ r
.

Following [14], we use the generalized sine function to transform (D.4) into phase space via the
generalized polar coordinates (ρ, ψ) defined by

{
rN−1u′|u′|p−2 = ρ(r)S′p(ψ(r))|S′p(ψ(r))|p−2,

Q(r)(p−1)/pup−1 = ρ(r)Sp−1
p (ψ(r)),

(D.5)

where the function 0 < Q ∈ C1(R, +∞) will bee chosen later. A calculation similar to [39,
Lemma 2] shows that by means of the generalized polar coordinates (D.5) equation (D.4) trans-
forms into the Cauchy problem





ψ′ = V1|S′p(ψ)|p + V2
Sp

p(ψ)
p−1 + 1

p
Q′
Q Sp(ψ)S′p(ψ)|S′p(ψ)|p−2, ψ(R) = 0,

ρ′ = ρ
{

(V1 − V2) Sp−1
p (ψ)S′p(ψ) + 1

p
Q′
Q Sp

p(ψ)
}

, ρ(R) > 0,
(D.6)

in (R, +∞), where V1 and V2 are defined by

V1(r) := r
1−N
p−1 Q

1
p (r), V2(r) := rN−1V (r)Q

1−p
p (r).

Notice also that by means of (D.5) a pair of C2–functions (ρ, ψ) satisfying (D.6) transforms
into a positive solution u to (D.4).

The main feature of system (D.6) is the fact that its first equation is independent of ρ.
Notice also that the second equation is linear in ρ and is completely integrable provided the
solution ψ of the first equation is given.

For the choice of Q(r) we distinguish between the cases V (r) > 0 and V (r) < 0. If V (r) > 0
then we set

Q(r) = V (r)r
p(N−1)

p−1 . (D.7)

Then V1 = V2 = V 1/p and using Lemma D.3 we rewrite (D.6) in the form




ψ′ = V 1/p +
(

1
p

V ′
V + N−1

p−1
1
r

)
Sp(ψ)S′p(ψ)|S′p(ψ)|p−2, ψ(R) = 0,

ρ′ = ρ
(

1
p

V ′
V + N−1

p−1
1
r

)
Sp

p(ψ), ρ(R) > 0,
(D.8)
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in (R, +∞). In the case V (r) < 0 one can choose Q(r) = −V (r)r
p(N−1)

p−1 , however we are not
interested in this case below.

The main tools of our analysis of (D.8) will be a simple comparison principle between sub-
and super-solutions and a stabilization argument for a time–dependent one-dimensional ODEs.
The comparison principle below can be found in [39].

Lemma D.4 (Comparison principle). Let f : (R,∞)×R→ R be locally Lipschitz–continuous in
(R,∞)× R. Let φ, ϕ be C1–functions on (R,∞), continuous in [R,∞), and such that

φ′(r) ≤ f(r, φ), ϕ′(r) ≥ f(r, ϕ), φ(R) ≤ ϕ(R).

Then φ(r) ≤ ϕ(r) in [R,∞).

Lemma D.5 (Stabilization principle). Let f : (R,∞) × R → R be locally Lipschitz–continuous
in (R,∞) × R, and limr→∞ f(r, ξ) = f∗(ξ), uniformly on compact subsets of R. Let 0 < η ∈
C1(R,∞) and

∫∞
R η−1(r)dr = ∞. Let ψ be a C1–function on (R,∞) such that

ψ′ =
f(r, ψ)
η(r)

(r > R).

Assume that f(r, ψ(r)) > 0 for all r > R and ψ is bounded above. Then f∗(ψ∗) = 0, where
ψ∗ = limr→∞ ψ(r).

Proof. Observe that ψ(r) is monotone increasing and uniformly bounded, so the limit ψ∗ exists.
Assume for a contradiction that f∗(ψ∗) > 0. Then there exist δ > 0 and R1 > R such that
f(r, ψ(r)) > δ for all r > R1 + 1. Then

ψ(r) = ψ(R1) +
∫ r

R1

f(s, ψ(s))
η(s)

ds ≥ c1 +
∫ r

R1+1

δ

η(s)
ds →∞ as r → +∞,

which contradicts to the boundedness of ψ. Thus the assertion follows.

D.3 Proof of Theorem D.2

Below we establish the existence and asymptotic behavior of a solution (ψ, ρ) to system (D.8).
Then the existence and asymptotic of a positive solution to (D.4) can be computed directly
from the asymptotic of ψ and ρ via (D.5) and (D.7).

(i) Case µ ∈ (0, CH), ε = 0, p 6= N . We consider in detail only the case p > N , the case
p < N being similar.

System (D.8) can be written in the form

ψ′ =
F (ψ)

r
,

ρ′

ρ
=

G(ψ)
r

in (R, +∞), (D.9)

where
F (ψ) := µ1/p +

N− p

p− 1
Sp(ψ)S′p(ψ)|S′p(ψ)|p−2, G(ψ) :=

N− p

p− 1
Sp

p(ψ).

Notice that 0 < γ− < γ+. An elementary calculation involving (D.2) shows that F (ψ) = 0 if
and only if ψ satisfies

Sp(ψ) =
(

(γ±(p− 1) + (N − p))
p− 1
N− p

)1/p

and S′p(ψ) =
(

γ±
p− 1
p−N

)1/p

. (D.10)
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Then it follows from the definition and properties of Sp(ψ) that the solutions ψ± ∈ (0, πp) of
F (ψ) = 0 are uniquely (modulo 2πp) determined by γ± via (D.10). One can also see that

0 < ψ+ < ψ− <
πp

2
.

Moreover, F (ψ) is strictly positive for ψ ∈ (0, ψ+).
Let ψ(r) be the solution to the problem

ψ′ =
F (ψ)

r
in (R, +∞), ψ(R) = 0, (D.11)

for some R > 1. Observe that the right hand side of (D.11) is bounded and smooth for all
(r, ψ) ∈ (1,∞) × R, so ψ(r) exists for all r > R. Note also that ψ+(r) ≡ ψ+ is a stationary
solution to (D.11). So, ψ(r) ≤ ψ+ for all r > R, by Lemma D.4. Moreover ψ(r) is monotonically
increasing and F (ψ(r)) > 0 for all r > 0. Thus, by Lemma D.5 we conclude that limr→∞ ψ(r) =
ψ+.

Lemma D.6. Let ψ be the solution to (D.11). Then ψ(r) = ψ+ + ω(r) where ω(r) < 0 in
[R, +∞) and

ω(r) = cr−(γ+p+N−p)(1+o(1)) as r → +∞,

for some c < 0.

Proof. Since
F (ψ) = F ′(ψ+)(ψ − ψ+) + Θ(ψ − ψ+), (D.12)

where Θ(ψ − ψ+) = O((ψ − ψ+)2) as ψ → ψ+, by Lemma D.3 (iv) we obtain that

F ′(ψ) =
N − p

p− 1
(|S′p(ψ)|p + (p− 1)Sp(ψ)|S′p(ψ)|p−2S′′p (ψ)

)
=

N − p

p− 1
(|S′p(ψ)|p − Sp

p(ψ)
)
.

Using (D.10) we arrive at F ′(ψ+) = −(γ+p + N − p) < 0. Set ω(r) := ψ(r) − ψ+. Thus
ω(R) = −ψ+ and ω satisfies

ω′

ω
=

F ′(ψ+)
r

+
Θ(ω)
rω

, r ∈ (R, +∞).

Therefore we infer that

log
ω(r)
ω(R)

= log
( r

R

)−(γ+p+N−p)
+

∫ r

R

Θ(ω)
ω

ds

s
.

So, the assertion follows by the L’Hopital’s Rule.

Given the solution ψ(r) to (D.11), let ρ(r) be the solution to the problem

ρ′

ρ
=

G(ψ)
r

in (R, +∞), ρ(R) = 1. (D.13)

Observe that the right hand side of (D.13) is bounded and smooth for all (r, ψ) ∈ (R,∞)× R,
so ρ(r) exists for all r > R.

Lemma D.7. Let ρ be the solution to (D.13). Then ρ(r) = cr(γ+(p−1)+N−p)(1+o(1)) as r → +∞,
for some c > 0.
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Proof. Observe that ρ satisfies

ρ′

ρ
=

G(ψ+)
r

+
Ξ(ω(r))

r
, r ∈ (R, +∞), (D.14)

where Ξ(ψ − ψ+) = o(ψ − ψ+) as ψ → ψ+ and ω(r) := ψ − ψ+ is given by Lemma D.6. Using
the definition of G, (D.10) and (B.3) we conclude that G(ψ+) = γ+(p− 1) + N − p. Therefore

log
ρ(r)
ρ(R)

= log
( r

R

)γ+(p−1)+N−p
+

∫ r

R
Ξ(ω)

ds

s
.

So, the assertion follows by the l’Hopital Rule.

Remark D.8. The case µ ∈ (0, CH), ε = 0 and p < N is similar, the only difference being that
if p < N then γ− < γ+ < 0 and hence πp/2 < ψ+ < ψ− < πp.

(ii) Case µ = CH , ε = 0, p 6= N . We consider in detail only the case p > N , the case p < N
being similar. System (D.8) can be written in the form (D.9), where

F (ψ) := |γ∗|+ N − p

p− 1
Sp(ψ)S′p(ψ)|S′p(ψ)|p−2, G(ψ) :=

N − p

p− 1
Sp

p(ψ). (D.15)

Notice that γ∗ = p−N
p > 0. A simple analysis shows that F (ψ) = 0 if and only if ψ∗ = (π/4)p

modulo 2πp , where (π/4)p ∈ (0, πp/2) denotes the unique solution to the equation

Sp(ψ) = S′p(ψ) =
(

p− 1
p

)1/p

. (D.16)

It is clear that (π/4)2 = π/4. Observe that F (ψ) is nonnegative for all ψ ∈ R and strictly
positive for ψ ∈ (0, ψ∗).

Let ψ(r) be the solution to (D.11), for some R > 1. Clearly ψ(r) exists for all r > R. Note
also that ψ∗(r) ≡ ψ∗ is a stationary solution to (D.11). So, ψ(r) ≤ ψ∗ for all r > R by Lemma
D.4. Moreover, by Lemma D.5 we conclude that limr→∞ ψ(r) = ψ∗.

Lemma D.9. Let ψ be the solution to (D.11). Then ψ(r) admits a representation ψ(r) =
ψ∗ + ω(r) where ω(r) < 0 in [R, +∞) and

ω(r) = −2
p

p− 1
p−N

1 + o(1)
log r

as r → +∞. (D.17)

Proof is similar to the arguments in the proof of Lemma D.6. Notice only that F ′(ψ∗) =
F (ψ∗) = 0 and F ′′(ψ∗) = (p−N) p

p−1 , so use F (ψ) = 1
2F ′′(ψ∗)(ψ − ψ∗)2 + o((ψ − ψ∗)2) instead of

(D.12).

Lemma D.10. Let ρ be the solution to (D.11). Then ρ(r) = cr−γ∗(log r)
�

2(p−1)
p

�
(1+o(1)) as

r → +∞, for some c > 0.

Proof is essentially the same as the one for Lemma D.7, the only difference being that instead
of (D.14) one uses

ρ′

ρ
=

G(ψ∗)
r

+
G′(ψ∗)ω(r)

r
+

o(ω(r))
r

, r ∈ (R, +∞),

where G(ψ∗) = −γ∗, G′(ψ∗) = N − p.

Remark D.11. The case µ = CH , ε = 0 and p < N is similar, the only difference being that
γ∗ < 0 and hence ψ∗ = (3π/4)p := πp − (π/4)p.
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(iii) Case µ = CH , ε ∈ (0, C∗), p = N . In this case system (D.8) can be written in the form

ψ′ =
F (ψ)
r log r

,
ρ′

ρ
=

G(ψ)
r log r

in (R, +∞),

where
F (ψ) := ε1/N − SNS′N |S′N |N−2, G(ψ) := −SN

N .

A simple calculation shows that F (ψ) = 0 if and only if

SN (ψ) = (1− β±)2/N , S′N (ψ) = β
1/N
± , (D.18)

where β± are roots of (B.4). Note that 0 < β− < N−1
N < β+ < 1 and hence the solutions

ψ± ∈ (0, πN ) of (D.18) are uniquely (modulo 2πN ) determined and satisfy

0 < ψ+ <
πN

2
< ψ− < πN .

Observe that F (ψ) is smooth, bounded and nonnegative for all ψ ∈ R and strictly positive for
ψ ∈ (0, ψ+). Let ψ(r) be the solution to the problem

ψ′ =
(ψ)

r log r
, ψ(R) = 0, (D.19)

in (R, +∞), for some R > e. Note also that ψ+(r) ≡ ψ+ is a stationary solution to (D.19). So,
ψ(r) ≤ ψ+ for all r > R by Lemma D.4. Thus, by Lemma D.5 we conclude that limr→∞ ψ(r) =
ψ+.

Lemma D.12. Let ψ be the solution to (D.19). Then ψ(r) admits a representation ψ(r) =
ψ+ + ω(r) where ω(r) < 0 in [R, +∞) and

ω = c(log r)(N(1−β+)−1)(1+o(1)) as r → +∞,

for some c < 0.

The proof is the literary repetition of the arguments in the proof of Lemma D.6. Note only
that F (ψ+) = 0, F ′

N (ψ+) = (1− β+)N − 1.
Given the solution ψ(r) to (D.19), let ρ(r) be the solution to the problem

ρ′

ρ
=

G(ψ)
r log r

in (R, +∞), ρ(R) = 1. (D.20)

Observe that the right hand side of (D.20) is bounded and smooth for all (r, ψ) ∈ (R,∞)× R,
so ρ(r) exists for all r > R.

Lemma D.13. Let ρ be the solution to (D.20). Then ρ(r) = c(log r)(β+−1)(N−1)(1+o(1)) as
r → +∞, for some c > 0.

The proof is the literary repetition of the arguments in Lemma D.7. Notice only that
G(ψ+) = (1− β+)(N − 1).
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(iv) Case µ = CH , ε ∈ (0, C∗), p 6= N . We consider in detail only the case p > N , the case
p < N being similar.

The equations in system (D.8) can be written in the form

ψ′ =
Fε(r, ψ)

r
,

ρ′

ρ
=

Gε(r, ψ)
r

in (R, +∞), (D.21)

where we use the notation

Fε(r, ψ) := U(r) + W (r)Sp(ψ)S′p(ψ)|S′p(ψ)|p−2, Gε(r, ψ) := W (r)Sp
p(ψ),

U(r) :=
(

CH +
ε

log2 r

)1/p

, W (r) :=
N − p

p− 1
− 2ε

p (CH log2 r + ε) log r
.

Observe that U(r)
W (r) 6= const, so the first equation in (D.8) has no stationary solutions. For β > 0,

denote
A(r) := γ∗ +

β

log r
.

Below we suppress the dependence on r in U(r) and A(r) writing simply U and A. For r > e,
let ψβ(r) be defined as the solution to the system

Sp(ψ) =
U

(
|A|p + Up

p−1

)1/p
and S′p(ψ) =

A
(
|A|p + Up

p−1

)1/p
, (D.22)

satisfying 0 ≤ ψβ <
πp

2 . From the definition of U and A one can see that limr→∞ ψβ(r) = (π/4)p,
where (π/4)p is defined by (D.16).

Lemma D.14. Let β > 0. The following assertions are valid.

(i) If β ∈ (β−, β+) then there exists Rβ > e such that ψβ(r) is a positive super-solution to the
equation

ψ′ =
Fε(r, ψ)

r
in (Rβ, +∞). (D.23)

(ii) If β 6∈ [β−, β+] then there exists Rβ > e such that ψβ(r) is a sub-solution to (D.23).

Proof. A routine calculation based on (D.22) gives that

ψ′β =
1
r

(
Fε(r, ψβ) +

U

Ap + Up

p−1

Θ(r)

)
,

where

Θ(r) := Ap−2 β

log2 r
−Ap − Up

p− 1
− N − p

p− 1
Ap−1

=
β

log2 r

∣∣∣∣γ∗ +
β

log r

∣∣∣∣
p−2

+
(

γ∗
p− 1

− β

log r

) ∣∣∣∣γ∗ +
β

log r

∣∣∣∣
p−1

− ε

p− 1
1

log2 r
− |γ∗|p

p− 1
.

For r → +∞ we obtain

Θ(r) = −|γ∗|
p−2

2p

(β − β+)(β − β−)
log2(r)

+ o

(
1

log3 r

)
.

Thus the assertion follows.
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Set b := β+ − δ, B := β+ + δ, where δ > 0 is chosen such that 1
p < b < β+ < B < 2

p . By
Lemma D.14 there exist Rb and RB such that ψb and ψB are sub- and super-solution to (D.23),
respectively. Set Rδ := max{Rb, RB}. It follows from (D.22) that ψB(Rδ) < ψb(Rδ). Let ψ∗(r)
be the solution to the problem

ψ′∗ =
Fε(r, ψ∗)

r
in (Rδ, +∞), ψ∗(Rδ) = ψ0, (D.24)

where ψ0 ∈ (ψB(Rδ), ψb(Rδ)). Observe that Fε(r, ψ) is smooth and bounded, so ψ∗ exists for
all r > Rδ. Moreover, by Lemma D.4 we conclude that

ψB(r) ≤ ψ∗(r) ≤ ψb(r), r ∈ [Rδ, +∞), (D.25)

and, one can see that Fε(r, ψ∗(r)) > 0 in [Rδ, +∞). Observe also that limr→∞ ψ∗(r) = (π/4)p.
Let ψ(r) be the solution to the problem

ψ′ =
Fε(r, ψ)

r
, ψ(Rδ) = 0. (D.26)

Clearly, ψ(r) exists for all r > Rδ. By Lemma D.4 one has 0 ≤ ψ(r) ≤ ψ∗(r). Hence using the
definitions of Fε, Sp and S′p one can see that Fε(r, ψ(r)) is strictly positive in [Rδ, +∞). Notice
that

lim
r→∞Fε(r, ψ) = F (ψ),

uniformly in ψ, where F is defined by (D.15). Thus, by Lemma D.5 we conclude that limr→∞ ψ(r) =
(π/4)p.

Lemma D.15. Let ψ be the solution to (D.26) and ψ∗ be the solution to (D.24). Then ω(r) :=
ψ(r)− ψ∗(r) < 0 in [Rδ, +∞) and satisfies the inequality

c1ω+(r) ≤ ω(r) ≤ c2ω−(r),

for some c1 < 0, c2 < 0, where ω+(r) = (log r)−bp(1+o(1)), ω−(r) = (log r)−Bp(1+o(1)) as r →
+∞.

Proof. Note that ω(Rδ) = −ψ0 and ω(r) → 0 as r → +∞. Fix r > Rδ. Near ψ∗(r) we have

Fε(r, ψ) = Fε(ψ∗) + (Fε)′ψ(r, ψ∗)(ψ − ψ∗) +
1
2
(Fε)′′ψ(r, ψ∗)(ψ − ψ∗)2 + Θ(r, ψ − ψ∗) (D.27)

where Θ(r, ψ − ψ∗) = o((ψ − ψ∗)2) as ψ → ψ∗. A direct computation gives

(Fε(r, ψ))′ψ = W (r) (|S′p(ψ)|p − |Sp(ψ)|p); (D.28)

(Fε(r, ψ))′′ψ = − p2

p− 1
W (r)|Sp(ψ)|p−1S′p(ψ). (D.29)

Since ψ = ψ∗ + ω, and ψ∗ solves the same equation, from (D.27) we obtain

ω′ = (F∗)′ψ(ψ∗)
ω

r
+

(F∗)′′ψ(ψ∗)
2

ω2

r
+

Ψ(ω)
r

. (D.30)

Using (D.25), (D.22), (D.28) and (D.29) we conclude that

− Bp

log r
+ o

(
1

log2 r

)
≤ (F∗)′ψ(ψ∗(r)) ≤ − bp

log r
+ o

(
1

log2 r

)
,
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bp2

p− 1
1

log r
+ o

(
1

log2 r

)
≤ (F∗)′′ψ(ψ∗(r))− (p−N)p

p− 1
≤ Bp2

p− 1
1

log r
+ o

(
1

log2 r

)
,

as r → +∞. We substitute the above estimates into (D.30). Then

ω′ ≤ −Bp
ω

r log r
+

(p−N)p
2(p− 1)

ω2

r
+

Bp2

2(p− 1)
ω2

r log r
+ O

(
ω + ω2

r log2 r
+

ω3

r

)
, (D.31)

ω′ ≥ −bp
ω

r log r
+

(p−N)p
2(p− 1)

ω2

r
+

bp2

2(p− 1)
ω2

r log r
+ O

(
ω + ω2

r log2 r
+

ω3

r

)
, (D.32)

as r → +∞. From (D.32) we infer that

ω′

ω
≤ − bp

r log r
+

bp2

p− 1
ω

r log r
+ O

(
1 + ω

r log2 r
+

ω2

r

)
,

and, hence,

log
ω(r)
ω(R)

≤ c log(log r)−bp(1+o(1)),

or, equivalently,
ω(r) ≥ −c(log r)−bp(1+o(1)),

as r → +∞. Therefore by (D.31) we infer that ω satisfies

ω′

ω
≥ − Bp

r log r
− c

r(log r)bp(1+o(1))
+

Bp2

2(p− 1)
ω

r log r
+ O

(
1 + ω

r log2 r
+

ω2

r

)
,

and, hence,

log
ω(r)
ω(R)

≥ log(log r)−Bp(1+o(1)) − c(log r)−bp(1+o(1))+1,

as r → +∞. Since b > 1
p , one has

ω(r) ≤ −c(log r)−Bp(1+o(1)),

as r → +∞. The assertion follows.

Given the solution ψ(r) to the problem (D.26), let ρ(r) be the solution to the problem

ρ′

ρ
=

Gε(r, ψ)
r

in (Rδ,+∞), ρ(Rδ) = 1. (D.33)

Clearly the right hand side of (D.33) is bounded and smooth for all (r, ψ) ∈ (Rβ,∞) × R, so
ρ(r) exists for all r > Rβ.

Lemma D.16. Let ρ be the solution to (D.33). Then ρ satisfies the estimate

c1ρ−(r) ≤ ρ(r) ≤ c2ρ+(r)

for some c1 > 0, c2 > 0, where

ρ−(r) = r−γ∗(log r)b(p−1)(1+o(1)), ρ+(r) = r−γ∗(log r)B(p−1)(1+o(1))

as r → +∞.
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Proof. Near ψ∗(r) we have Gε(r, ψ) = Gε(r, ψ∗)+Ξ(r, ψ−ψ∗), where Ξ(r, ψ−ψ∗) = O(ψ−ψ∗)
as r → +∞. Using (D.25) we obtain

W (r)Sp
p(ψb) ≤ Gε(r, ψ∗) ≤ W (r)Sp

p(ψB).

By a simple computation we conclude that

b(p− 1)
log r

+
o(1)
log2 r

≤ Gε(r, ψ∗) + γ∗ ≤ B(p− 1)
log r

+
o(1)
log2 r

,

as r → +∞. Therefore ρ satisfies

b(p− 1)
r log r

+ O

(
1

r log2 r
+

ω

r

)
≤ ρ′

ρ
+

γ∗
r
≤ B(p− 1)

r log r
+ O

(
1

r log2 r
+

ω

r

)
,

as r → +∞. Thus we have

log
(

log r

log R

)b(p−1)

+
O(1)
log r

+ c(log r)−bp(1+o(1))+1

≤ log
ρ(r)
ρ(R)

− log
( r

R

)−γ∗ ≤ log
(

log r

log R

)B(p−1)

+
O(1)
log r

+ c(log r)−Bp(1+o(1))+1,

as r → +∞. So, the assertion follows from 1
p < b < B.

Remark D.17. The case µ = CH , ε ∈ (0, C∗) and p < N is similar, the only difference being
γ∗ < 0 and hence limr→+∞ ψ∗(r) = (3π/4)p.
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elliptiques quasilinéaires, C.R. Acad. Sci. Paris 305 (1987) 521–524.
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