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Abstract

We consider the semilinear Cauchy problem for a class of pseudo–
differential operator generating sub–Markovian semigroup. Solutions of
such problem with the negative definite nonlinearity play an important
role in constructing branching measure–valued processes. We establish
local existence and uniqueness of solutions in the context of the Dirich-
let space associated to the problem. Comparison and global properties of
solutions are also studied.
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1 Introduction

We consider a class of pseudo differential operators

p(x,D)u(x) = (2π)−(N/2)

∫
RN

eixξp(x, ξ)û(ξ)dξ

where (x, ξ) → p(x, ξ) ∈ R is continuous symbol and for fixed x ∈ RN , the func-
tion ξ → p(x, ξ) is required to be negative definite in the sense of I. J. Schoen-
berg. Under suitable conditions the operator p(x,D) extends from C∞0 (RN ) to
a generator of sub–Markovian semigroup (Tt)t≥0 on L2(RN ).

In this note we are interested in the semilinear Cauchy problem for the
operator p(x,D){

∂u
∂t + p(x,D)u = f(x, u) in [0, T )× RN ,

u(0, ·) = v0 in RN ,
(1)

here f : RN × R → R is a given Carathéodory function, that is, x→ f(x, u) is
measurable for all u ∈ R and u→ f(x, u) is continuous for almost all x ∈ RN .
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In the following we are interesting in the particular case when u → f(x, u) is
a continuous negative definite function for almost all x ∈ RN . However we do
not assume it explicitly up to the last section.

Solutions of the Cauchy problem (1) with the negative definite nonlinear
part play an important role in constructing continuous state branching processes
as introduced by M. Jirina [15, 16] and M. Motoo [21]. Often these problems
are called Log–Laplace equations. We refer in particular to S. Watanabe [27]
where we learned from the following result, see also the survey of D. Dawson [3]
and a monograph of E. B. Dynkin [4]: in the case of continuous state branching
processes related to Feller processes on a compact state space it is known that
these processes are in one–to–one correspondence to Ψ–semigroups and the
solutions of (1) will give Ψ–semigroups. Thus in order to construct continuous
state branching processes it is helpful to solve (1). Note that there is a very
large literature on branching processes and measure–valued processes where
solutions to equation (1) are used, we refer in addition to the papers already
mentioned the very general considerations due to P. J. Fitzsimmons [6], and
the paper [17] of N. Konno and T. Shiga in which relations to stochastic partial
differential equations are discussed. However, in all papers mentioned and other
paper known to us, equation (1) is studied (by standard methods, see A. Pazy
[24]) in the frame of spaces of bounded functions. In this case no problem with
the growth of nonlinearity show up, provided it is locally Lipschitzian. Our
results give solutions to (1) in the context of the Dirichlet space associated to
the operator −p(x,D). This causes serious problems with the growth of the
nonlinearity: We run to the critical exponent problem. But the value of the
critical exponent is now determined by the L2–domain of the operator −p(x,D),
not by the Laplacian. This fact makes our discussion quite different from the
related papers working in spaces of bounded functions. Our Theorem 1 is a
result which takes the appearance of a critical exponent in a straight forward
way into account. In Theorem 2 we use explicitly the sub–Markovian property
of the semigroup generated by −p(x,D) to extend the class of nonlinearities
for which an existence result holds. Our aim in a further investigation is to
construct new branching processes in the context of Dirichlet form by using the
solvability of (1) in L2–spaces.

Acknowledgements. The first named author would like to thank Prof. S. Watanabe
for providing him some of his papers on branching processes, and Prof. M. Röckner for
additional remarks to the literature. The second named author had been supported by
the one–year scholarship of the DAAD – German Academic Exchange Service.

2 A class of Pseudo Differential Operators

Let ψ : RN → R be a fixed continuous negative definite function, i.e. ψ is
continuous, ψ(0) ≥ 0 and ξ → e−tψ(ξ) is for all t ≥ 0 positive definite. We
assume in addition that

ψ(ξ) ≥ c|ξ|2r for |ξ| ≥ R(2)



On the Log–Laplace equation for nonlocal operators 3

holds for some r ∈ (0, 1] and R, c > 0.
We define the anisotropic Sobolev space Hψ,s(RN ), s ≥ 0 by

Hψ,s(RN ) = {u ∈ L2(RN ) : ‖u‖ψ,s <∞},

where
‖u‖2

ψ,s =
∫

RN

(1 + ψ(ξ))s|û(ξ)|2dξ,

giving the scalar product

(u, v)ψ,s =
∫

RN

(1 + ψ(ξ))sû(ξ)v̂(ξ)dξ.

For ψ(ξ) = |ξ|2 the space Hψ,s(RN ) coincides with the usual Sobolev space
Hs(RN ) with the norm and scalar product denoted by ‖ · ‖s and (·, ·)s. Clearly,
(2) implies continuous embedding Hψ,s(RN ) ⊆ Hrs(RN ). Using embeddings
theorems for the Sobolev scale Hrs(RN ) we can obtain embeddings results for
Hψ,s(RN ).

In the following we will consider pseudo–differential operator p(x,D) having
a symbol (x, ξ) → p(x, ξ) ∈ R which is continuous and for fixed x ∈ RN , the
function ξ → p(x, ξ) is required to be negative definite. Further we assume that
−p(x,D) extends to a symmetric Dirichlet operator A with domain Hψ,2(RN ).
It is well known that A generates a symmetric sub–Markovian semigroup (Tt)t≥0

on L2(RN ) and in fact, due to a result of E.M. Stein [25] this semigroup is
analytic. Often we will write −p(x,D) instead of A.

We refer to the paper [10] and [11] of W. Hoh and to the papers [12, 13] of
the first named author where a lot of concrete examples of conditions on p(x, ξ)
are given which implies our assumptions. Note that in particular any contin-
uous negative definite function ψ : RN → R gives rise to a pseudo–differential
operator −ψ(D) on Hψ,2(RN ) extending to a generator of a symmetric sub–
Markovian semigroup on L2(RN ).

3 Local existence and uniqueness

In the following we will always assume, that the function u→ f(x, u) is locally
Lipschitzian for almost all x ∈ RN , i.e. there exist Carathéodory function
φ : RN × R → R such that

|f(x, u)− f(x, v)| ≤ φ(x,w)|u− v| for |u|, |v| ≤ w.(3)

Note that (3) implies the growth estimate

|f(x, u)| ≤ φ(x, u)|u|+ f(x, 0).(4)

Let
f(u)(x) = f(x, u(x))
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be the superposition operator generated by f(x, u). We rewrite (1) as an ab-
stract Cauchy problem {

du
dt = Au+ f(u),

u(0) = v0,
(5)

where A is a generator of sub–Markovian, and hence, analytical semigroup in
L2(RN ).

Let us recall several basic notions from the theory of semilinear Cauchy
problems for generators of analytical semigroups, see [9] as a basic reference,
see also [24, 23]. A (classical) solution on (0, T ) of the Cauchy problem (5) is a
continuous function u : [0, T ) → L2(RN ) such that

u(0) = v0, u(t) ∈ Hψ,2(RN ) for t ∈ (0, T ),

u ∈ C1((0, T );L2(RN )) and the pseudo differential equation (5) is satisfied on
(0, T ). A solution u on (0, Tmax) is maximal, if there is no solution of (5) on
(0, T ) for T > Tmax. A solution u is global, if Tmax = +∞. A solution u
blows–up in Hψ,s(RN ), if Tmax < +∞ and

lim
t→Tmax

‖u(tn)‖ψ,s = +∞.

We say that solutions of (5) continuously depends on the initial data inHψ,s(RN )
if vn → v0 in Hψ,s(RN ) implies that for any T < Tmax(v0) the solution un of (5)
with un(0) = vn exists for t ∈ [0, T ] if n sufficiently large and un → u uniformly
in C([0, T ],Hψ,s(RN )) .

If u is a classical solution of (5) on (0, T ) then u solves the Volterra–type
nonlinear integral equation

u(t) = Ttv0 +
∫ t

0
Tt−sf(u(s)) ds, t ∈ [0, T ).(6)

Now if u ∈ C((0, T );L2(RN )) is a solution of (6) then u is called a mild solution
of the Cauchy problem (5). Under certain regularity conditions a mild solution
is also a classical solution of (5).

Let s ≥ 0. It follows from (2) and the Sobolev embedding theorem that we
have the sequence of continuous embeddings

Hψ,s(RN ) ⊆ Hrs(RN ) ⊂ L2∧s∗(RN ) ⊂ L2(RN ),(7)

here L2∧s∗(RN ) is the space L2(RN ) ∩ Ls∗(RN ) equipped with norm

‖u‖L2∧s∗ = max
{
‖u‖0, ‖u‖Ls∗

}
,

and

s∗ =

{
2N

N−2rs , 2rs < N,

any p ≥ 2, 2rs ≥ N,

is a critical Sobolev exponent. If 2rs > N then Hψ,s(RN ) ⊂ L2∧∞(RN ) and
one can put s∗ = +∞. However we do not need this fact in following.
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Theorem 1 Assume that for some s ∈ [0, 2) the estimate

φ(x,w) ≤ a(|w|
s∗
2
−1 + 1)(8)

holds with a > 0 and f(x, 0) ∈ L2(RN ). Then for every v0 ∈ Hψ,s(RN ):
i) there exist Tmax = Tmax(v0) > 0 such that the Cauchy problem (5) has a
unique maximal classical solution u ∈ C((0, Tmax),Hψ,s(RN ));
ii) either u is a global solution or else the solution u blows–up in Hψ,s(RN );
iii) if s = 0 then u is a global solution;
iv) the solutions of (5) depends continuously on the initial data in Hψ,s(RN ).

Proof. To prove (i) we will apply the local existence theorem for semilinear
problems related to generators of analytical semigroups [9, Theorem 3.3.3, p.54].
For this, let us rewrite (5) as{

du
dt = (A− I)u+ u+ f(u),

u(0) = v0.
(9)

SinceA is a symmetric Dirichlet operator, −A is nonnegative definite on L2(RN ).
Hence 0 ∈ ρ(A − I) and for s ∈ [0, 2] the domain of the fractional powers
(I −A)s/2 are obtained by complex interpolation which yields Hψ,s(RN ) is the
domain of (I − A)s/2. Thus to prove the existence of unique classical solution
of (5) on (0, T ) it remains to show that the mapping u+ f(u) is a locally Lip-
schitzian as a mapping from Hψ,s(RN ) into L2(RN ). Taking into account the
continuous embeddings (7) it is sufficient to prove that f is a locally Lipschitzian
as an operator from L2∧s∗(RN ) into L2(RN ).

For u, v ∈ L2∧s∗(RN ) and w = |u| ∨ |v| ∈ L2∧s∗(RN ) by (8) and Hölder
inequality we get∫

RN

|f(x, u)− f(x, v)|2dx ≤
∫

RN

|φ(x,w)|2|u− v|2 dx

≤ a2

∫
RN

(|w|
s∗
2
−1 + 1)2|u− v|2 dx

≤ 2a2

∫
RN

|w|s∗−2|u− v|2 dx+ 2a2

∫
RN

|u− v|2 dx

≤ 2a2‖w‖s∗−2
Ls∗

‖u− v‖2
Ls∗

+ 2a2‖u− v‖2
0

Thus
‖f(u)− f(v)‖0 ≤

√
2a(1 + ‖w‖s∗−2

L2∧s∗
)1/2‖u− v‖L2∧s∗

and
‖u‖L2∧s∗ , ‖v‖L2∧s∗ ≤ ‖w‖L2∧s∗ .

This means that f is locally Lipschitzian from L2∧s∗(RN ) into L2(RN ) and
hence there exist unique classical solution of (5) on [0, T ).

To construct a maximal solution of (5) suppose that ‖u(t)‖ψ,s is bounded for
all t ∈ [0, T ). Note that condition (8) implies that the superposition operator f
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maps bounded sets from L2∧s∗(RN ), and hence fromHψ,s(RN ) into the bounded
sets in L2(RN ), cf. [1]. Then by [9, Theorem 3.3.4, p.55], there exist u1 ∈
Hψ,s(RN ) such that u(t) → u1 in Hψ,s(RN ) as t→ T which implies the solution
u(t) may be extended beyond time T . In such a way one can extend the
solution u(t) while ‖u(t)‖ψ,s remains bounded obtaining a global solution of
(5). Otherwise u(t) is unbounded in Hψ,s(RN ) on some finite interval (0, Tmax)
which also proves (ii).

iii) In the case s = 0 the condition (8) implies that the function φ(x,w)
is bounded. Then the superposition operator f is globally Lipschitzian on the
space Hψ,0(RN ) = L2(RN ). It is known that in this case there exist global
classical solution of (5), cf. [23, Theorem 5.8, p.215].

iv) The continuous dependence of solutions on the initial data in Hψ,s(RN )
follows immediately from [9, Theorem 3.4.1, p.62] since the operator f is locally
Lipschitzian on Hψ,s(RN ). 2

Remark 1 If the function u→ f(x, u) is differentiable for almost all x ∈ RN ,
f(x, 0) ∈ L2(RN ) and the estimate

|f ′u(x, u)| ≤ a(|u|
s∗
2
−1 + 1)(10)

holds for some a > 0 then the superposition operator f is continuously differ-
entiable as operator from L2∧s∗(RN ), and hence, from Hψ,s(RN ) into L2(RN ).
Its Fréchet derivative given by the formula

f ′(u)(x) = f ′u(x, u(x)),

cf. [1]. In particular, in this case u→ f(x, u) is locally Lipschitzian for almost
all x ∈ RN and condition (8) always holds.

Remark 2 The condition (3) can not be relaxed. From [1, Theorem 5.5, p.158]
it follows that if the superposition operator f is locally Lipschitzian as oper-
ator from L2∧s∗(RN ) into L2(RN ) then the function u → f(x, u) is locally
Lipschitzian for almost all x ∈ RN .

Remark 3 The condition (8) implies by (4) that the function f(x, u) satisfies
the growth estimate

|f(x, u)| ≤ a(|u|
s∗
2 + |u|) + f(x, 0)(11)

for some a > 0 with f(x, 0) ∈ L2(RN ).

Remark 4 The statements (i, iv) imply that the Cauchy problem (5) generates
a local semi–flow in Hψ,s(RN ).

Using the sub–Markovian property of the semigroup (Tt)t≥0 the restrictions
on the growth of φ(x, u) and f(x, u) in the case N < 2rs can be avoided at
least for the initial data v0 ∈ L2∧∞(RN ).
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Theorem 2 Assume that

sup
|w|≤r

φ(x,w) ∈ L∞(RN ) for all r ≥ 0(12)

and f(x, 0) ∈ L2∧∞(RN ). Then for every v0 ∈ L2∧∞(RN ):
i) there exist Tmax = Tmax(v0) > 0 such that the Cauchy problem (5) has a
unique maximal classical solution u and u(t) ∈ L2∧∞(RN ) for t ∈ [0, Tmax);
ii) either Tmax = +∞ or else the solution u blows–up in L2∧∞(RN ).
iii) the solutions of (5) depend continuously on the initial data in L2(RN ).

Proof. Let
m = ‖v0‖L∞ + 1.

Define a truncation of the nonlinearity f(x, u) by means of formula

f̃(x, u) =


f(x,−m), if u < −m,
f(x, u), if −m ≤ u ≤ m,
f(x,m), if u > m.

The truncation f̃(x, u) is a bounded Carathéodory function satisfying condition
(3) with

φ̃(x,w) = sup
|w|≤m

φ(x,w) ≤ am < +∞.

By (4) this implies the uniform bound

|f̃(x, u)| ≤ a = mam + ‖f(x, 0)‖L∞ .(13)

Applying Theorem 1 with s = 0 we obtain the existence of a unique global
solution ũ of the truncated problem{

du
dt = Au+ f̃(u),

u(0) = v0.
(14)

Since ũ is also a mild solution of (14) and using the sub–Markovian property
of the semigroup (Tt)t≥0 and (13) we derive

‖ũ(t)‖L∞ ≤ ‖Ttv0‖L∞ +
∫ t

0
‖Tt−sf̃(ũ(s))‖L∞ ds ≤

‖v0‖L∞ +
∫ t

0
‖f̃(ũ(s))‖L∞ ds ≤ ‖v0‖L∞ + at, t ∈ [0,+∞).

This implies
‖ũ(t)‖L∞ ≤ m for t ∈ [0, 1/a)

and hence
f̃(ũ(t)) = f(ũ(t)) for t ∈ [0, 1/a).

This means that ũ is a local solution of the original problem (5) on (0, 1/a) and
also u(t) ∈ L2∧∞(RN ) for (0, 1/a);
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To construct a maximal solution of (5) suppose that ‖u(t)‖0 is bounded for
all t ∈ [0, T ). Note that truncated superposition operator f̃ is bounded as oper-
ator in L2(RN ), cf. [1]. Then by [9] there exist u1 ∈ L2(RN ) such that u(t) → u1

in L2(RN ) as t → T . But u(t) ∈ L2∧∞(RN ) for t ∈ [0, T ) and L2∧∞(RN ) is a
closed subspace of L2(RN ). Hence the L2–limit u1 ∈ L2∧∞(RN ) and using, if
necessary, new truncation f̃1(x, u), the solution u(t) may be extended beyond
time T . In such a way one can extend the solution u(t) in L2∧∞(RN ) while
‖u(t)‖0 remains bounded obtaining a global solution of (5). Otherwise u(t) is
unbounded in L2(RN ) on the finite interval (0, Tmax) which also proves (ii).

iii) The continuous dependence of solutions on the initial data in L2(RN )
follows immediately from Theorem 1, iv) since for any T < Tmax(v0) the solution
u on [0, T ] solves a suitably truncated problem which satisfies (8) with s = 0.
2

Remark 5 The condition (12) implies that for each r ≥ 0 there exists ar > 0
such that

|f(x, u)| ≤ ar|u|+ f(x, 0) for |u| ≤ r(15)

with f(x, 0) ∈ L2∧∞(RN ). This means that f(x, u) admits an arbitrary fast
growth in u “at infinity”.

4 Positivity preserving and comparison

Using the fact that the semigroup (Tt)t≥0 generated by A is sub–Markovian
we may prove that the solution to the initial–value problem (5) is positive
provided v0 is positive and f(x, u) ≥ 0 holds. More precisely we have the
following comparison result.

Theorem 3 Assume that
f(x, u) ≥ 0(16)

and let u be a maximal classical solution of the problem (5) on [0, Tmax). Then

u(t) ≥ Ttv0 for t ∈ [0, Tmax).(17)

In particular, if v0 ≥ 0, then u(t) ≥ 0 for t ∈ [0, Tmax).

Proof. Since u is a classical solution, u is also a mild solution, i.e. u solves (6).
By (16) and since (Tt)t≥0 is a sub–Markovian semigroup, in particular, (Tt)t≥0

is positivity preserving we have∫ t

0
Tt−sf(u(s)) ds ≥ 0, t ∈ [0, Tmax)

Then

u(t) = Ttv0 +
∫ t

0
Tt−sf(u(s)) ds ≥ Ttv0, t ∈ [0, Tmax).

Again, since (Tt)t≥0 is positivity preserving we have u(t) ≥ 0 for t ∈ [0, Tmax)
if v0 ≥ 0. 2
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Remark 6 Theorem 3 can be used to prove other types of comparison results,
or to develop a certain sub– and super–solutions technique for the problem (5),
cf. [22] for various applications of such results in the local case A = ∆ and [5]
for relations with branching processes.

5 Global existence and blow–up

A first global existence result is the following theorem.

Theorem 4 Assume that for some s ∈ [0, 2) condition (8) holds and

|f(x, u)| ≤ a|u|+ b(x)(18)

for some a > 0 and b ∈ L2(RN ). Then for every v0 ∈ Hψ,s(RN ) the Cauchy
problem (5) has a unique global classical solution.

Proof. The existence of the unique maximal solution proved in Theorem 1. To
prove the global existence it is enough to get for some c > 0 a uniform estimate

‖f(u(t))‖0 ≤ c(1 + ‖u(t)‖ψ,s),(19)

in the existence interval of the solution, see cf. [9, Corollary 3.3.5, p.56].
By (18) for t ∈ (0, Tmax) we obtain

‖f(u(t))‖2
0 ≤

∫
RN

(a|u(t)|+ b(x))2 dx ≤

2a2

∫
RN

|u(t)|2dx+ 2
∫

RN

|b(x)|2dx ≤ a2
1‖u(t)‖2

ψ,s + 2‖b‖2
0,

which implies (19). 2

Remark 7 The statement of this theorem does not follow from Theorem 1,
iii) since (18) does not imply that u → f(x, u) is globally Lipschitzian for a.e.
x ∈ RN .

By a standard arguments, cf. [7], one can show that if f(x, u) ≥ 0 has a
superlinear growth, the solution of the problem (5) may really blow–up. More
precisely we have the following

Theorem 5 Assume that λ1 = inf σ(−A) is an eigenvalue of −A and that the
corresponding eigenfunction e1 belongs to Hψ,2(RN ) ∩ L1(RN ). Assume also
that f(x, u) = f(u) is a convex smooth function,

f(0) = 0, f(u) ≥ 0, f ′(u) ≥ 0 for u ≥ 0,(20) ∫ +∞

1

du

f(u)
<∞,(21)

and for some s ∈ [0, 2) condition (8) holds. Then there exists v0 ∈ Hψ,s(RN ),
v0 ≥ 0 such that the solution u of the problem (5) blows–up in L2(RN ).
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Proof. By Theorem 1 there exist a maximal solution of problem (5) defined on
[0, Tmax). By Theorem 3 we have u(t) ≥ 0 for t ∈ [0, Tmax) since v0 ≥ 0.

Consider the function

γ(t) =
∫

RN

e1 u(t) dx

where we assume that ‖e1‖L1 = 1. Then

γ′(t) =
∫

RN

e1
d

dt
u(t) dx =

∫
RN

e1 (Au(t) + f(u(t))) dx.

Note that e1 ≥ 0 since A is a Dirichlet operator. Since e1 ∈ L1(RN ), e1 ≥ 0
and f(u) is convex applying Jensen inequality we have∫

RN

f(u(t)) (e1dx) ≥ f

(∫
RN

u(t) (e1dx)
)

and since e1 is an eigenfunction of A we get

γ′(t) ≥ −λ1

∫
RN

e1 u(t) dx+ f(
∫

RN

e1 u(t) dx) = −λ1γ(t) + f(γ(t)).

This implies that limt→Tmax γ(t) = +∞ if we choose ‖v0‖0 sufficiently large.
Since u(t) ≥ 0 for t ∈ [0, Tmax) this means that u blows–up in L2(RN ). 2

Remark 8 Actually the eigenfunctions ek of A (if exist) do always belong to
Hψ,2(RN ) ∩ L1∧∞(RN ). To show this, at first, let us note that by the spectral
theorem the generator −A and the semigroup operator Tt for any t > 0 have the
same eigenfunctions. By embeddings (7) we already know that the domain of
the sub–Markovian generator −A is contained in Ls∗(RN ) with s∗ > 2. Then,
by the result taken from Varopoulos et al. [26], for any t > 0 and 1 ≤ p < q ≤ ∞
the operator Tt maps Lp(RN ) into Lq(RN ). In particular, Tt maps L2(RN ) into
L∞(RN ) and hence ek ∈ L∞(RN ). Further, Tt maps L1(RN ) into L∞(RN ),
and, by duality, also L∞(RN ) into L1(RN ). Hence ek belongs to L1∧∞(RN ).

6 Log–Laplace equation

Now let us consider the adaptation of our result to the case of Log–Laplace
equation, i.e. to the problem{

du
dt = Au+ f(u),

u(0) = v0,
(22)

with an operator A as before and an operator f generated by a Carathéordory
function f(x, u) with the property that u → f(x, u) is negative–definite for
almost all x ∈ RN .

First, let us note that f(x, u) ≥ 0 by the properties of negative–definite
functions. Hence Theorem 3 implies that a solution u(t) of (22) with u(0) =
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v0 ≥ 0 remains nonnegative on the entire interval of existence, so we have the
positivity–preserving property for the Log–Laplace equation. On the other hand
the Log–Laplace equations inherit many difficulties known from well studied
local case A = ∆, including supercritical growth of nonlinearity, nonglobal
existence and blow–up, nonuniqueness. Let us consider several examples.

Example 1 Consider the functions

f1(x, u) = a(x) log(1 + u2) + b(x),

f2(x, u) =
a(x)u2

1 + u2
+ b(x),

f3(x, u) =
√
u2 + b2(x), f4(x, u) = 1− cos(u)

with a ∈ L∞(RN ), b ∈ L2(RN ) and a, b ≥ 0.
It is known that these functions are negative definite in u for almost all

x ∈ RN , cf. [2]. Moreover, fi are smooth functions in u, their derivatives
are uniformly bounded in x and fi(x, 0) ∈ L2(RN ). By (10) in all these cases
Theorem 1 holds with s = 0 and the Log–Laplace equation for fi has a unique
global solution for all initial data v0 ∈ L2(RN ).

Example 2 Now let us consider the function

f(α)(x, u) = a(x)|u|α + b(x)

with a ∈ L∞(RN ), b ∈ L2(RN ) and a, b ≥ 0. If α ∈ (0, 2] the function f(α) is
negative definite in u for almost all x ∈ RN . However in this case the situation
is more complicated. One can distinguish the following cases.

a) Supercritical growth: α ∈ (2 ∧ s∗/2, 2].
In this case we can not apply Theorem 1 because of “supercritical growth”

of f(α). Using Theorem 2 we can establish the existence of maximal solution
for (22) with initial data v0 ∈ L2∧∞(RN ) under the additional assumption
b ∈ L∞(RN ). By Theorem 5 this solution may blow–up in finite time.

b) Subcritical growth: α ∈ (1, 2 ∧ s∗/2].
In this case using Theorem 1 we can establish the existence of unique max-

imal solution for (22) with initial data v0 ∈ Hψ,s(RN ). By Theorem 5 this
solution may blows-up in finite time.

c) Case α = 1.
In this case applying Theorem 1 with s = 0 we establish the existence of

unique global solution for (22) for all initial data v0 ∈ L2(RN ).
d) Nonlipschitzian case: α ∈ (0, 1).
In this case the function f(α) do not satisfy the local Lipschitz condition.

Using our methods we can not say anything about solvability of (22). The
additional difficulty in this case is that the operator f(α) does not mapHψ,s(RN )
into L2(RN ) for any s ∈ (0, 1). This is because of the superlinear growth of
u→ f(α)(x, u) near zero.
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Remark 9 In the case A = ∆ and f(α)(x, u) = |u|α with α ∈ (0, 1) using the
method of monotone iterations one can establish the existence of unique global
solution of (5) for nonnegative initial data v0 ∈ L2(RN ), v0 ≥ 0, u 6= 0, cf. [22].
However the uniqueness for this problem really fails at zero. More precisely a
certain extinction phenomenon takes place. The global solution u of (5) may
vanish after finite extinction time Text < +∞, i.e. u(t) = 0 for t ≥ Text, cf.
[8, 19] and the references therein. One can expect that a similar result could be
obtained for the problem (5) also in the general case of operators A generated
by −p(x,D).

Remark 10 Finally let us consider the stationary Log–Laplace equation

Au+ f(u) = 0, u ∈ Hψ,s(RN ).(23)

Solutions of this problem are stationary orbits of a (local) semi–flow associated
with the Cauchy problem (22).

Suppose in addition that f(x, 0) = 0. Then u = 0 is a trivial solution of
(23). One can show that (23) has no nonpositive nontrivial solutions. On the
other hand in the local case A = ∆ − V (x) there is a huge literature about
existence (and also non–existence) of multiple nontrivial positive solutions for
(23), see cf. [20, 18]. It seems that at least some part of these results also hold
in some form in the general case of nonlocal A generated by −p(x,D), see [14]
for some preliminary results in this direction.
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