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Abstract

We study the existence and nonexistence of positive solutions to a sublinear (p < 1)
second-order divergence type elliptic equation (*) : —V-a-Vu = vP in unbounded cone—
like domains Cq. We prove the existence of the critical exponent

ps(a,Cq) =sup{p < 1: () has a positive supersolution at infinity in Cq, },

which depends on the geometry of the cone Cq and the coefficients a of the equation.

1 Introduction

We study the existence and nonexistence of positive (super)solutions to a sublinear second—
order divergence type elliptic equation

(1.1) —V-a-Vu=u" in Cq.

Here p < 1 is a sublinear (possibly negative) exponent, Cq is a cone-like domain in RY (N > 2)
defined as
Co:={(rw) eRY: weQ, r>0},

where (r,w) are the polar coordinates in R, cross-section @ C SN~! is a subdomain (a
connected open subset) of the unit sphere SV~ in RV, and

~V-a-Vi= =Y 0y (ai(z) 0x))

is the second order divergence type elliptic expression generated by a real symmetric measurable
and uniformly elliptic matrix a = (a;j(z)) on RY, so that

(1.2) VI <) ai(@)&G8 <vTHEP for all € € RY and almost all 2 € RV,

with an ellipticity constant v = v(a) > 0.

Solutions and super-solutions to equation (1.1) are understood in the weak sense. More
precisely, we say that u is a (super) solution to (1.1) in an open domain G C Cq if u € H. (G)
and

/vu.a.vSpdaj(Z):/upgod.f for all OSgOGHg(G),
G G
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where H}(G) stands for the set of compactly supported elements from H. (G). By the weak
Harnack inequality, any nontrivial nonnegative supersolution to (1.1) in G is strictly positive in
G, that is u™! € L (G). In particular, positive solution are well defined for negative values of
the exponent p.

We say that equation (1.1) has a (super) solution at infinity in Cq if there exists a closed ball
B, centered at the origin with radius p > 1 such that (1.1) has a (super) solution in Cq \ B,.
We define the critical exponent to equation (1.1) by

P« = px(a,Cq) = sup{p < 1: (1.1) has a positive supersolution at infinity in Cq}.

If no positive supersolutions at in infinity in Cq exists for any p < 1 then p,(a,Cq) = —oc.

”Critical exponent” type results for equations (1.1) with p > 1 have a long history, cf. [8] for
a survey of classical and recent work in the area. Equations (1.1) with p < 1 are less studied.
It is well-known that p.(a,Cgn-1) = —00, see [2, 7]. Recently it was established in [6] that in
the case of the Laplace operator (a = id) equation (1.1) admits a finite critical exponent on
proper conical domains. Precisely, in [6] it was proved that p.(id,Cq) = 1 — 2/, where a4
is the largest root of the equation a(a+ N —2) = A\(Q2) and A\;(Q2) is the principal Dirichlet
eigenvalue of the Laplace—Beltrami operator on 2. In this paper we investigate properties of the
critical exponent p,(a,Cq) in the case of general divergence type elliptic equations on cone-like
domains. The following proposition collects some elementary properties of the critical exponent.

Proposition 1.1. Let Q' ¢ Q C SN~ are subdomains of SN~1. Then
(Z) —00 < p*(a7CQ) < p*(a,CQ/) <1
(1) FEquation (1.1) admits a positive solution at infinity in Cq for every p < p.«(a,Cq).

Remark 1.2. Assertion (i) follows directly from the definition of the critical exponent p,(a,Cq)
and the fact that p.(a,Cgnv-1) = —oo0. Property (ii) simply means that the critical exponent
ps«(a,Cq) divides the semiaxes [—o0, 1] into precisely one existence and one nonexistence region.
Moreover, the existence of a positive supersolution at infinity implies the existence of a positive
solution at infinity. The proof of (ii) is similar to the proof of [5, Proposition 1.1]. We omit the
details.

We say that €2 is a proper subdomain of SN~1 and write Q € S¥~1, if S¥=1\ Q contains an
open set. The main result of the paper says that similarly to the Laplace equations, divergence
type equations on proper cone—like domain admit a nontrivial critical exponent.

Theorem 1.3. Let Q € SV be a proper subdomain. Then for any uniformly elliptic matrix
a one has p(a,Cq) € (—o0,1).

The value of the critical exponent essentially depends on the matrix @ and can not be
explicitly controlled without further restrictions on the properties of a.

Theorem 1.4. Let Q € SN~! be a proper subdomain. Then for any p € (—o0,1) there exists a
uniformly elliptic matriz a, such that p.(ap,Cq) = p.

Remark 1.5. Theorems 1.3 and 1.4 were announced in [8]. Related results for superlinear
equations (p > 1) of type (1.1) were established in the article [5]. In many aspects the current
paper can be seen as a continuation of [5].

In the remaining part of the paper we prove Theorems 1.3 and 1.4. In Section 2 we collect
preliminary results concerning associated to (1.1) linear equations. Sections 3 and 4 deal with
nonexistence and existence parts of the proof of Theorem 1.3. Section 5 contains the proof of
Theorem 1.4.



2 Preliminaries

Let G C Cq be an open domain. Consider the linear equation
(2.1) (-V-a-V-V)u=f in G,

where [ € ngcl(G) and 0 <V € L} (Q) is a form-bounded potential, that is

loc
(2.2) /Vuzd:cg(l—e)/Vu-qudx for all 0 <wu € HY(G)
G G

with some € € (0,1). A (super) solution to (2.1) is a function u € H}

loc

(@) such that
/ Vu-a-Vgodx—/ Vupdz (>) = (f,p) forall 0<¢pe HNG),
G G

where (-,-) denotes the duality between H, !(G) and H!(G). If u > 0 is a supersolution to
(2.3) (=V-a-V-V)u=0 in G,

then u is a supersolution to —V-a-Vu = 0 in G, and therefore u satisfies the weak Harnack
inequality on any subdomain G’ € G (see, e.g. [3, Theorem 8.18]). In particular, every nontrivial
supersolution u > 0 to (2.3) is strictly positive, in the sense that u=! € L (G).

loc

We define the Hilbert space D}(G) as a completion of C2°(G) with respect to the norm

|Vul|L,. By the Sobolev inequality, D}(G) C L7 (G). Since the matrix a is uniformly elliptic
and the potential V' > 0 is form bounded, the Dirichlet form

Sv(u,v):/Vu-a-Vvd:U/Vuvdm
G G

defines an inner product on D§(G). By D*(G) we denotes the space D}(G) = {u € L2 (G) :

loc
Vu € L*(G)}. The next lemma is a standard consequence of the Lax—Milgram Theorem.

Lemma 2.1. Let g € DY(G). Then the problem
(=V-a-V-V)y=0, v—g € DG,
has a unique solution.

The following two lemmas provide Maximum and Comparison Principles for linear equation
(2.3), in a form suitable for our framework (see [5, Lemma 2.2 and Lemma 2.3] for the proofs).

Lemma 2.2. Let u € H} (G) be a supersolution to (2.3) such that u~ € D§(G). Then v >0
in G.

Lemma 2.3. Let 0 < u € H} (G) and v € D{(G). Suppose u — v is a supersolution to (2.3).
Then u > v in G.

Here and thereafter, for 0 < p < R < 400, we denote

R . — {(rw) eRN : weQ, r e (p,R)}.



We also use the notation Cf) := Cézp,Jroo)’ so that Cq = Cg = CéO’JrOO). Given a function 0 < u €

H} (Cg'/z’R) and a subdomain ' C 0, denote

loc

my(R, Q) = inf u, My(R,Q) = sup u.

R/2,R
/2R e/ )

We also use the standard notation f, udz := |G|™! [, udz, with |G| being the Lebesgue measure
of a domain G C R¥.

An important property of positive supersolutions to homogeneous linear equations in cone—
like domains is the following two—sided polynomial bound.

Lemma 2.4. For any proper subdomain ' € § there exists a < 2 — N and 8 > 0 such that
the infimum of every supersolution w > 0 to the linear equation

(2.4) ~V-a-Vw=0 in C§.
satisfies the bound
(2.5) cR® <myu(R,Y)<CR?  (R>p).

Proof. We scetch the proof of the upper bound. The derivation of the lower bound is similar.
Let R > r > p. By the weak Harnack inequality (see, e.g. [3, Theorem 8.18]), w satisfies

inf w > Cyw ][ wdzx,
e

R
ey

with the weak Harnack constant Cyy € (0,1) which depends on €' but not on r and R, as a

simple scaling argument shows. Denote p(r) := inf ¢a,m w and set a = 1/2, b = 3/2. Let
Q/
r > 2p. Then
-1 .
(2.6) w(2r) < ]ﬁ(wa’%b) wdxr < )\]{j(m%b) wdr < A\Cyy, C(TIBerb) w < Cyp(r),
Qf Qf Qf

with A = 22121’__2% and C, = )\Cﬁ/l > 1. Let rg > 2p, r, = 2"rp and n € N. Iterating (2.6) n—times,

we obtain

p(rn) < CLp(ro).

Choosing n € N such that R < 2ar, and applying once more the weak Harnack inequality, we
obtain upper bound (2.5) with 5 = log, C. O

Remark 2.5. Similar arguments were used by Pinchover [10, Lemma 6.5], compare also [5,
Lemma 5.1]. Note that the above proof does not allow to control the value of # and « in terms
of the ellipticity constant v(a). Note also that on the proper cone-like domains (and in contrast
to exterior domains of R") the sharp values of 3 and « in (2.5) essentially depend on the matrix
a. For instance, for a given proper cone Cq and for an arbitrary 8 > 0 one can construct a
uniformly elliptic matrix a such that equation (2.4) admits a solution w > 0 which satisfies
Mmuw(R, ) ~ My,(R,Q) ~ RP for all large R > p, see the operator Lg, constructed in the proof
of Theorem 1.4 below.



3 Proof of Theorem 1.3 — Nonexistence

We begin the proof of nonexistence with the following standard lower bound on positive super-
solutions to nonlinear equation (1.1).

Lemma 3.1. Let p < 1 and u > 0 be a supersolution at infinity to (1.1). Then for any proper
subdomain Q' € Q) there exists ¢ = c¢(Y') such that

(3.1) me(R, Q) > R (R>1).

Proof. Let w > 0 be a super-solution at infinity to (1.1). Then —V-a-Vw > 0 in C§ for some
p > 1 and, by the weak Harnack inequality (see, e.g. [3, Theorem 8.18]), for any s > 0 and for
any compact ' C Q K C CF there exists Cyyy > 0 such that

1/s
3.2 sup w ! < Cw ][ w°dx .
(32) C<R/2F,)R> B ( e/
Qf @

The weak Harnack constant Cy > 0 depends on €’ but does not depend on R, as one can see
by a simple scaling argument. Further, w > 0 is a supersolution to the linearized equation

—V-a-Vw — (wpfl) w>0 in CP,

and then it follows from [1, Theorem 3.1] that

(3.3) / Ve-a-Veodr — / wP~tp?de >0 for all p € HY(CH) N HZ(Ch).
o o

Fix a proper subdomain ' € Q. Choose 1) € C°(Q) such that ¢y =1 on Q. For R > p, choose

Or(r) € Co*(p,+00) such that 0 < 0z < 1, 6 = 1 for r € [R/2, R], supp (0r) = [R/4,2R] and

|[VOr| < ¢/R. Then

(3.4) V(OrY) -a-V(0pi) dx < cRN 2.
¢4

On the other hand,

(3.5) /C )

Combining (3.3), (3.4) and (3.5) we derive

¢cR2>RN wPldx = ¢ wP~dz,
C(R/2,R) o(R/2,R)

for some ¢g > 0 which does not depend on R. Then by (3.2) with s = 1 — p we obtain

p—1 2 p—1
w 0 dr > wP™ dx.
(Ory)”de = /Cu;/z,m
Q

1
1-p 1
2 S
_ —(1— - -1 -1
cR T2 > | ¢ w1P) gy >cy 'Cy sup w .
C(f/?r/Q,R)
Q

/2R

Hence the assertion follows. O



Lemma 3.1 combined with the polynomial upper bound from (2.5) on positive supersolu-
tions to the linear equation (2.4) immediately implies an upper bound on the critical exponent

p*(G’?CQ)'
Proposition 3.2. p.(a,Cq) < 1—2/3, where 3 > 0 is taken from (2.5).

Proof. Fix p > 1 —2/83. Assume u > 0 is a positive supersolution at infinity to (1.1). Hence
u is a positive supersolution to (2.4). But then lower bound (3.1) is incompatible with upper
bound (2.5), a contradiction. O

4 Proof of Theorem 1.3 — Existence

To establish a lower bound on the critical exponent p.(a,Cq), we consider the linear equation

(4.1) ~V-a-Vw—-Vaw =0 in Cf,
where p > 1,

€
42 Vi) = — A1,
- W [P ogt

and e > 0 will be specified later. We are going to show that equation (4.1) on proper cone-like
domains always admits a positive (super) solution w > 0 that satisfies a lower bound

(4.3) w > ¢z’ in C§,

with some v > 0. We call such supersoultion a growing supersolution to (4.1).

The construction of a growing (super) solution to (4.1) will be done in several steps. First,
we recall the concept of a Green bounded potential, see [4, 7]. Consider the equations

(4.4) ~V-a-Vv—-Vo=0 in RY,

where 0 <V € L} (RY). We say that the potential V is Green bounded if

loc

Wlenai= s [ Tulaa)Visdy <.

z€RN
where I';(x,y) is the minimal positive Green function to
~V-a-Vv=0 in RV
In this case we write V' € GB. Note that every Green bounded potential is form bounded in

the sense of (2.2) (e.g., by the Stein interpolation theorem).

Note that the condition ||V||gp,. < 00, is equivalent up to a constant factor to the condition

sup / & — PNV (y))dy < oo.
]RN

zeRN
In particular, this condition can be used to verify that the potential V; is Green bounded for
sufficiently small € > 0. In what follows we assume that € > 0 is chosen so that V. € GB.

We will use the following important property of Green bounded potentials, which was proved
in [4], see also further references therein.



Lemma 4.1. Let V € GB and |V||gB,a < 1. Then there exists a quasiconstant solution wy > 0
to the equation

(4.5) —V-a-Vw—-Vw=0 in RY,
such that 0 < e < wy < €' in RV,

To construct a growing solution to (4.1) we first define a family of approximate solutions. Fix
smooth subdomains U” @ U’ € U such that Q C U”, and a function 0 < ¢ € C§°(U’) such that

0<¢y<landyp=1onU". Let € C*[1/2,1] besuch that (1) =1,0 <6 < 1land 6(1/2) = 0.

Assume that R > 1 and set Og(r) := 0(r/R) (r € [R/2, R]). Thus 0ry € Dl(CZ(]},z/Q’R)). By wy r

we denote the unique solution to the problem
~V-a-Vu—-Vw=0,  w—0pe DSCOH.

Observe that wy, g depends only on R and 1, but does not depend on the choice of # (this easily
follows, e.g., from Lemma 2.2). Note also that wy, g is positive. Indeed,

(wy.r)” < (wy.r — OrY)~ € DY(CTH).

Thus wy, g > 0 in C((JO ’R), by Lemma 2.2 and weak Harnack’s inequality.

Lemma 4.2. There exists Mo, > 0 such that |wy r|[re < M.

Proof. Let wg > 0 be a quasiconstant solution to (4.5) that satisfies 0 < € < wg < e~ ! in RV,
Without loss of generality we may assume that wo > maxy ¥ = 1. Then

(—=V-a-V = V)((wo — Or)) — (wy g — OrY)) = (=V-a-V — V)(wy — wy.p) =0 in COF),

Thus Lemma 2.3 implies that wy, r < wg in C((]O’R), uniformly in R > 1. O
Fix a compact Ky C C((]O’l/Q). Set
Wy,R
Up.R = .
R ianO Wy R

Then infg, vy r = 1 and (vy r)r>1 is a family of solutions to the equations

. 0,R
(4.6) (-V-a-V-V)uy=0 in C((] ),

Lemma 4.3. There exist v > 0 and C > 0 such that for R > 1 one has
my, (R,Q2) > CR.

Proof. Let wy be a quasiconstant solution to (4.5) given by Lemma 4.1. One can check by direct
computation (see [7, Lemma 3.4]), that

WR = Yy.R
wo
is a solution to the equation
(4.7) V- A-Vw=0 in "%

where A := w3a. Clearly the matrix A is uniformly elliptic with an ellipticity constant v(A) > 0.



Applying the scaling y = x/R to (4.7) we see that the function wr(y) = wr(Ry) solves the
equation
—V-Ap Vig =0 in >,

where the matrix AR(y) = A(Ry) is uniformly elliptic with the same ellipticity constant v =
v(A).
(0,1)

Observe that dC;;"’ satisfies the exterior cone condition. In particular, every boundary
point of 8Cl(]0 D g regular. Thus, by the boundary regularity result [3, Theorem 8.27] applied

at the vertex x = 0 we conclude that there exist v > 0 and Cy > 0 such that

0sc,01/mWr(Y) < CR™T sup wg(y) < CoMecR ™.
U C[(Jo,uz)

The constants v > 0 and Cp > 0 depend only on the ellipticity constant v(A) and do not depend
on R.
By the same regularity result [3, Theorem 8.27] applied at Q (considered as a portion of the

boundary of C[(]O M we conclude that for some § € (0,1/2) there exist C; > 0 and y; > 0 such

that

OSCC(175,1)7f)R(y) < C16" sup wWr(y) < C1Mod™.
o c0:1/2)
Q

Here 71 > 0 and C7 > 0 depend only on v(A) and do not depend on R. Hence the strong
Harnack inequality implies that there exists a constant M; > 0 such that

C<111/12f,1> br(y) 2 M.
Q

Applying the inverse rescaling z = Ry, we conclude that
My, 5 (R,Q) > CRY

with some C' > 0 which is independent of R. O

Lemma 4.4. There ezists a growing solution to equation (4.1) that satisfies (4.3).

Proof. By the Harnack inequality for any compact K C Cézo’R) such that Ky C K one has

sup vy r < cinfuvy g < cinfoy g = c,
K K Ko

where ¢ = ¢(K) > 0. Let R,, — oo. By the standard Cacciopoli and diagonalization arguments
(see, e.g., [5, Proposition 1.1]) one can construct a function vy, € H} (Cq) that is a solution to

4.1) in Cq and satisfies vy, > vy g, in C9B) for each n € N. Therefore vy, is a growing solution
P %, Rn Q p
to (4.1) in Cq that obeys (4.3), as required. O

Now we prove that the existence of a growing (super) solution to (4.3) implies a lower bound
on the critical exponent p.(a,Cq).

Proposition 4.5. p.(a,Cq) > 1 —2/~, where v > 0 is taken from (4.3).

Proof. Let w > 0 be a growing supersolution to (4.1) that satisfies (4.3), as constructed in
Lemma 4.4. Fix p < pp =1 — 2/~ and set 6 = pp — p. Then one can choose 7 = 7(§) > 0 such
that

cr)P~t €
Tw)P~ < P ez )P < (
oy S TS s = gl

: p
in Cq.
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Therefore

€

—V-a-V(tw) = (Tw) > (rw)P " (tw) = (Tw)? in Ch,

.
|2 log? |z

that is 7w > 0 is a supersolution to (1.1) in C§. O

5 Proof of Theorem 1.4

Using polar coordinates (r,w), define a Serrin—type operator on Cq by

2 N-10 40

where A, is the Laplace—Beltrami operator on €2, and § : Ry — R, is measurable and squeezed
between two positive constants. Then L; is a divergence type elliptic operator —V- as -V with
a uniformly elliptic matrix as(x) (see, e.g., [5, 11]). Clearly, if §(r) =1 then Ls = —A.

Proof of Theorem 1.4. Let Q € SV~! be a proper subdomain, \; = A1(Q2) > 0 the principal
Dirichlet eigenvalue of —A, on Q and ¢ > 0 the corresponding principal eigenfunction. Given
p € (—o0,1), set B := % and consider the operator Ls with
5y = SO N =2)
A1
A direct computation shows that
w =1 p1(w)
is a positive solution to Lsw = 0 in Cq. By Proposition 3.2 we conclude that p,(as, Q) < p.

Next we show that p.(as,) > p. To make the arguments more transparent, we make an
additional assumption that Q € SV~ is smooth. Then for arbitrary € > 0 one can find a proper
(smooth) subdomain Q. € SV~! such that Q € Q. and A\;(Q) > A\(Q) —¢e. Let 3 := ﬁ and
~. > 0 be the positive root of the quadratic equation

A1(9:)

Q) b

(N =2)+ B8+ N - 2)

Let qﬁge) > 0 denotes the principal Dirichlet eigenfunction of —A,, in .. Clearly 7. < [ and
Y. — B ase— 0.

A direct computation shows that for all sufficiently small € > 0 the function
we = 17750 (w)
is a positive supersolution to the equation
(Ls — Ve, )w=0 1in Cspfe
for some pe > 1 (where V,, is defined in (4.2) and €, > 0 is fixed). Clearly,
we > cer’*7° in Cfr.

By Proposition 4.5 we conclude that

«(aq,Cq) >1—
p+(aq, Co) P 3

which completes the proof for smooth domains €2. The proof for the general open subdomains
Q € SN~! could be carried over following, with minor modifications, the lines of the (rather
technical) arguments in [9, Lemma 6.8]. O
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