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Abstract

We study the existence and nonexistence of positive solutions to a sublinear (p < 1)
second–order divergence type elliptic equation (∗) : −∇· a ·∇u = up in unbounded cone–
like domains CΩ. We prove the existence of the critical exponent

p∗(a, CΩ) = sup{p < 1 : (∗) has a positive supersolution at infinity in CΩ },

which depends on the geometry of the cone CΩ and the coefficients a of the equation.

1 Introduction

We study the existence and nonexistence of positive (super) solutions to a sublinear second–
order divergence type elliptic equation

(1.1) −∇· a ·∇u = up in CΩ.

Here p < 1 is a sublinear (possibly negative) exponent, CΩ is a cone–like domain in RN (N ≥ 2)
defined as

CΩ := {(r, ω) ∈ RN : ω ∈ Ω, r > 0},
where (r, ω) are the polar coordinates in RN , cross–section Ω ⊆ SN−1 is a subdomain (a
connected open subset) of the unit sphere SN−1 in RN , and

−∇· a ·∇ := −
∑

∂xi
(
aij(x) ∂xj

)
is the second order divergence type elliptic expression generated by a real symmetric measurable
and uniformly elliptic matrix a = (aij(x)) on RN , so that

(1.2) ν|ξ|2 ≤
∑

aij(x)ξiξj ≤ ν−1|ξ|2 for all ξ ∈ RN and almost all x ∈ RN ,

with an ellipticity constant ν = ν(a) > 0.

Solutions and super-solutions to equation (1.1) are understood in the weak sense. More
precisely, we say that u is a (super) solution to (1.1) in an open domain G ⊆ CΩ if u ∈ H1

loc(G)
and ∫

G
∇u · a · ∇ϕ dx (≥) =

∫
G
upϕ dx for all 0 ≤ ϕ ∈ H1

c (G),

1



where H1
c (G) stands for the set of compactly supported elements from H1

loc(G). By the weak
Harnack inequality, any nontrivial nonnegative supersolution to (1.1) in G is strictly positive in
G, that is u−1 ∈ L∞loc(G). In particular, positive solution are well defined for negative values of
the exponent p.

We say that equation (1.1) has a (super) solution at infinity in CΩ if there exists a closed ball
B̄ρ centered at the origin with radius ρ > 1 such that (1.1) has a (super) solution in CΩ \ B̄ρ.
We define the critical exponent to equation (1.1) by

p∗ = p∗(a, CΩ) = sup{p < 1 : (1.1) has a positive supersolution at infinity in CΩ}.

If no positive supersolutions at in infinity in CΩ exists for any p < 1 then p∗(a, CΩ) = −∞.

”Critical exponent” type results for equations (1.1) with p > 1 have a long history, cf. [8] for
a survey of classical and recent work in the area. Equations (1.1) with p < 1 are less studied.
It is well–known that p∗(a, CSN−1) = −∞, see [2, 7]. Recently it was established in [6] that in
the case of the Laplace operator (a = id) equation (1.1) admits a finite critical exponent on
proper conical domains. Precisely, in [6] it was proved that p∗(id, CΩ) = 1 − 2/α+, where α+

is the largest root of the equation α(α + N − 2) = λ1(Ω) and λ1(Ω) is the principal Dirichlet
eigenvalue of the Laplace–Beltrami operator on Ω. In this paper we investigate properties of the
critical exponent p∗(a, CΩ) in the case of general divergence type elliptic equations on cone–like
domains. The following proposition collects some elementary properties of the critical exponent.

Proposition 1.1. Let Ω′ ⊂ Ω ⊆ SN−1 are subdomains of SN−1. Then

(i) −∞ ≤ p∗(a, CΩ) ≤ p∗(a, CΩ′) ≤ 1;

(ii) Equation (1.1) admits a positive solution at infinity in CΩ for every p < p∗(a, CΩ).

Remark 1.2. Assertion (i) follows directly from the definition of the critical exponent p∗(a, CΩ)
and the fact that p∗(a, CSN−1) = −∞. Property (ii) simply means that the critical exponent
p∗(a, CΩ) divides the semiaxes [−∞, 1] into precisely one existence and one nonexistence region.
Moreover, the existence of a positive supersolution at infinity implies the existence of a positive
solution at infinity. The proof of (ii) is similar to the proof of [5, Proposition 1.1]. We omit the
details.

We say that Ω is a proper subdomain of SN−1 and write Ω b SN−1, if SN−1 \Ω contains an
open set. The main result of the paper says that similarly to the Laplace equations, divergence
type equations on proper cone–like domain admit a nontrivial critical exponent.

Theorem 1.3. Let Ω b SN−1 be a proper subdomain. Then for any uniformly elliptic matrix
a one has p∗(a, CΩ) ∈ (−∞, 1).

The value of the critical exponent essentially depends on the matrix a and can not be
explicitly controlled without further restrictions on the properties of a.

Theorem 1.4. Let Ω b SN−1 be a proper subdomain. Then for any p ∈ (−∞, 1) there exists a
uniformly elliptic matrix ap such that p∗(ap, CΩ) = p.

Remark 1.5. Theorems 1.3 and 1.4 were announced in [8]. Related results for superlinear
equations (p > 1) of type (1.1) were established in the article [5]. In many aspects the current
paper can be seen as a continuation of [5].

In the remaining part of the paper we prove Theorems 1.3 and 1.4. In Section 2 we collect
preliminary results concerning associated to (1.1) linear equations. Sections 3 and 4 deal with
nonexistence and existence parts of the proof of Theorem 1.3. Section 5 contains the proof of
Theorem 1.4.
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2 Preliminaries

Let G ⊆ CΩ be an open domain. Consider the linear equation

(2.1) (−∇· a ·∇ − V )u = f in G,

where f ∈ H−1
loc (G) and 0 ≤ V ∈ L1

loc(G) is a form–bounded potential, that is

(2.2)
∫
G
V u2 dx ≤ (1− ε)

∫
G
∇u · a · ∇u dx for all 0 ≤ u ∈ H1

c (G)

with some ε ∈ (0, 1). A (super) solution to (2.1) is a function u ∈ H1
loc(G) such that∫

G
∇u · a · ∇ϕ dx−

∫
G
V uϕ dx (≥) = 〈f, ϕ〉 for all 0 ≤ ϕ ∈ H1

c (G),

where 〈·, ·〉 denotes the duality between H−1
loc (G) and H1

c (G). If u ≥ 0 is a supersolution to

(2.3) (−∇· a ·∇ − V )u = 0 in G,

then u is a supersolution to −∇· a ·∇u = 0 in G, and therefore u satisfies the weak Harnack
inequality on any subdomainG′ b G (see, e.g. [3, Theorem 8.18]). In particular, every nontrivial
supersolution u ≥ 0 to (2.3) is strictly positive, in the sense that u−1 ∈ L∞loc(G).

We define the Hilbert space D1
0(G) as a completion of C∞c (G) with respect to the norm

‖∇u‖L2 . By the Sobolev inequality, D1
0(G) ⊂ L

2N
N−2 (G). Since the matrix a is uniformly elliptic

and the potential V ≥ 0 is form bounded, the Dirichlet form

EV (u, v) =
∫
G
∇u · a · ∇v dx−

∫
G
V uv dx

defines an inner product on D1
0(G). By D1(G) we denotes the space D1(G) = {u ∈ L2

loc(G) :
∇u ∈ L2(G)}. The next lemma is a standard consequence of the Lax–Milgram Theorem.

Lemma 2.1. Let g ∈ D1(G). Then the problem

(−∇· a ·∇ − V )v = 0, v − g ∈ D1
0(G),

has a unique solution.

The following two lemmas provide Maximum and Comparison Principles for linear equation
(2.3), in a form suitable for our framework (see [5, Lemma 2.2 and Lemma 2.3] for the proofs).

Lemma 2.2. Let u ∈ H1
loc(G) be a supersolution to (2.3) such that u− ∈ D1

0(G). Then v ≥ 0
in G.

Lemma 2.3. Let 0 ≤ u ∈ H1
loc(G) and v ∈ D1

0(G). Suppose u − v is a supersolution to (2.3).
Then u ≥ v in G.

Here and thereafter, for 0 ≤ ρ < R ≤ +∞, we denote

C(ρ,R)
Ω := {(r, ω) ∈ RN : ω ∈ Ω, r ∈ (ρ,R)}.
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We also use the notation CρΩ := C(ρ,+∞)
Ω , so that CΩ = C0

Ω = C(0,+∞)
Ω . Given a function 0 < u ∈

H1
loc(C

R/2,R
Ω ) and a subdomain Ω′ ⊆ Ω, denote

mu(R,Ω′) := inf
C(R/2,R)

Ω′

u, Mu(R,Ω′) := sup
C(R/2,R)

Ω′

u.

We also use the standard notation −
∫
G u dx := |G|−1

∫
G udx, with |G| being the Lebesgue measure

of a domain G ⊂ RN .

An important property of positive supersolutions to homogeneous linear equations in cone–
like domains is the following two–sided polynomial bound.

Lemma 2.4. For any proper subdomain Ω′ b Ω there exists α < 2 − N and β > 0 such that
the infimum of every supersolution w > 0 to the linear equation

(2.4) −∇· a ·∇w = 0 in CρΩ.

satisfies the bound

(2.5) cRα ≤ mw(R,Ω′) ≤ CRβ (R� ρ).

Proof. We scetch the proof of the upper bound. The derivation of the lower bound is similar.

Let R > r > ρ. By the weak Harnack inequality (see, e.g. [3, Theorem 8.18]), w satisfies

inf
C(r,R)

Ω′

w ≥ CW−
∫
C(r,R)

Ω′

w dx,

with the weak Harnack constant CW ∈ (0, 1) which depends on Ω′ but not on r and R, as a
simple scaling argument shows. Denote µ(r) := infC(ra, rb)

Ω′
w and set a = 1/2, b = 3/2. Let

r > 2ρ. Then

µ(2r) ≤ −
∫
C(2ra, 2rb)

Ω′

w dx ≤ λ−
∫
C(ra, 2rb)

Ω′

w dx ≤ λC−1
W inf

C(ra,2rb)

Ω′

w ≤ C∗µ(r),(2.6)

with λ = 2b−a
2b−2a and C∗ = λC−1

W > 1. Let r0 > 2ρ, rn = 2nr0 and n ∈ N. Iterating (2.6) n–times,
we obtain

µ(rn) ≤ Cn∗ µ(r0).

Choosing n ∈ N such that R < 2arn and applying once more the weak Harnack inequality, we
obtain upper bound (2.5) with β = log2C∗.

Remark 2.5. Similar arguments were used by Pinchover [10, Lemma 6.5], compare also [5,
Lemma 5.1]. Note that the above proof does not allow to control the value of β and α in terms
of the ellipticity constant ν(a). Note also that on the proper cone–like domains (and in contrast
to exterior domains of RN ) the sharp values of β and α in (2.5) essentially depend on the matrix
a. For instance, for a given proper cone CΩ and for an arbitrary β > 0 one can construct a
uniformly elliptic matrix a such that equation (2.4) admits a solution w > 0 which satisfies
mw(R,Ω′) 'Mw(R,Ω′) ' Rβ for all large R > ρ, see the operator Lδ, constructed in the proof
of Theorem 1.4 below.
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3 Proof of Theorem 1.3 – Nonexistence

We begin the proof of nonexistence with the following standard lower bound on positive super-
solutions to nonlinear equation (1.1).

Lemma 3.1. Let p < 1 and u > 0 be a supersolution at infinity to (1.1). Then for any proper
subdomain Ω′ b Ω there exists c = c(Ω′) such that

(3.1) mu(R,Ω′) ≥ cR
2

1−p (R� 1).

Proof. Let w > 0 be a super-solution at infinity to (1.1). Then −∇· a ·∇w ≥ 0 in CρΩ for some
ρ� 1 and, by the weak Harnack inequality (see, e.g. [3, Theorem 8.18]), for any s > 0 and for
any compact Ω′ ⊂ Ω K ⊂ CRΩ there exists CW > 0 such that

(3.2) sup
C(R/2,R)

Ω′

w−1 ≤ CW

(
−
∫
C(R/2,R)

Ω′

w−sdx

)1/s

.

The weak Harnack constant CW > 0 depends on Ω′ but does not depend on R, as one can see
by a simple scaling argument. Further, w > 0 is a supersolution to the linearized equation

−∇· a ·∇w −
(
wp−1

)
w ≥ 0 in CρΩ,

and then it follows from [1, Theorem 3.1] that

(3.3)
∫
CρΩ
∇ϕ · a · ∇ϕdx−

∫
CρΩ
wp−1 ϕ2 dx ≥ 0 for all ϕ ∈ H1

c (C
ρ
Ω) ∩H∞

c (CρΩ).

Fix a proper subdomain Ω′ b Ω. Choose ψ ∈ C∞c (Ω) such that ψ = 1 on Ω′. For R� ρ, choose
θR(r) ∈ C0,1

c (ρ,+∞) such that 0 ≤ θR ≤ 1, θR = 1 for r ∈ [R/2, R], supp (θR) = [R/4, 2R] and
|∇θR| < c/R. Then

(3.4)
∫
CρΩ
∇(θRψ) · a · ∇(θRψ) dx ≤ cRN−2.

On the other hand,

(3.5)
∫
Cρ
Ω′

wp−1 (θRψ)2 dx ≥
∫
C(R/2,R)

Ω′

wp−1dx.

Combining (3.3), (3.4) and (3.5) we derive

cR−2 ≥ R−N
∫
C(R/2,R)

Ω′

wp−1dx = c0−
∫
C(R/2,R)

Ω′

wp−1dx,

for some c0 > 0 which does not depend on R. Then by (3.2) with s = 1− p we obtain

cR
− 2

1−p ≥

(
c0−
∫
C(R/2,R)

Ω′

w−(1−p) dx

) 1
1−p

≥ c
1

1−p
0 C−1

W sup
C(R/2,R)

Ω′

w−1.

Hence the assertion follows.
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Lemma 3.1 combined with the polynomial upper bound from (2.5) on positive supersolu-
tions to the linear equation (2.4) immediately implies an upper bound on the critical exponent
p∗(a, CΩ).

Proposition 3.2. p∗(a, CΩ) ≤ 1− 2/β, where β > 0 is taken from (2.5).

Proof. Fix p > 1 − 2/β. Assume u > 0 is a positive supersolution at infinity to (1.1). Hence
u is a positive supersolution to (2.4). But then lower bound (3.1) is incompatible with upper
bound (2.5), a contradiction.

4 Proof of Theorem 1.3 – Existence

To establish a lower bound on the critical exponent p∗(a, CΩ), we consider the linear equation

(4.1) −∇· a ·∇w − Vεw = 0 in CρΩ,

where ρ > 1,

(4.2) Vε(x) :=
ε

|x|2 log2 |x|
∧ 1,

and ε > 0 will be specified later. We are going to show that equation (4.1) on proper cone–like
domains always admits a positive (super) solution w > 0 that satisfies a lower bound

(4.3) w ≥ c|x|γ in CρΩ,

with some γ > 0. We call such supersoultion a growing supersolution to (4.1).

The construction of a growing (super) solution to (4.1) will be done in several steps. First,
we recall the concept of a Green bounded potential, see [4, 7]. Consider the equations

(4.4) −∇· a ·∇v − V v = 0 in RN ,

where 0 ≤ V ∈ L1
loc(RN ). We say that the potential V is Green bounded if

‖V ‖GB,a := sup
x∈RN

∫
RN

Γa(x, y)V (y)dy <∞,

where Γa(x, y) is the minimal positive Green function to

−∇· a ·∇v = 0 in RN .

In this case we write V ∈ GB. Note that every Green bounded potential is form bounded in
the sense of (2.2) (e.g., by the Stein interpolation theorem).

Note that the condition ‖V ‖GB,a <∞, is equivalent up to a constant factor to the condition

sup
x∈RN

∫
RN

|x− y|2−N |V (y)|dy <∞.

In particular, this condition can be used to verify that the potential Vε is Green bounded for
sufficiently small ε > 0. In what follows we assume that ε > 0 is chosen so that Vε ∈ GB.

We will use the following important property of Green bounded potentials, which was proved
in [4], see also further references therein.
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Lemma 4.1. Let V ∈ GB and ‖V ‖GB,a < 1. Then there exists a quasiconstant solution w0 > 0
to the equation

(4.5) −∇· a ·∇w − V w = 0 in RN ,

such that 0 < ε < w0 < ε−1 in RN .

To construct a growing solution to (4.1) we first define a family of approximate solutions. Fix
smooth subdomains U ′′ b U ′ b U such that Ω̄ ⊂ U ′′, and a function 0 � ψ ∈ C∞0 (U ′) such that
0 ≤ ψ ≤ 1 and ψ ≡ 1 on U ′′. Let θ ∈ C∞[1/2, 1] be such that θ(1) = 1, 0 ≤ θ ≤ 1 and θ(1/2) = 0.
Assume that R ≥ 1 and set θR(r) := θ(r/R) (r ∈ [R/2, R]). Thus θRψ ∈ D1(C(R/2,R)

U ′ ). By wψ,R
we denote the unique solution to the problem

−∇· a ·∇w − V w = 0, w − θRψ ∈ D1
0(C

(0,R)
U ).

Observe that wψ,R depends only on R and ψ, but does not depend on the choice of θ (this easily
follows, e.g., from Lemma 2.2). Note also that wψ,R is positive. Indeed,

(wψ,R)− ≤ (wψ,R − θRψ)− ∈ D1
0(C

(0,R)
U ).

Thus wψ,R > 0 in C(0,R)
U , by Lemma 2.2 and weak Harnack’s inequality.

Lemma 4.2. There exists M∞ > 0 such that ‖wψ,R‖L∞ ≤M∞.

Proof. Let w0 > 0 be a quasiconstant solution to (4.5) that satisfies 0 < ε < w0 < ε−1 in RN .
Without loss of generality we may assume that w0 ≥ maxU ψ = 1. Then

(−∇· a ·∇ − V )((w0 − θRψ)− (wψ,R − θRψ)) = (−∇· a ·∇ − V )(w0 − wψ,R) = 0 in C(0,R)
U .

Thus Lemma 2.3 implies that wψ,R ≤ w0 in C(0,R)
U , uniformly in R ≥ 1.

Fix a compact K0 ⊂ C(0,1/2)
U . Set

vψ,R :=
wψ,R

infK0 wψ,R
.

Then infK0 vψ,R = 1 and (vψ,R)R≥1 is a family of solutions to the equations

(4.6) (−∇· a ·∇ − V )v = 0 in C(0,R)
U .

Lemma 4.3. There exist γ > 0 and C > 0 such that for R ≥ 1 one has

mvψ,R(R,Ω) ≥ CRγ .

Proof. Let w0 be a quasiconstant solution to (4.5) given by Lemma 4.1. One can check by direct
computation (see [7, Lemma 3.4]), that

wR :=
wψ,R
w0

is a solution to the equation

(4.7) −∇·A ·∇w = 0 in C(0,R)
U ,

where A := w2
0a. Clearly the matrix A is uniformly elliptic with an ellipticity constant ν(A) > 0.
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Applying the scaling y = x/R to (4.7) we see that the function ŵR(y) = wR(Ry) solves the
equation

−∇· ÂR ·∇ŵR = 0 in C(0,1)
U ,

where the matrix ÂR(y) = A(Ry) is uniformly elliptic with the same ellipticity constant ν =
ν(A).

Observe that ∂C(0,1)
U satisfies the exterior cone condition. In particular, every boundary

point of ∂C(0,1)
U is regular. Thus, by the boundary regularity result [3, Theorem 8.27] applied

at the vertex x = 0 we conclude that there exist γ > 0 and C0 > 0 such that

oscC(0,1/R)
U

ŵR(y) ≤ CR−γ sup
C(0,1/2)
U

ŵR(y) ≤ C0M∞R
−γ .

The constants γ > 0 and C0 > 0 depend only on the ellipticity constant ν(A) and do not depend
on R.

By the same regularity result [3, Theorem 8.27] applied at Ω (considered as a portion of the
boundary of C(0,1)

U we conclude that for some δ ∈ (0, 1/2) there exist C1 > 0 and γ1 > 0 such
that

oscC(1−δ,1)
Ω

ŵR(y) ≤ C1δ
γ1 sup
C(0,1/2)
Ω

ŵR(y) ≤ C1M∞δ
γ1 .

Here γ1 > 0 and C1 > 0 depend only on ν(A) and do not depend on R. Hence the strong
Harnack inequality implies that there exists a constant M1 > 0 such that

inf
C(1/2,1)
Ω

ŵR(y) ≥M1.

Applying the inverse rescaling x = Ry, we conclude that

mvψ,R(R,Ω) ≥ CRγ

with some C > 0 which is independent of R.

Lemma 4.4. There exists a growing solution to equation (4.1) that satisfies (4.3).

Proof. By the Harnack inequality for any compact K ⊂ C(0,R)
Ω such that K0 ⊂ K one has

sup
K
vψ,R ≤ c inf

K
vψ,R ≤ c inf

K0

vψ,R = c,

where c = c(K) > 0. Let Rn →∞. By the standard Cacciopoli and diagonalization arguments
(see, e.g., [5, Proposition 1.1]) one can construct a function vψ ∈ H1

loc(CΩ) that is a solution to
(4.1) in CΩ and satisfies vψ ≥ vψ,Rn in C(0,Rn)

Ω for each n ∈ N. Therefore vψ is a growing solution
to (4.1) in CΩ that obeys (4.3), as required.

Now we prove that the existence of a growing (super) solution to (4.3) implies a lower bound
on the critical exponent p∗(a, CΩ).

Proposition 4.5. p∗(a, CΩ) ≥ 1− 2/γ, where γ > 0 is taken from (4.3).

Proof. Let w > 0 be a growing supersolution to (4.1) that satisfies (4.3), as constructed in
Lemma 4.4. Fix p < p0 = 1− 2/γ and set δ = p0 − p. Then one can choose τ = τ(δ) > 0 such
that

(τw)p−1 ≤ τp−1(c|x|γ)p−1 ≤ (cτ)p−1

|x|2+δγ
≤ ε

|x|2 log2 |x|
in CρΩ.
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Therefore

−∇· a ·∇(τw) =
ε

|x|2 log2 |x|
(τw) ≥ (τw)p−1(τw) = (τw)p in CρΩ,

that is τw > 0 is a supersolution to (1.1) in CρΩ.

5 Proof of Theorem 1.4

Using polar coordinates (r, ω), define a Serrin–type operator on CΩ by

(5.1) Lδ := − ∂2

∂r2
− N − 1

r

∂

∂r
− δ(r)

r2
∆ω,

where ∆ω is the Laplace–Beltrami operator on Ω, and δ : R+ → R+ is measurable and squeezed
between two positive constants. Then Lδ is a divergence type elliptic operator −∇· aδ ·∇ with
a uniformly elliptic matrix aδ(x) (see, e.g., [5, 11]). Clearly, if δ(r) ≡ 1 then Lδ = −∆.

Proof of Theorem 1.4. Let Ω b SN−1 be a proper subdomain, λ1 = λ1(Ω) > 0 the principal
Dirichlet eigenvalue of −∆ω on Ω and φ1 > 0 the corresponding principal eigenfunction. Given
p ∈ (−∞, 1), set β := 2

1−p and consider the operator Lδ with

δ(r) ≡ β(β +N − 2)
λ1

.

A direct computation shows that
w = rβφ1(ω)

is a positive solution to Lδw = 0 in CΩ. By Proposition 3.2 we conclude that p∗(aδ,Ω) ≤ p.

Next we show that p∗(aδ,Ω) ≥ p. To make the arguments more transparent, we make an
additional assumption that Ω b SN−1 is smooth. Then for arbitrary ε > 0 one can find a proper
(smooth) subdomain Ωε b SN−1 such that Ω b Ωε and λ1(Ωε) ≥ λ1(Ω)− ε. Let β := 2

1−p and
γε > 0 be the positive root of the quadratic equation

−γ(γ +N − 2) + β(β +N − 2)
λ1(Ωε)
λ1(Ω)

= 0.

Let φ(ε)
1 > 0 denotes the principal Dirichlet eigenfunction of −∆ω in Ωε. Clearly γε < β and

γε → β as ε→ 0.

A direct computation shows that for all sufficiently small ε > 0 the function

wε = rγε−εφ
(ε)
1 (ω)

is a positive supersolution to the equation

(Lδ − Vε∗)w = 0 in CρεΩε

for some ρε � 1 (where Vε∗ is defined in (4.2) and ε∗ > 0 is fixed). Clearly,

wε ≥ cεr
γε−ε in CρεΩ .

By Proposition 4.5 we conclude that

p∗(ad, CΩ) ≥ 1− 2
γε − ε

→ 1− 2
β

as ε→ 0,

which completes the proof for smooth domains Ω. The proof for the general open subdomains
Ω b SN−1 could be carried over following, with minor modifications, the lines of the (rather
technical) arguments in [9, Lemma 6.8].
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